Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = CASSI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5470 KB  
Article
Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis
by Chaoli Jiang, Lubin Chang, Guoli Feng, Yuanshuai Liu and Wenli Fei
Energies 2025, 18(17), 4533; https://doi.org/10.3390/en18174533 - 27 Aug 2025
Viewed by 492
Abstract
In order to analyze and solve the problem of excessive commutation spark of DC motor in ship electric propulsion system, which leads to a decrease in output power and low torque, this paper first establishes a mathematical model of the ship DC motor, [...] Read more.
In order to analyze and solve the problem of excessive commutation spark of DC motor in ship electric propulsion system, which leads to a decrease in output power and low torque, this paper first establishes a mathematical model of the ship DC motor, builds its simulation model based on the mathematical model, and conducts simulation verification. Secondly, the Cassie arc model is introduced to model the commutation spark, and the Cassie arc model is connected in series in the armature winding of the DC motor to achieve virtual injection of excessive spark fault of the DC motor. Finally, the Fourier transform and wavelet analysis are used to process the data of the armature winding current and excitation current of the DC motor. The simulation results show that when an arc fault occurs in the DC motor, the ripple coefficient of the armature current and excitation current will increase, and the high-frequency component will increase. DB8 is an adopted wavelet function that decomposes the armature current and excitation current six times, and calculates the energy changes before and after the fault of each decomposed signal layer. It is found that without considering the approximate components, the D4 layer wavelet energy of the armature current and excitation current has the largest proportion in the detail components. The D1, D2, and D3 layers’ wavelet decomposition signals of the armature current and excitation current have significant energy changes; that is, the energy increase in the middle and high frequency parts exceeds 20%, and the D3 layer wavelet decomposition signal has the largest energy change, exceeding 40%. This can be used as a fault characteristic quantity to determine whether the DC motor has a large spark fault. This study can provide reference and guidance for online detection technology of excessive sparks in ship DC motors. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

16 pages, 6875 KB  
Article
Scalable Engineering of Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance by Combined Nanostructuring and Chemical Vapor Deposition
by N. Rahul, Beomguk Park, Sanjaya Kumar Pradhan, Ho-Eon Sung, Inn-Hyup Jeong, Yong-Sup Yun and Min-Suk Oh
Materials 2025, 18(17), 3981; https://doi.org/10.3390/ma18173981 - 25 Aug 2025
Viewed by 835
Abstract
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process [...] Read more.
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process with atmospheric pressure chemical vapor deposition (APCVD) of a perfluorinated silane. The hierarchical CuO nanostructures formed via alkaline oxidation serve as a robust layer, while subsequent silane functionalization imparts low surface energy, resulting in surfaces with water contact angles exceeding 170° and minimal contact angle hysteresis. Comprehensive surface characterization by SEM and roughness analysis confirmed the preservation of hierarchical morphology after coating. Wettability studies reveal a transition from hydrophilic to superhydrophobic behavior, with the Cassie–Baxter regime achieved on nanostructured and silane-functionalized samples, leading to enhanced droplet mobility and self-cleaning effect. Salt spray tests demonstrate that the superhydrophobic surfaces exhibit a corrosion rate reduction of 85.7% (from 2.51 mm/year for bare copper to 0.36 mm/year for the treated surface), indicating a seven-fold improvement in corrosion resistance compared to bare copper. This methodology offers a practical, reproducible route to multifunctional copper surfaces, advancing their potential for use in anti-fouling, self-cleaning, and long-term protective applications. Full article
Show Figures

Figure 1

11 pages, 1591 KB  
Article
Incomplete Wenzel State Induced by Dual-Critical Angles in Regular Square Pyramid Microstructures
by Yizhang Shao, Mengyu Zhu, Liyang Huang and Bo Zhang
Surfaces 2025, 8(3), 57; https://doi.org/10.3390/surfaces8030057 - 14 Aug 2025
Viewed by 446
Abstract
The array of regular square pyramid microstructures with zero-spacing features is an ideal structural topology for building superhydrophobic functional surfaces due to its excellent anti-wetting performance and low surface adhesion properties. In the framework of existing studies, this microstructured array is usually considered [...] Read more.
The array of regular square pyramid microstructures with zero-spacing features is an ideal structural topology for building superhydrophobic functional surfaces due to its excellent anti-wetting performance and low surface adhesion properties. In the framework of existing studies, this microstructured array is usually considered to exist only in two typical wetting states, the stable Cassie state and the Wenzel state. In this study, a third type of wetting state, the incomplete Wenzel state, was discovered for the first time using experimental characterization, and the evolution mechanism of this new wetting state was revealed based on critical contact angle theory and numerical simulation. It is revealed that the faces and edges of the square pyramid microstructures exhibit different tilting angles, and this unique geometrical design endows them with dual critical contact angles. When the intrinsic contact angle of the microstructure is between the critical contact angles for the edges and faces, the wetting behavior of the droplet contact line in the directions parallel to the edges and faces will generate spontaneous and non-spontaneous competition effects, which lead to the formation of the incomplete Wenzel state. The dual-critical-angle theoretical model constructed in this study provides a new perspective for improving the theoretical system of wetting dynamics on pyramid arrays. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

12 pages, 2254 KB  
Article
Hydrophobic Boron Nitride Nanoflower Coatings on Mild Steel Surfaces
by Aamir Nadeem, Muhammad Faheem Maqsood, Mohsin Ali Raza, Syed Muhammad Zain Mehdi and Shahbaz Ahmad
Surfaces 2025, 8(3), 42; https://doi.org/10.3390/surfaces8030042 - 25 Jun 2025
Viewed by 881
Abstract
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, [...] Read more.
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, and 60 min, and their structural, surface, and water-repellent characteristics were evaluated. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy confirmed the successful formation of BN, while water contact angle measurements indicated high hydrophobicity, demonstrating excellent barrier properties. Scanning electron microscopy (SEM) revealed morphological evolution from flower- and needle-like BN structures in the sample placed in the CVD furnace for 15 min to dense, coral-like, and tubular networks in the samples placed for 30 and 60 min. These findings highlight that BN coatings, particularly the one obtained after 30 min of deposition, have a high hydrophobic character following the Cassie–Baxter model and can be used for corrosion resistance and anti-icing on MS, making them ideal for industrial applications requiring long-lasting protection. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

22 pages, 11782 KB  
Article
Controllable Fabrication of ZnO Nanorod Arrays on the Surface of Titanium Material and Their Antibacterial and Anti-Adhesion Properties
by Sifang Kong, Jialin Li, Ouyang Fan, Feng Lin, Jiayin Xie and Jing Lin
Materials 2025, 18(7), 1645; https://doi.org/10.3390/ma18071645 - 3 Apr 2025
Cited by 2 | Viewed by 606
Abstract
The adhesion of deleterious bacteria on titanium substrates not only causes economic losses but also endangers human life and health. The study is expected to address the challenging issues of using ZnO as an antibacterial material, including low bactericidal efficiency without lighting, susceptibility [...] Read more.
The adhesion of deleterious bacteria on titanium substrates not only causes economic losses but also endangers human life and health. The study is expected to address the challenging issues of using ZnO as an antibacterial material, including low bactericidal efficiency without lighting, susceptibility to ZnO cluster formation, and easy adhesion of bacteria to its surface. It is proposed that the prepared ZnO nanorod arrays with a hexagonal wurtzite structure on the surface of titanium-based materials can address the issue of ZnO cluster formation. Remarkably, a mere 3.49 g cm−2 of decorated Ag/AgCl achieves over 99% sterilization efficiency without lighting. The incorporation of FAS (1H,1H,2H,2H-perfluorodecyltrimethoxysilane) molecules with low surface energy enables the prepared Ti@ZnO@Ag/AgCl@FAS to attain a Cassie–Baxter wetting state, thereby imparting exceptional bacterial anti-adhesion properties exceeding 99.50%. Furthermore, antibacterial and anti-adhesion models have been proposed to elucidate the underlying mechanisms. This innovative approach is anticipated to be adaptable for application across various material substrates, which opens up a new avenue for the application of the antibacterial and bacterial anti-adhesion properties on the surface of ZnO materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 18781 KB  
Article
Demonstration of Pattern Size Effects on Hydrophobic Nanocellulose Coatings with Regular Micron-Sized Island-like Geometrical Domains Created by Femtosecond Laser Micromachining
by Pieter Samyn, Patrick Cosemans and Olivier Malek
Micromachines 2025, 16(3), 289; https://doi.org/10.3390/mi16030289 - 28 Feb 2025
Viewed by 883
Abstract
As inspired by nature, wettability of bio-based material surfaces can be controlled by combining appropriate surface chemistries and topographies mimicking the structure of plant leaves or animals. The need for bio-based nanocellulose coatings with enhanced hydrophobic properties becomes technically relevant for extending their [...] Read more.
As inspired by nature, wettability of bio-based material surfaces can be controlled by combining appropriate surface chemistries and topographies mimicking the structure of plant leaves or animals. The need for bio-based nanocellulose coatings with enhanced hydrophobic properties becomes technically relevant for extending their applications in the technological domain with better protection and lifetime of the coatings. In this work, the water repellence of spray-coated nanocellulose coatings with hydrophobically modified cellulose microfiber (mCMF coatings), or hydrophobically modified cellulose nanofiber (mCNF coatings) was enhanced after femtosecond laser patterning. In particular, the influences of different island-like pattern geometries and pattern sizes were systematically studied. The island-like patterns were experimentally created with single posts that have variable sizes of the valleys (B = 30 to 15 µm) and top surface area (T = 120 to 15 µm), resulting in good resolution of the patterns down to the size of the laser beam diameter (15 µm). Depending on the intrinsic homogeneity and porosity of sprayed mCMF and mCNF coatings, the quality and resolution of the island-like patterns is better for the mCNF coatings with thinner and more homogeneous sizes of the cellulose nanofibrils. The increase in apparent water contact angle on patterned nanocellulose coatings can be estimated from the theoretical Cassie–Baxter state of wetting and shows maximum values up to θs = 128° (mCMF coatings), or θs = 140° (mCNF coatings), for the smallest pattern sizes in parallel with minimum contact angle hysteresis of Δθ = 14° (mCMF coatings), or Δθ < 9° (mCNF coatings). The study demonstrated that femtosecond laser patterning technology provides high flexibility and adaptivity to create surface patterns in appropriate dimensions with enhanced hydrophobicity of nanocellulose coatings. Full article
(This article belongs to the Special Issue Laser Micro/Nano-Fabrication)
Show Figures

Figure 1

16 pages, 5302 KB  
Article
Wetting Transition from Wenzel to Cassie States: Thermodynamic Analysis
by Qiang Sun, Yan-Nan Chen and Yu-Zhen Liu
Materials 2025, 18(3), 543; https://doi.org/10.3390/ma18030543 - 24 Jan 2025
Cited by 6 | Viewed by 1988
Abstract
Superhydrophobicity is closely linked to the chemical composition and geometric characteristics of surface roughness. Building on our structural studies on water and air–water interfaces, this work aims to elucidate the mechanism underlying the wetting transition from the Wenzel to the Cassie state on [...] Read more.
Superhydrophobicity is closely linked to the chemical composition and geometric characteristics of surface roughness. Building on our structural studies on water and air–water interfaces, this work aims to elucidate the mechanism underlying the wetting transition from the Wenzel to the Cassie state on a hydrophobic surface. In the Wenzel state, the grooves are filled with water, meaning that the surface roughness becomes embedded in the liquid. To evaluate the effects of surface roughness on water structure, a wetting parameter (WRoughness) is proposed, which is closely related to the geometric characteristics of roughness, such as pillar size, width, and height. During the wetting transition from Wenzel to Cassie states, the critical wetting parameter (WRoughness,c) may be expected, which corresponds to the critical pillar size (ac), width (wc), and height (hc). The Cassie state is expected when the WRoughness is less than WRoughness,c (<WRoughness,c), which can be achieved by altering the geometric characteristics of the roughness, such as increasing pillar size (>ac), decreasing width (<wc), or increasing height (>hc). Additionally, molecular dynamic (MD) simulations are conducted to demonstrate the effects of surface roughness on superhydrophobicity. Full article
Show Figures

Figure 1

19 pages, 9490 KB  
Article
Research on the Randomness of Low-Voltage AC Series Arc Faults Based on the Improved Cassie Model
by Yao Wang, Yuying Liu, Xin Ning, Dejie Sheng and Tianle Lan
Energies 2025, 18(3), 538; https://doi.org/10.3390/en18030538 - 24 Jan 2025
Cited by 1 | Viewed by 925
Abstract
Low-voltage AC power lines are prone to arc faults, and an arc current presents as a random and complicated signal. The amplitude of the line current remains relatively unchanged during the occurrence of series arcs, hence complicating the detection of series arc faults. [...] Read more.
Low-voltage AC power lines are prone to arc faults, and an arc current presents as a random and complicated signal. The amplitude of the line current remains relatively unchanged during the occurrence of series arcs, hence complicating the detection of series arc faults. In this work, we developed a low-voltage series arc fault test platform to analyze the digital features of low-voltage series arc currents and the morphology of arc combustion, as the current model fails to capture the high-frequency and randomness of arc currents. An analysis of the physical causes and influencing factors of the random distribution of AC arc zero-crossing times was conducted. A time-domain simulation model for arc fault currents was developed by enhancing the time constant of the Cassie arc model, while the high-frequency features of arc currents were simulated using a segmented noise model. The measured arc current data were utilized to validate the model through the analysis of the zero-crossing time distribution of arc current, the correlation coefficient of the arc current frequency-domain signal, and the similarity of the time-domain waveforms. When comparing the similarity of the simulated waveforms of the arc model presented in this research and those of other traditional arc models, it was found that the suggested model effectively characterizes the time-/frequency-domain features of low-voltage AC series arc fault currents. The suggested model enhances the features of randomness in low-voltage AC series arc faults and is important in extracting essential aspects and reliably recognizing low-voltage series arc faults. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 8112 KB  
Article
Tuning Wetting Properties Through Surface Geometry in the Cassie–Baxter State
by Talya Scheff, Florence Acha, Nathalia Diaz Armas, Joey L. Mead and Jinde Zhang
Biomimetics 2025, 10(1), 20; https://doi.org/10.3390/biomimetics10010020 - 2 Jan 2025
Cited by 6 | Viewed by 1331
Abstract
Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie–Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography [...] Read more.
Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie–Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography as model surfaces. By varying the solid fraction (ϕs), edge-to-edge spacing (L), and the shape and arrangement of the micro-posts, we examined how these geometric factors influence wetting behavior. Our results show that the solid fraction is the key factor affecting both dynamic and sliding angles, while changes in shape and arrangement had minimal impact. The Cassie–Baxter model accurately predicted receding angles but struggled to predict advancing angles. These insights can guide the development of coatings with enhanced superhydrophobic properties, tailored to achieve higher contact angles and customized for different environmental conditions. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces: Challenges, Solutions and Applications)
Show Figures

Graphical abstract

17 pages, 1961 KB  
Article
Mask-Guided Spatial–Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction
by Xian-Hua Han, Jian Wang and Yen-Wei Chen
Sensors 2024, 24(22), 7362; https://doi.org/10.3390/s24227362 - 18 Nov 2024
Cited by 1 | Viewed by 1687
Abstract
Hyperspectral image (HSI) reconstruction is a critical and indispensable step in spectral compressive imaging (CASSI) systems and directly affects our ability to capture high-quality images in dynamic environments. Recent research has increasingly focused on deep unfolding frameworks for HSI reconstruction, showing notable progress. [...] Read more.
Hyperspectral image (HSI) reconstruction is a critical and indispensable step in spectral compressive imaging (CASSI) systems and directly affects our ability to capture high-quality images in dynamic environments. Recent research has increasingly focused on deep unfolding frameworks for HSI reconstruction, showing notable progress. However, these approaches have to break the optimization task into two sub-problems, solving them iteratively over multiple stages, which leads to large models and high computational overheads. This study presents a simple yet effective method that passes the degradation information (sensing mask) through a deep learning network to disentangle the degradation and the latent target’s representations. Specifically, we design a lightweight MLP block to capture non-local similarities and long-range dependencies across both spatial and spectral domains, and investigate an attention-based mask modelling module to achieve the spatial–spectral-adaptive degradation representationthat is fed to the MLP-based network. To enhance the information flow between MLP blocks, we introduce a multi-level fusion module and apply reconstruction heads to different MLP features for deeper supervision. Additionally, we combine the projection loss from compressive measurements with reconstruction loss to create a dual-domain loss, ensuring consistent optical detection during HS reconstruction. Experiments on benchmark HS datasets show that our method outperforms state-of-the-art approaches in terms of both reconstruction accuracy and efficiency, reducing computational and memory costs. Full article
Show Figures

Figure 1

21 pages, 4659 KB  
Article
UNC Charlotte Autonomous Shuttle Pilot Study: An Assessment of Operational Performance, Reliability, and Challenges
by Mohammadnavid Golchin, Abhinav Grandhi, Ninad Gore, Srinivas S. Pulugurtha and Amirhossein Ghasemi
Machines 2024, 12(11), 796; https://doi.org/10.3390/machines12110796 - 11 Nov 2024
Cited by 2 | Viewed by 2538
Abstract
This paper presents the findings from an autonomous shuttle pilot program conducted at the University of North Carolina at Charlotte between June and December 2023 as part of the North Carolina Department of Transportation’s Connected Autonomous Shuttle Supporting Innovation (CASSI) initiative. The shuttle [...] Read more.
This paper presents the findings from an autonomous shuttle pilot program conducted at the University of North Carolina at Charlotte between June and December 2023 as part of the North Carolina Department of Transportation’s Connected Autonomous Shuttle Supporting Innovation (CASSI) initiative. The shuttle completed 825 trips, transporting 565 passengers along a 2.2-mile mixed-traffic campus route. The study evaluates the shuttle’s operational performance, reliability, and challenges using data from onboard sensors, system logs, and operator reports. Key analyses are divided into four areas: service reliability, which assesses autonomy disengagements caused by signal loss, technical issues, and environmental factors; service robustness, focusing on the shuttle’s ability to maintain operations under adverse conditions; performance metrics, including average speed, autonomy percentage, and battery usage; and service usage, which examines the number of trips and passengers to gauge efficiency. Signal loss and battery-related issues were the primary causes of service interruptions, while environmental factors like weather and vegetation also affected shuttle performance. Recommendations include enhancing vehicle-to-infrastructure communication and optimizing battery management. Full article
(This article belongs to the Special Issue Recent Analysis and Research in the Field of Vehicle Traffic Safety)
Show Figures

Figure 1

20 pages, 11978 KB  
Article
Superhydrophobic Coating Based on Nano-Silica Modification for Antifog Application of Partition Glass
by Linfei Yu, Kaiyang Ma, Hong Yin, Chenliang Zhou, Wenxiu He, Gewen Yu, Qiang Zhang, Quansheng Liu and Yanxiong Zhao
Coatings 2024, 14(11), 1375; https://doi.org/10.3390/coatings14111375 - 29 Oct 2024
Cited by 5 | Viewed by 2523
Abstract
In this study, vinyl triethoxysilane (VTES), KH-560 and trimethylchlorosilane (TMCS) were used to modify the surface groups of commercially available nano-silica (SiO2, 50 nm), and ethylene vinyl acetate copolymer (EVA) was used as a film-forming agent. EVA/SiO2, EVA/V-SiO2 [...] Read more.
In this study, vinyl triethoxysilane (VTES), KH-560 and trimethylchlorosilane (TMCS) were used to modify the surface groups of commercially available nano-silica (SiO2, 50 nm), and ethylene vinyl acetate copolymer (EVA) was used as a film-forming agent. EVA/SiO2, EVA/V-SiO2, EVA/K-SiO2 and EVA/T-SiO2 coatings were prepared, respectively. The coatings were characterized by SEM, FTIR, TG and contact angle. It was found that when the mass percentage of SiO2 was 66 wt%, the hydrophobicity performance of the coating could be significantly improved by silica modification. Compared to the EVA/SiO2, the water contact angle (WCA) of the EVA/V-SiO2, EVA/K-SiO2 and EVA/T-SiO2 were increased by 24.0%, 14.4% and 24.6%, respectively. The FTIR results indicated that VTES, KH-560 and TMCS could effectively replace the -OH groups on the surface of the SiO2 after hydrolysis, resulting in the presence of water transport groups on the SiO2 surface. The TG results certified that TMCS had the highest substitution rate (24.6%) for the -OH groups on the SiO2 surface after the hydrolysis. Additionally, the SEM results indicated that T-SiO2 was more easily dispersed in the EVA film-forming agent, leading to a uniform micro–nano surface rough structure, which aligned with the Cassie–Wenzel model. The durability test had demonstrated that the EVA/T-SiO2 maintained its hydrophobic properties even after enduring 40,000 drops of water and the impact of 200 g of sand. Furthermore, it exhibited excellent resistance to acid corrosion, along with superior self-cleaning properties and an anti-fog performance. It also provided outstanding protection against high temperatures and UV radiation for outdoor applications. Full article
Show Figures

Figure 1

25 pages, 4300 KB  
Article
Machine Learning Monte Carlo Approaches and Statistical Physics Notions to Characterize Bacterial Species in Human Microbiota
by Michele Bellingeri, Leonardo Mancabelli, Christian Milani, Gabriele Andrea Lugli, Roberto Alfieri, Massimiliano Turchetto, Marco Ventura and Davide Cassi
Mach. Learn. Knowl. Extr. 2024, 6(4), 2375-2399; https://doi.org/10.3390/make6040117 - 18 Oct 2024
Viewed by 1608
Abstract
Recent studies have shown correlations between the microbiota’s composition and various health conditions. Machine learning (ML) techniques are essential for analyzing complex biological data, particularly in microbiome research. ML methods help analyze large datasets to uncover microbiota patterns and understand how these patterns [...] Read more.
Recent studies have shown correlations between the microbiota’s composition and various health conditions. Machine learning (ML) techniques are essential for analyzing complex biological data, particularly in microbiome research. ML methods help analyze large datasets to uncover microbiota patterns and understand how these patterns affect human health. This study introduces a novel approach combining statistical physics with the Monte Carlo (MC) methods to characterize bacterial species in the human microbiota. We assess the significance of bacterial species in different age groups by using notions of statistical distances to evaluate species prevalence and abundance across age groups and employing MC simulations based on statistical mechanics principles. Our findings show that the microbiota composition experiences a significant transition from early childhood to adulthood. Species such as Bifidobacterium breve and Veillonella parvula decrease with age, while others like Agathobaculum butyriciproducens and Eubacterium rectale increase. Additionally, low-prevalence species may hold significant importance in characterizing age groups. Finally, we propose an overall species ranking by integrating the methods proposed here in a multicriteria classification strategy. Our research provides a comprehensive tool for microbiota analysis using statistical notions, ML techniques, and MC simulations. Full article
(This article belongs to the Special Issue Advances in Machine and Deep Learning)
Show Figures

Graphical abstract

13 pages, 2978 KB  
Article
Enhancing Biological Control Efficacy: Insights into the Feeding Behavior and Fitness of the Omnivorous Pest Lygus lineolaris
by Mireia Solà Cassi, François Dumont, Caroline Provost and Eric Lucas
Insects 2024, 15(9), 665; https://doi.org/10.3390/insects15090665 - 31 Aug 2024
Cited by 2 | Viewed by 1574
Abstract
Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), a true omnivorous insect, poses a significant threat to agriculture in the Neartic region. Understanding the feeding behavior of L. lineolaris is crucial for developing integrated pest management strategies. This study aimed to evaluate the effects [...] Read more.
Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), a true omnivorous insect, poses a significant threat to agriculture in the Neartic region. Understanding the feeding behavior of L. lineolaris is crucial for developing integrated pest management strategies. This study aimed to evaluate the effects of different diets on the fitness of L. lineolaris, with a focus on the diet source, feeding regime (phytophagy, zoophagy, and phytozoophagy), and number of diet items. The experimental design in the laboratory investigated the impacts of strawberry, canola and buckwheat flowers, as well as spider mites and aphids to explore relationships found in a conventional strawberry field. Results reveal that diet source, feeding regime, and the number of diet items influence L. lineolaris performance (i.e., survivorship rate, developmental time, and adult weight and length). Improvements in fitness are indicated by higher nymphal survival, shorter developmental time, and larger adults. Immature stages of L. lineolaris show improved fitness when provided with diets rich in canola compared to strawberry flowers and spider mites. Furthermore, the inclusion of multiple diet items in phytozoophagous regimes enhances insect performance. The findings emphasize the significance of understanding L. lineolaris’ nutritional requirements and the biodiversity of target ecosystems for modeling energy flows and designing effective IPM strategies against this pest. This research contributes to the knowledge base for biological control programs targeting L. lineolaris in agricultural systems. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 23755 KB  
Article
Estimation of the Structure of Hydrophobic Surfaces Using the Cassie–Baxter Equation
by Oleksiy Myronyuk, Egidijus Vanagas, Aleksej M. Rodin and Miroslaw Wesolowski
Materials 2024, 17(17), 4322; https://doi.org/10.3390/ma17174322 - 31 Aug 2024
Cited by 10 | Viewed by 2284
Abstract
The effect of extreme water repellency, called the lotus effect, is caused by the formation of a Cassie–Baxter state in which only a small portion of the wetting liquid droplet is in contact with the surface. The rest of the bottom of the [...] Read more.
The effect of extreme water repellency, called the lotus effect, is caused by the formation of a Cassie–Baxter state in which only a small portion of the wetting liquid droplet is in contact with the surface. The rest of the bottom of the droplet is in contact with air pockets. Instrumental methods are often used to determine the textural features that cause this effect—scanning electron and atomic force microscopies, profilometry, etc. However, this result provides only an accurate texture model, not the actual information about the part of the surface that is wetted by the liquid. Here, we show a practical method for estimating the surface fraction of texture that has contact with liquid in a Cassie–Baxter wetting state. The method is performed using a set of ethanol–water mixtures to determine the contact angle of the textured and chemically equivalent flat surfaces of AlSI 304 steel, 7500 aluminum, and siloxane elastomer. We showed that the system of Cassie–Baxter equations can be solved graphically by the wetting diagrams introduced in this paper, returning a value for the texture surface fraction in contact with a liquid. We anticipate that the demonstrated method will be useful for a direct evaluation of the ability of textures to repel liquids, particularly superhydrophobic and superoleophobic materials, slippery liquid-infused porous surfaces, etc. Full article
Show Figures

Figure 1

Back to TopTop