Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = CFD-RANS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4275 KiB  
Article
CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept
by Gonçalo Pacheco, José Chaves, Miguel Mendes and Pedro Coelho
Energies 2025, 18(11), 2919; https://doi.org/10.3390/en18112919 (registering DOI) - 2 Jun 2025
Abstract
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This [...] Read more.
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This study numerically investigates the design and implementation of staged combustion of a mixture of NH3/H2 by means of CFD simulations. The investigation employed the single-phase flow RANS governing equations and the eddy dissipation concept (EDC) combustion model, with the incorporation of a detailed kinetic mechanism. The combustion chamber operates under the RQL (rich–quench–lean) combustion regime. The first stage operates under rich conditions, firing mixtures of ammonia in air, enriched by hydrogen (H2) to enhance combustion properties in a swirl and bluff-body stabilized burner. The secondary stage injects additional air and hydrogen to mitigate unburnt ammonia and NOx emissions. Simulations of the first stage were performed for a thermal input ranging from 4 kW to 8 kW and flames with an equivalence ratio of 1.2. In the second stage, additional hydrogen is injected with a thermal input of either 1 kW or 2 KW, and air is added to adjust the global equivalence ratio to 0.6. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 9155 KiB  
Article
Study on the Wind Pressure Distribution in Complicated Spatial Structure Based on k-ε Turbulence Models
by Jing Wang, Shixiong Zhou, Hui Liu, Shixing Zhao, Fei He and Lei Zhao
Buildings 2025, 15(11), 1877; https://doi.org/10.3390/buildings15111877 - 29 May 2025
Viewed by 170
Abstract
Understanding wind pressure distribution on structures is crucial for evaluating design wind loads, especially for complex designs. This study investigated the wind pressure distribution on a windmill shape building with intricate geometries, i.e., the Chengdu Future Science and Technology City Exhibition Centre. Both [...] Read more.
Understanding wind pressure distribution on structures is crucial for evaluating design wind loads, especially for complex designs. This study investigated the wind pressure distribution on a windmill shape building with intricate geometries, i.e., the Chengdu Future Science and Technology City Exhibition Centre. Both wind tunnel test and CFD simulations are conducted to analyze the wind pressure distribution on building surface. Since the research object has intricate geometries, featuring sharp corners, curved surfaces, and ridges, the Reynolds Average Navier-Stokes (RANS) method adopting k-ε turbulence models is employed in the CFD simulations. Furthermore, scalable wall functions and non-structured grids with appropriate refinement on both turbulent regions and structural surfaces are also adopted in the RANS method. A comparison between the simulation results and wind tunnel tests demonstrated that the numerical simulations based on RANS method effectively capture surface wind pressure distribution on complex structures. This study reveals the occurrence of complicated flow phenomena that lead to a very complex wind pressure distribution on the surface of the structure, and drastic variance of the wind pressure coefficient is observed. Moreover, it is found that wind pressure distribution on the surface of the structure is highly sensitive to wind angle, exhibiting extreme negative pressure coefficients of −1.1, −1.0, and −1.8 at angles of 0°, 30°, and 60°, respectively. The analysis of the flow field around the structure at various wind angles reveals that its complex shape significantly alters the flow dynamics, creating distinct vortices and wake patterns at different angles. Consequently, CFD simulations help to understand wind loads on structures and improve wind resistance design. Full article
Show Figures

Figure 1

21 pages, 1454 KiB  
Review
CFD in Urban Wind Resource Assessments: A Review
by Ruoping Chu and Kai Wang
Energies 2025, 18(10), 2626; https://doi.org/10.3390/en18102626 - 20 May 2025
Viewed by 288
Abstract
Urban distributed energy systems play a crucial role in the development of sustainable and low-carbon cities. Evaluating urban wind resources is essential for effective wind energy harvesting, which requires detailed information about the urban flow field. Computational fluid dynamics (CFD) has emerged as [...] Read more.
Urban distributed energy systems play a crucial role in the development of sustainable and low-carbon cities. Evaluating urban wind resources is essential for effective wind energy harvesting, which requires detailed information about the urban flow field. Computational fluid dynamics (CFD) has emerged as a viable and scalable method for assessing urban wind resources. This review paper synthesizes the characteristics of the urban wind environment and resources, outlines the general framework for CFD-aided wind resource assessment, and addresses future challenges and perspectives. It highlights the critical need to optimize wind energy harvesting in complex built environments. The paper discusses the conditions for urban wind resource assessment, particularly the extraction of boundary conditions and the performance of small wind turbines (SWTs). Additionally, it notes that while large eddy simulation (LES) is a high-fidelity model, it is still less commonly used compared to Reynolds-averaged Navier–Stokes (RANS) models. Several challenges remain, including the broader adoption of high-fidelity LES models, the integration of wake models and extreme conditions, and the application of these methods at larger scales in real urban environments. The potential of multi-scale modeling approaches to enhance the feasibility and scalability of these methods is also emphasized. The findings are intended to promote the utilization and further development of CFD methods to accelerate the creation of resilient and energy-efficient cities, as well as to foster interdisciplinary innovation in wind energy systems. Full article
(This article belongs to the Special Issue Computational and Experimental Fluid Dynamics for Wind Energy)
Show Figures

Figure 1

12 pages, 2401 KiB  
Proceeding Paper
Winglet Design for Class I Mini UAV—Aerodynamic and Performance Optimization
by Eleftherios Nikolaou, Eleftherios Karatzas, Spyridon Kilimtzidis and Vassilis Kostopoulos
Eng. Proc. 2025, 90(1), 111; https://doi.org/10.3390/engproc2025090111 - 7 May 2025
Viewed by 228
Abstract
The aerodynamic performance of an aircraft can be enhanced by incorporating wingtip devices, or winglets, which primarily reduce lift-induced drag created by wingtip vortices. This study outlines an optimization procedure for implementing winglets on a Class I fixed-wing mini-UAV to maximize aerodynamic efficiency [...] Read more.
The aerodynamic performance of an aircraft can be enhanced by incorporating wingtip devices, or winglets, which primarily reduce lift-induced drag created by wingtip vortices. This study outlines an optimization procedure for implementing winglets on a Class I fixed-wing mini-UAV to maximize aerodynamic efficiency and performance. After the Conceptual and Preliminary design phases, a baseline UAV was developed without winglets, adhering to specific layout constraints (e.g., wingspan, length). Various winglet designs—plate and blended types with differing heights, cant angles, and sweep angles—were then created and assessed. A Computational Fluid Dynamics (CFD) analysis was conducted to evaluate the flow around both the winglet-free UAV and configurations with each winglet design. The simulations employed Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the Spalart-Allmaras turbulence model, targeting the optimal winglet configuration for enhanced aerodynamic characteristics during cruise. Charts of lift, drag, pitching moment coefficients, and lift-to-drag ratios are presented, alongside flow contours illustrating vortex characteristics for both baseline and optimized configurations. Additionally, dynamic stability analyses examined how winglets impact the UAV’s stability and control. The results demonstrated a significant improvement in aerodynamic coefficients (CLmax, L/Dmax, CLa, Cma), leading to an increase in both range and endurance. Full article
Show Figures

Figure 1

22 pages, 3296 KiB  
Article
Performance of an L-Shaped Duct OWC-WEC Integrated into Vertical and Sloped Breakwaters by Using a Free-Surface RANS-Based Numerical Model
by Eric Didier and Paulo R. F. Teixeira
Fluids 2025, 10(5), 114; https://doi.org/10.3390/fluids10050114 - 30 Apr 2025
Viewed by 276
Abstract
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to [...] Read more.
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to more viability, since it allows working as both harbor and coastal protection and harvesting wave energy. The main objective of this study is to investigate different configurations of L-shaped duct OWC devices inserted into vertical and sloped (2:3) impermeable breakwaters for different lengths of the lip by using a numerical model based on the Reynolds-Averaged Navier-Stokes equations. The ANSYS FLUENT® software (2016) is used in 2D numerical simulations by adopting the volume of fluid method to consider the two-phase free surface flow (water and air). It was observed that both the length of the lip and the length of the L-shaped duct OWC significantly influence the resonance and the efficiency of the OWC device. In addition, the performance of the OWC device varies significantly with its geometric configuration, which needs to be adapted for the local sea state. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

22 pages, 12508 KiB  
Article
Investigating the Impact of Structural Features on F1 Car Diffuser Performance Using Computational Fluid Dynamics (CFD)
by Eugeni Pérez Nebot, Antim Gupta and Mahak Mahak
Mathematics 2025, 13(9), 1455; https://doi.org/10.3390/math13091455 - 29 Apr 2025
Viewed by 485
Abstract
This study utilizes Computational Fluid Dynamics (CFD) to optimize the aerodynamic performance of a Formula 1 (F1) car diffuser, investigating the effects of vane placements, end-flap positions, and other structural modifications. Diffusers are critical in managing airflow, enhancing downforce, and reducing drag, directly [...] Read more.
This study utilizes Computational Fluid Dynamics (CFD) to optimize the aerodynamic performance of a Formula 1 (F1) car diffuser, investigating the effects of vane placements, end-flap positions, and other structural modifications. Diffusers are critical in managing airflow, enhancing downforce, and reducing drag, directly influencing vehicle stability and speed. Despite ongoing advancements, the interaction between diffuser designs and turbulent flow dynamics requires further exploration. A Three-Dimensional k-Omega-SST RANS-based CFD methodology was developed to evaluate the aerodynamic performance of various diffuser configurations using Star CCM+. The findings reveal that adding lateral vane parallel to the divergence section improved high-intensity fluid flow distribution within the main channel, achieving 13.49% increment in downforce and 5.58% reduction in drag compared to the baseline simulation. However, incorporating an airfoil cross-section flap parallel to the divergence end significantly enhances the car’s performance, leading to a substantial improvement in downforce while relatively small increase in drag force. This underscores the critical importance of precise flap positioning for optimizing aerodynamic efficiency. Additionally, the influence of adding flaps underneath the divergence section was also analyzed to manipulate boundary layer separation to achieve improved performance by producing additional downforce. This research emphasizes the critical role of vortex management in preventing flow detachment and improving diffuser efficiency. The findings offer valuable insights for potential FIA F1 2023 undertray regulation changes, with implications for faster lap times and heightened competitiveness in motorsports. Full article
Show Figures

Figure 1

19 pages, 5624 KiB  
Article
Research on the Improvement of BEM Method for Ultra-Large Wind Turbine Blades Based on CFD and Artificial Intelligence Technologies
by Shiyu Yang, Mingming Zhang, Yu Feng, Haikun Jia, Na Zhao and Qingwei Chen
Fluids 2025, 10(5), 112; https://doi.org/10.3390/fluids10050112 - 27 Apr 2025
Viewed by 269
Abstract
With the development of the wind power industry, wind turbine blades are increasingly adopting ultra-large-scale designs. However, as the size of blades continues to increase, existing aerodynamic calculation methods struggle to achieve both relatively high computational accuracy and efficiency simultaneously. To tackle this [...] Read more.
With the development of the wind power industry, wind turbine blades are increasingly adopting ultra-large-scale designs. However, as the size of blades continues to increase, existing aerodynamic calculation methods struggle to achieve both relatively high computational accuracy and efficiency simultaneously. To tackle this challenge, this research focuses on the low accuracy issues of the traditional Blade Element Momentum theory (BEM) in predicting the aerodynamic performance of wind turbine blades. Consequently, a correction framework is proposed, to integrate the Computational Fluid Dynamics (CFD) method with the Multilayer Perceptron (MLP) neural network. In this approach, the CFD method is used to predict the airflow characteristics around the blades, and the MLP neural network is employed to model the intricate functional relationships between multiple influencing factors and key aerodynamic parameters. This process results in high-precision predictive functions for key aerodynamic parameters, which are then used to correct the traditional BEM. When this correction framework is applied to the rotor of the IEA 15 MW wind turbine, the effectiveness of MLP in predicting key aerodynamic parameters is demonstrated. The research findings suggest that this framework can enhance the accuracy of BEM aerodynamic load predictions to a level comparable to that of RANS. Full article
Show Figures

Figure 1

22 pages, 4427 KiB  
Article
Numerical Investigation of Cavitation Models Combined with RANS and PANS Turbulence Models for Cavitating Flow Around a Hemispherical Head-Form Body
by Hyeri Lee, Changhun Lee, Myoung-Soo Kim and Woochan Seok
J. Mar. Sci. Eng. 2025, 13(4), 821; https://doi.org/10.3390/jmse13040821 - 21 Apr 2025
Viewed by 371
Abstract
Accurate prediction of cavitating flows is essential for improving the performance and durability of marine and hydrodynamic systems. This study investigates the influence of different cavitation models—Kunz, Merkle, and Schnerr–Sauer—on the numerical prediction of cavitation around a hemispherical head-form body using computational fluid [...] Read more.
Accurate prediction of cavitating flows is essential for improving the performance and durability of marine and hydrodynamic systems. This study investigates the influence of different cavitation models—Kunz, Merkle, and Schnerr–Sauer—on the numerical prediction of cavitation around a hemispherical head-form body using computational fluid dynamics (CFD). Additionally, the effects of turbulence modeling approaches, including Reynolds-averaged Navier–Stokes (RANS) and partially averaged Navier–Stokes (PANS), are examined to assess their capability in capturing transient cavitation structures and turbulence interactions. The results indicate that the Schnerr–Sauer model, which incorporates bubble dynamics based on the Rayleigh–Plesset equation, provides the most accurate prediction of cavitation structures, closely aligning with experimental data. The Merkle model shows intermediate accuracy, while the Kunz model tends to overpredict cavity closure, limiting its ability to capture unsteady cavitation dynamics. Furthermore, the PANS turbulence model demonstrates superior performance over RANS by resolving more transient cavitation phenomena, such as cavity shedding and re-entrant jets, leading to improved accuracy in pressure distribution and vapor volume fraction predictions. The combination of the PANS turbulence model with the Schnerr–Sauer cavitation model yields the most consistent results with experimental observations, highlighting its effectiveness in modeling highly dynamic cavitating flows. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 11511 KiB  
Article
Numerical Study on the Influence of Catamaran Hull Arrangement and Demihull Angle on Calm Water Resistance
by Sumin Guo, Xianhe Yang, Hongyu Li, Weizhuang Ma, Qunhong Tian, Qingfeng Ma, Xin Su and Zongsheng Wang
J. Mar. Sci. Eng. 2025, 13(4), 815; https://doi.org/10.3390/jmse13040815 - 19 Apr 2025
Viewed by 326
Abstract
This study investigates the WAM-V (Wave Adaptive Modular Vessel) catamaran configuration, focusing on the hydrodynamic interaction between its articulated hulls. The unique hinged connection mechanism induces a relative angular displacement between the demihulls during operation, significantly modifying the calm water resistance characteristics. Such [...] Read more.
This study investigates the WAM-V (Wave Adaptive Modular Vessel) catamaran configuration, focusing on the hydrodynamic interaction between its articulated hulls. The unique hinged connection mechanism induces a relative angular displacement between the demihulls during operation, significantly modifying the calm water resistance characteristics. Such resistance variations critically influence both vessel maneuverability and the operational effectiveness of onboard acoustic detection systems. This study using computational fluid dynamics (CFD) technology, the effects of varying demihull spacing and the angles of the demihulls on resistance were calculated. Numerical simulations were performed using STAR-CCM+, employing the Reynolds-averaged Navier–Stokes equations (RANS) method combined with the k-epsilon turbulence model. The study investigates the free surface and double body viscous flow at different Froude numbers in the range of 0.3 to 0.75. The analysis focuses on the effects of the demihull spacing ratio (BS/LPP, Demihull spacing/Length between perpendiculars) on calm water resistance. Specifically, the resistance coefficient at BS/LPP = 0.2 is on average 14% higher than that at BS/LPP = 0.5. Additionally, the influence of demihull angles on resistance was simulated at BS/LPP = 0.42. The results indicate that inner demihull angles result in higher resistance compared to outer angles, with the maximum increase in resistance being approximately 9%, with specific outer angles effectively reducing resistance. This study provides a scientific basis for optimizing catamaran design and offers valuable insights for enhancing sailing performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 38876 KiB  
Article
Computational Fluid Dynamics Analysis of Ballast Water Treatment System Design
by Andro Rak, Tomislav Mrakovčić, Goran Mauša and Lado Kranjčević
J. Mar. Sci. Eng. 2025, 13(4), 743; https://doi.org/10.3390/jmse13040743 - 8 Apr 2025
Viewed by 433
Abstract
The effective management of ships’ ballast water is critical for preventing the spread of invasive species. Despite advancements in UV-based ballast water treatment systems (BWTSs), achieving a uniform flow distribution within UV reactors (UVRs) remains challenging due to the spatial constraints of ships. [...] Read more.
The effective management of ships’ ballast water is critical for preventing the spread of invasive species. Despite advancements in UV-based ballast water treatment systems (BWTSs), achieving a uniform flow distribution within UV reactors (UVRs) remains challenging due to the spatial constraints of ships. This study employs computational fluid dynamics (CFD) to analyze turbulent seawater flow in a real-case BWTS installed on a self-discharging bulk carrier. The flow uniformity at UVR inlets and the volume flow rate (Q) distribution between parallel reactors are evaluated at nominal flow rates of 1000, 1900, and 2000 m3/h. The results indicate significant disparities at maximum capacity (2000 m3/h), with the starboard configuration exceeding the recommended Q per UVR by 4.95%, thus requiring operational adjustments. Six geometric modifications are assessed, revealing that optimized pipeline bends and T-junction designs (e.g., ST_3 and ST_4) improve velocity uniformity and maintain the relative Q distribution errors below 8.5%. This study identifies vortical structures generated by sharp geometrical transitions as primary contributors to flow instability. By bridging CFD insights with practical engineering constraints, this work provides feasible recommendations for retrofitting existing BWTSs and designing future systems, ultimately enhancing treatment efficacy, reducing UV lamp wear, and supporting compliance with International Maritime Organization (IMO) standards. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 259443 KiB  
Article
Application of Topology Optimization as a Tool for the Design of Bracing Systems of High-Rise Buildings
by Paulo Ulisses da Silva, Gustavo Bono and Marcelo Greco
Buildings 2025, 15(7), 1180; https://doi.org/10.3390/buildings15071180 - 3 Apr 2025
Viewed by 364
Abstract
This study examines the impact of surrounding buildings and wind incidence angles on the aerodynamic loads of a high-rise building with a 1:1 base–edges and a 1:6 base–height ratio. CFD simulations were conducted using OpenFOAM with the classic RANS kϵ turbulence [...] Read more.
This study examines the impact of surrounding buildings and wind incidence angles on the aerodynamic loads of a high-rise building with a 1:1 base–edges and a 1:6 base–height ratio. CFD simulations were conducted using OpenFOAM with the classic RANS kϵ turbulence model, validated against experimental data from Tokyo Polytechnic University. The aerodynamic coefficients were analyzed for wind angles of θ = 0°, 15°, 30°, and 45°, varying with the adjacent building height. Additionally, topology optimization via the Bi-directional Evolutionary Structural Optimization (BESO) method was applied to determine the optimal bracing system under wind-induced loads. The results indicate that surrounding buildings significantly modify the aerodynamic response, particularly for asymmetric wind angles, where torsional effects become more pronounced. A shielding effect was observed, reducing drag and base moment but with a lesser influence on lift. The topology optimization results show that material distribution is directly influenced by aerodynamic coefficients, with “X” bracing patterns in case of low torsion and an additional member when torsional effects increase. This study highlights the importance of wind engineering in high-rise structural design and urban planning, emphasizing the necessity of specific wind assessments for accurate load predictions in dense urban environments. Full article
(This article belongs to the Special Issue High-Rise Building Design: Phenomena and Analyses Involved)
Show Figures

Figure 1

25 pages, 17457 KiB  
Article
Development of a Low-NOx Fuel-Flexible and Scalable Burner for Gas Turbines
by Antonio Di Nardo, Eugenio Giacomazzi, Matteo Cimini, Guido Troiani, Silvera Scaccia, Giorgio Calchetti and Donato Cecere
Energies 2025, 18(7), 1768; https://doi.org/10.3390/en18071768 - 1 Apr 2025
Cited by 1 | Viewed by 333
Abstract
To reduce dependence on fossil fuels, gas turbine plants using hydrogen/methane blends provide a crucial solution for decarbonizing thermal power generation and promoting a sustainable energy transition. In this context, the development of fuel-flexible burners is fundamental. This work reports the development of [...] Read more.
To reduce dependence on fossil fuels, gas turbine plants using hydrogen/methane blends provide a crucial solution for decarbonizing thermal power generation and promoting a sustainable energy transition. In this context, the development of fuel-flexible burners is fundamental. This work reports the development of a novel burner geometry for gas turbines that can operate with natural gas and hydrogen mixtures (HENG, hydrogen-enriched natural gas) over a wide range of hydrogen content while maintaining low NOx emissions. The methodology used in this work is multidisciplinary, incorporating (i) CFD numerical simulations to determine the burner’s geometry, (ii) mechanical design for prototype construction (not discussed in the article), and (iii) experimental tests to assess its hydrogen content capacity, stabilization, and pollutant emission characteristics. The geometry was initially optimized through several RANS simulations to enhance reactant mixing and minimize flashback risks. Additionally, some LES simulations were conducted under specific conditions to achieve more accurate predictions and investigate potential combustion dynamics issues. The proposed solution was then transferred into a prototype. Through experimental testing, the burner prototype was characterized in terms of four key performance indicators: (1) the ability to operate with HENG mixtures with more than 20% H2 content, showing a technological trend exceeding 50%; (2) the ability to operate with low NOx (<25 ppm) and CO emissions within the 30–70% hydrogen volume range; (3) the ability to ignite HENG mixtures with H2 in the 30–70% hydrogen volume range; and (4) the ability to operate with a fluctuating hydrogen content, ±15% over time, while still complying with NOx and CO emission limits. Full article
Show Figures

Figure 1

25 pages, 6488 KiB  
Article
High y+ Shear-Stress Turbulence Implementation for High Flux Isotope Reactor Narrow Channel Flows
by Emilian Popov, Nicholas Mecham and Taylor Grubbs
Fluids 2025, 10(4), 85; https://doi.org/10.3390/fluids10040085 - 26 Mar 2025
Viewed by 272
Abstract
The research objective of this work was to improve the engineering predictions of the turbulence characteristics of flows in curved narrow channels. Such channel flows are commonly encountered in nuclear research and test reactors, with one of them being the high-flux isotope reactor [...] Read more.
The research objective of this work was to improve the engineering predictions of the turbulence characteristics of flows in curved narrow channels. Such channel flows are commonly encountered in nuclear research and test reactors, with one of them being the high-flux isotope reactor (HFIR). Research reactors bear high heat fluxes, and the proper computing of turbulence is paramount for safe and reliable reactor operation. The study builds on the results of a previous direct numerical simulation of turbulence to inform a well-known Reynolds-averaged Navier–Stokes shear-stress turbulence model and improves its accuracy in simulating parallel channel flows. A new formulation of the loss term in the dissipation conservation equation is suggested. Combined with high wall distance computational grids, the new implementation provides a fast-running flow solution, suitable for engineering purposes. Model generalization for parallel channel flows, in a broader range of frictional Reynolds numbers, is suggested by introducing a new form of the model constants. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

25 pages, 2919 KiB  
Article
Predicting Extreme Atmospheric Conditions: An Empirical Approach to Maximum Pressure and Temperature
by George Efthimiou
Sustainability 2025, 17(7), 2852; https://doi.org/10.3390/su17072852 - 24 Mar 2025
Viewed by 847
Abstract
Accurate prediction of extreme atmospheric conditions is essential for various scientific and engineering applications, ranging from environmental monitoring to space weather forecasting and urban climate resilience. This study introduces an empirical approach to predict maximum atmospheric pressure and temperature using an empirical model [...] Read more.
Accurate prediction of extreme atmospheric conditions is essential for various scientific and engineering applications, ranging from environmental monitoring to space weather forecasting and urban climate resilience. This study introduces an empirical approach to predict maximum atmospheric pressure and temperature using an empirical model based on statistical parameters. The model incorporates key inputs such as the mean value, standard deviation, integral time scale, and a variability factor, denoted as b, to capture application-specific uncertainties. The methodology is applied to two distinct atmospheric scenarios: (i) forecasting maximum atmospheric pressure using data from 29 global monitoring stations, and (ii) predicting maximum temperature around isolated structures within unstable boundary layers, leveraging insights from Large Eddy Simulation (LES) data. The results indicate that the model performs robustly across diverse conditions, with the b parameter exhibiting a wide range of values depending on the specific atmospheric setting. The comparison between model predictions and observed data demonstrates excellent agreement, validating the model’s applicability in extreme value prediction. These findings reinforce the empirical model’s potential for integration into computational fluid dynamics (CFD) simulations, enhancing the predictive capabilities of Reynolds-Averaged Navier-Stokes (RANS) methodologies. Furthermore, the model’s ability to generalize across different atmospheric processes highlights its significance in advancing our understanding of meteorological extremes. Full article
Show Figures

Figure 1

19 pages, 12313 KiB  
Article
Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance
by Bayu K. Wardhana and Byeongrog Shin
Energies 2025, 18(5), 1292; https://doi.org/10.3390/en18051292 - 6 Mar 2025
Viewed by 494
Abstract
A numerical study was conducted on winglet designs with multiple sweep angles for improving the performance of horizontal axis wind turbine (HAWT) blades, and their effect on reducing the wing tip vortex was investigated by CFD analysis. The effects of sweep angles were [...] Read more.
A numerical study was conducted on winglet designs with multiple sweep angles for improving the performance of horizontal axis wind turbine (HAWT) blades, and their effect on reducing the wing tip vortex was investigated by CFD analysis. The effects of sweep angles were examined through NREL Phase VI turbine blades considering a wind speed range of 7 to 25 m/s. Numerical simulations were performed using RANS equations and the SST k–ω turbulence model. The interaction of the blade rotation and wind flow was modeled using a moving reference frame method. The numerical results were found to be in good agreement with the inferences drawn from the experiments for a baseline blade without a winglet, thereby validating the computational method. The investigations revealed that multi-swept winglets predicted a 14.6% torque increment, providing higher power output than single-swept winglets compared to the baseline blade at a wind speed of 15 m/s. Implementing multiple sweep angles in winglet design can improve the blade performance effectively without further increments in winglet length. Full article
(This article belongs to the Special Issue CFD Simulation in Energy Engineering Research)
Show Figures

Figure 1

Back to TopTop