Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (897)

Search Parameters:
Keywords = CO2 splitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5899 KB  
Article
Multimetallic Layered Double Hydroxides as OER Catalysts for High-Performance Water Electrolysis
by Yiqin Zhan, Linsong Wang, Tao Yang, Shuang Liu, Liming Yang, Enhui Wang, Xiangtao Yu, Hongyang Wang, Kuo-Chih Chou and Xinmei Hou
J. Compos. Sci. 2025, 9(10), 540; https://doi.org/10.3390/jcs9100540 - 2 Oct 2025
Abstract
Water electrolysis represents a viable and scalable green hydrogen production technology, which mitigates carbon emissions and contributes to environmental sustainability. Transition metal-based layered double hydroxides (LDHs) exhibit excellent oxygen evolution reaction (OER) efficiency, attributed to their adjustable interlayer spacing combined with abundant active [...] Read more.
Water electrolysis represents a viable and scalable green hydrogen production technology, which mitigates carbon emissions and contributes to environmental sustainability. Transition metal-based layered double hydroxides (LDHs) exhibit excellent oxygen evolution reaction (OER) efficiency, attributed to their adjustable interlayer spacing combined with abundant active sites. Here, we report a uniform multimetallic catalyst, demonstrating robust and efficient OER performance for high-performance water splitting. SEM and TEM confirmed its ultrathin hierarchical nanosheet structure. The characteristic peaks of LDH in XRD and Raman spectra further verified the successful synthesis of the LDH material. Fe-CoZn LDH delivers exceptional OER performance in 1 M KOH, requiring overpotentials of just 209, 238, and 267 mV to reach 10, 100, and 400 mA cm−2, respectively. The catalyst also demonstrates exceptional hydrogen evolution reaction (HER) performance, achieving 10 mA cm−2 at 119 mV. It also has excellent stability, with stable operation for up to 100 h under 100 mA cm−2 in 1 M KOH electrolyte solution. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

13 pages, 1896 KB  
Article
Impact of KMT2A Rearrangement on Peripheral T-Cell Lymphoma, Not Otherwise Specified, and Angioimmunoblastic T-Cell Lymphoma
by Tong-Yoon Kim, Tae-Jung Kim, Eun Ji Han, Gi-June Min, Seok-Goo Cho and Youngwoo Jeon
Biomedicines 2025, 13(10), 2347; https://doi.org/10.3390/biomedicines13102347 - 25 Sep 2025
Abstract
Background: Angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphomas (PTCL), not otherwise specified (NOS), share overlapping histology and T-follicular helper (TFH) biology but often show divergent outcomes and treatment needs. The clinical significance of KMT2A rearrangement (KMT2A-r) in nodal PTCL [...] Read more.
Background: Angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphomas (PTCL), not otherwise specified (NOS), share overlapping histology and T-follicular helper (TFH) biology but often show divergent outcomes and treatment needs. The clinical significance of KMT2A rearrangement (KMT2A-r) in nodal PTCL remains undefined. We aimed to investigate the clinicogenomic features and prognostic impact of KMT2A-r in AITL and PTCL-NOS. Methods: We retrospectively analyzed consecutive patients diagnosed with AITL or PTCL-NOS between 2021 and 2024 at two centers. All patients underwent 523-gene DNA/RNA next-generation sequencing. Gene co-variation and diagnostic splits were summarized using network and decision-tree analyses. Results: Overall, 37 patients were included (AITL: 14; PTCL-NOS: 23), with similar baseline clinical characteristics. In AITL, TFH markers were more frequently expressed, and RHOA mutations were enriched. KMT2A-r occurred in 24% of cases without histology-specific enrichment. AITL showed better 2-year overall survival (OS) than PTCL-NOS (70.7% vs. 38.8%; p = 0.040) but similar progression-free survival (PFS). Univariate analysis revealed that KMT2A-r, lactate dehydrogenase elevation, and bone-marrow involvement predicted inferior PFS (Hazard ratio for KMT2A-r: 2.56). Median PFS was 5.9 versus 12.5 months in the KMT2A-r and non-KMT2A-r groups, respectively (p = 0.039). Brentuximab vedotin (BV) plus cyclophosphamide, doxorubicin, and prednisone did not significantly improve OS or PFS overall; however, exploratory analysis indicated improved PFS in the KMT2A-r subset. Conclusions: KMT2A-r delineates an adverse-risk biology in nodal PTCL, aligns with non-TFH genomic hubs and markers of tumor burden, and may serve as a stratifier and hypothesis-generating target for BV-based strategies. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

39 pages, 4595 KB  
Review
Recent Advances in Metal Nanoclusters: From Novel Synthesis to Emerging Applications
by Alexandru-Milentie Hada, Marc Lamy de la Chapelle, Monica Focsan and Simion Astilean
Molecules 2025, 30(19), 3848; https://doi.org/10.3390/molecules30193848 - 23 Sep 2025
Viewed by 223
Abstract
Metallic nanoclusters (NCs), composed of a few to a hundred atoms, occupy a unique space between molecules and nanoparticles, exhibiting discrete electronic states, strong photoluminescence, and size-dependent catalytic activity. Their ultrasmall cores (<3 nm) and ligand-controlled surfaces confer tunable optical, electronic, and catalytic [...] Read more.
Metallic nanoclusters (NCs), composed of a few to a hundred atoms, occupy a unique space between molecules and nanoparticles, exhibiting discrete electronic states, strong photoluminescence, and size-dependent catalytic activity. Their ultrasmall cores (<3 nm) and ligand-controlled surfaces confer tunable optical, electronic, and catalytic properties, making them attractive for diverse applications. In recent years, significant progress has been made toward developing faster, more reproducible, and scalable synthesis routes beyond classical wet-chemical reduction. Emerging strategies such as microwave-, photochemical-, sonochemical-, and catalytically assisted syntheses, together with smart, automation-driven platforms, have improved efficiency, structural control, and environmental compatibility. These advances have accelerated the deployment of NCs in imaging, sensing, and catalysis. Near-infrared emitting NCs enable deep-tissue, high-contrast fluorescence imaging, while theranostic platforms combine diagnostic precision with photothermal or photodynamic therapy, gene delivery, and anti-inflammatory treatment. NC-based sensors allow ultrasensitive detection of ions, small molecules, and pathogens, and atomically precise NCs have enabled efficient CO2 reduction, water splitting, and nitrogen fixation. Therefore, in this review, we highlight studies reported in the past five years on the synthesis and applications of metallic NCs, linking emerging methodologies to their functional potential in nanotechnology. Full article
(This article belongs to the Special Issue Metallic Nanoclusters and Their Interaction with Light)
Show Figures

Graphical abstract

17 pages, 2969 KB  
Article
Multi-Domain CoP Feature Analysis of Functional Mobility for Parkinson’s Disease Detection Using Wearable Pressure Insoles
by Thathsara Nanayakkara, H. M. K. K. M. B. Herath, Hadi Sedigh Malekroodi, Nuwan Madusanka, Myunggi Yi and Byeong-il Lee
Sensors 2025, 25(18), 5859; https://doi.org/10.3390/s25185859 - 19 Sep 2025
Viewed by 318
Abstract
Parkinson’s disease (PD) impairs balance and gait through neuromotor dysfunction, yet conventional assessments often overlook subtle postural deficits during dynamic tasks. This study evaluated the diagnostic utility of center-of-pressure (CoP) features captured by pressure-sensing insoles during the Timed Up and Go (TUG) test. [...] Read more.
Parkinson’s disease (PD) impairs balance and gait through neuromotor dysfunction, yet conventional assessments often overlook subtle postural deficits during dynamic tasks. This study evaluated the diagnostic utility of center-of-pressure (CoP) features captured by pressure-sensing insoles during the Timed Up and Go (TUG) test. Using 39 PD and 38 control participants from the recently released open-access WearGait-PD dataset, the authors extracted 144 CoP features spanning positional, dynamic, frequency, and stochastic domains, including per-foot averages and asymmetry indices. Two scenarios were analyzed: the complete TUG and its 3 m walking segment. Model development followed a fixed protocol with a single participant-level 80/20 split; sequential forward selection with five-fold cross-validation optimized the number of features within the training set. Five classifiers were evaluated: SVM-RBF, logistic regression (LR), random forest (RF), k-nearest neighbors (k-NN), and Gaussian naïve Bayes (NB). LR performed best on the held-out test set (accuracy = 0.875, precision = 1.000, recall = 0.750, F1 = 0.857, ROC-AUC = 0.921) using a 23-feature subset. RF and SVM-RBF each achieved 0.812 accuracy. In contrast, applying the identical pipeline to the 3 m walking segment yielded lower performance (best model: k-NN, accuracy = 0.688, F1 = 0.615, ROC–AUC = 0.734), indicating that the multi-phase TUG task captures PD-related balance deficits more effectively than straight walking. All four feature families contributed to classification performance. Dynamic and frequency-domain descriptors, often appearing in both average and asymmetry form, were most consistently selected. These features provided robust magnitude indicators and offered complementary insights into reduced control complexity in PD. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

27 pages, 2641 KB  
Review
Progress in Passive Silicon Photonic Devices: A Review
by Qidi Liu, Yusheng Bian and Jiawei Xiong
Photonics 2025, 12(9), 928; https://doi.org/10.3390/photonics12090928 - 18 Sep 2025
Viewed by 648
Abstract
Silicon photonics has emerged as a critical enabling technology for a diverse range of applications, from high-speed data communication and computing to advanced sensing and quantum information processing. This paper provides a comprehensive review of recent progress in the foundational passive devices that [...] Read more.
Silicon photonics has emerged as a critical enabling technology for a diverse range of applications, from high-speed data communication and computing to advanced sensing and quantum information processing. This paper provides a comprehensive review of recent progress in the foundational passive devices that underpin this technological revolution. We survey the state of the art in fundamental building blocks, including strip, rib, and silicon nitride waveguides, with a focus on achieving ultra-low propagation loss. The review details essential components for light coupling and splitting, such as grating couplers, edge couplers, multimode interference couplers, and directional couplers, citing their typical performance metrics. Key wavelength filtering and routing components, including high-Q ring resonators, Mach–Zehnder interferometers, and arrayed waveguide gratings, are analyzed. Furthermore, we provide a comparative overview of the capabilities of major photonic foundries operating on a multi-project wafer model. The paper concludes by discussing persistent challenges in packaging and polarization management, and explores future trends driven by co-packaged optics, inverse design methodologies, and the expansion of silicon photonics into new application domains. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

15 pages, 3315 KB  
Article
Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications
by Jin-Su Kim, Jun-Pil Hwang, Chang-Hong Lee and Jang-Ho Jay Kim
Materials 2025, 18(18), 4315; https://doi.org/10.3390/ma18184315 - 15 Sep 2025
Viewed by 347
Abstract
The global generation of industrial waste is increasing rapidly, with much of it either landfilled or discharged into marine environments, resulting in severe environmental pollution. To address this issue, extensive research has been conducted on utilizing waste materials as partial replacements for cement. [...] Read more.
The global generation of industrial waste is increasing rapidly, with much of it either landfilled or discharged into marine environments, resulting in severe environmental pollution. To address this issue, extensive research has been conducted on utilizing waste materials as partial replacements for cement. Although concrete incorporating industrial by-products offers environmental advantages—such as reducing pollution and lowering CO2 emissions—its application has been limited by poor early-age performance. In South Korea, the annual production of ferronickel slag (FNS) now exceeds 2,000,000 tons, yet its usage remains minimal. To improve this early-age performance, researchers have applied steam curing (SC), a method widely used in precast concrete, which can enhance the utilization of FNS-containing concrete. Some studies have individually evaluated the mechanical or microstructural properties of SC effects, but the combined effects of FNS and SC replacement in precast concrete have rarely been addressed. This study applied SC, a method widely used in precast concrete production, to improve the performance of FNS concrete and conducted a comprehensive evaluation to promote its practical application. For this purpose, ordinary Portland cement (OPC) was partially replaced with FNS at rates of 10%, 20%, and 30%. To assess the effects, tests were conducted on hydration heat, SEM, and XRD, along with evaluations of compressive and splitting tensile strength. Results identified 20% as the optimal replacement ratio. At this ratio, chloride penetration resistance and freeze–thaw durability were also assessed. Furthermore, FNS concrete was evaluated under both natural curing (NC, 28 days) and SC conditions to simulate precast production. Under NC, mechanical properties declined as the FNS content increased, whereas under SC, the performance of the 20% replacement mixture was comparable to that of the control. In addition, the chloride diffusion coefficient and freeze–thaw resistance were improved by 11% and 2%, respectively, under SC compared to NC. This study evaluated the feasibility of FNS-containing concrete, and further studies should be conducted to investigate the structural performance of FNS-containing reinforced concrete via methods such as flexural, shear, splicing, and debonding experiments. Full article
Show Figures

Figure 1

16 pages, 6160 KB  
Article
Synthesis of RuO2-Co3O4 Composite for Efficient Electrocatalytic Oxygen Evolution Reaction
by Jingchao Zhang, Yingping Bu, Jia Hao, Wenjun Zhang, Yao Xiao, Naihui Zhao, Renchun Zhang and Daojun Zhang
Nanomaterials 2025, 15(17), 1356; https://doi.org/10.3390/nano15171356 - 3 Sep 2025
Viewed by 654
Abstract
Among various H2 production methods, splitting water using renewable electricity for H2 production is regarded as a promising approach due to its high efficiency and zero carbon emissions. The oxygen evolution reaction (OER) is an important part of splitting water, but [...] Read more.
Among various H2 production methods, splitting water using renewable electricity for H2 production is regarded as a promising approach due to its high efficiency and zero carbon emissions. The oxygen evolution reaction (OER) is an important part of splitting water, but also the main bottleneck. The anodic oxygen evolution reaction (OER) for water electrolysis technology involves multi-electron/proton transfer and has sluggish reaction kinetics, which is the key obstacle to the overall efficiency of electrolyzing water. Therefore, it is necessary to develop highly efficient and cheap OER electrocatalysts to drive overall water splitting. Herein, a series of efficient RuO2-Co3O4 composites were synthesized via a straightforward three-step process comprising solvothermal synthesis, ion exchange, and calcination. The results indicate that using 10 mg of RuCl3·xH2O and 15 mg of Co-MOF precursor in the second ion exchange step is the most effective way to acquire the Co3O4-RuO2-10 (RCO-10) composite with the largest specific area and the best electrocatalytic performance after the calcination process. The optimal Co3O4-RuO2-10 composite powder catalyst displays low overpotential (η10 = 272 mV), a small Tafel slope (64.64 mV dec−1), and good electrochemical stability in alkaline electrolyte; the overall performance of Co3O4-RuO2-10 surpasses that of many related cobalt-based oxide catalysts. Furthermore, through integration with a carbon cloth substrate, Co3O4-RuO2-10/CC can be directly used as a self-supporting electrode with high stability. This work presents a straightforward method to design Co3O4-RuO2 composite array catalysts for high-performance electrocatalytic OER performance. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

15 pages, 3777 KB  
Article
Characterization of Sugarcane Germplasm for Physiological and Agronomic Traits Associated with Drought Tolerance Across Various Soil Types
by Phunsuk Laotongkam, Nakorn Jongrungklang, Poramate Banterng, Peeraya Klomsa-ard, Warodom Wirojsirasak and Patcharin Songsri
Stresses 2025, 5(3), 57; https://doi.org/10.3390/stresses5030057 - 1 Sep 2025
Viewed by 383
Abstract
In this study, we aimed to evaluate physiological and agronomic traits in 120 sugarcane genotypes under early drought stress conditions in a field trial across various soil types. The experiment used a split-plot arrangement, with a randomized complete block design and two replications. [...] Read more.
In this study, we aimed to evaluate physiological and agronomic traits in 120 sugarcane genotypes under early drought stress conditions in a field trial across various soil types. The experiment used a split-plot arrangement, with a randomized complete block design and two replications. Two different water regimes were assigned to the main plot: (1) non-water stress (CT) and (2) drought (DT) at the early growth stage, during which sugarcane was subjected to drought stress by withholding water for 4 months. The subplot consisted of 120 sugarcane genotypes. The stalk height, stalk diameter, number of stalks, photosynthetic traits including SPAD chlorophyll meter reading (SCMR) and maximum quantum efficiency of photosystem II photochemistry (Fv/Fm), and normalized difference vegetation index (NDVI) were measured at 3, 6, and 9 months after planting (MAP). Yield and yield component parameters were measured at 12 MAP. Drought treatments lead to significant changes in various physiological traits in the sugarcane. Clustering analysis classified 36 sugarcane varieties grown in sandy loam soil and 15 genotypes in loam soil into two main clusters. In sandy loam soils, Biotec4 and CO1287 exhibited outstanding performance in drought conditions, delivering high cane yields. Meanwhile, in loam soil, MPT13-118, MPT07-1, Q47, F174, MPT14-1-902, and UT1 exhibited the best drought tolerance. Under drought conditions, cluster 1 showed higher values for SCMR, NDVI, height growth rate (HGR), cane yield, and drought tolerance index compared to cluster 2. These findings suggest that breeders can utilize these genotypes to enhance drought resistance, and the identified physiological traits can assist in selecting stronger candidates for drought tolerance. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

26 pages, 6078 KB  
Article
Handling Missing Air Quality Data Using Bidirectional Recurrent Imputation for Time Series and Random Forest: A Case Study in Mexico City
by Lorena Díaz-González, Ingrid Trujillo-Uribe, Julio César Pérez-Sansalvador and Noureddine Lakouari
AI 2025, 6(9), 208; https://doi.org/10.3390/ai6090208 - 1 Sep 2025
Viewed by 640
Abstract
Accurate imputation of missing data in air quality monitoring is essential for reliable environmental assessment and modeling. This study compares two imputation methods, namely Random Forest (RF) and Bidirectional Recurrent Imputation for Time Series (BRITS), using data from the Mexico City air quality [...] Read more.
Accurate imputation of missing data in air quality monitoring is essential for reliable environmental assessment and modeling. This study compares two imputation methods, namely Random Forest (RF) and Bidirectional Recurrent Imputation for Time Series (BRITS), using data from the Mexico City air quality monitoring network (2014–2023). The analysis focuses on stations with less than 30% missingness and includes both pollutant (CO, NO, NO2, NOx, SO2, O3, PM10, PM2.5, and PMCO) and meteorological (relative humidity, temperature, wind direction and speed) variables. Each station’s data was split into 80% for training and 20% for validation, with 20% artificial missingness. Performance was assessed through two perspectives: local accuracy (MAE and RMSE) on masked subsets and distributional similarity on complete datasets (Two One-Sided Tests and Wasserstein distance). RF achieved lower errors on masked subsets, whereas BRITS better preserved the complete distribution. Both methods struggled with highly variable features. On complete time series, BRITS produced more realistic imputations, while RF often generated extreme outliers. These findings demonstrate the advantages of deep learning for handling complex temporal dependencies and highlight the need for robust strategies for stations with extensive gaps. Enhancing the accuracy of imputations is crucial for improving forecasting, trend analysis, and public health decision-making. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

17 pages, 7186 KB  
Article
Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance
by Milad Zehtab Salmasi, Amir Narimani, Ali Omidkar and Hua Song
Catalysts 2025, 15(9), 827; https://doi.org/10.3390/catal15090827 - 1 Sep 2025
Viewed by 732
Abstract
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the [...] Read more.
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the oxygen evolution reaction (OER) was systematically explored using structural, morphological, and electrochemical characterization techniques. Among the various compositions, the Cr-containing catalyst, (MnFeNiCoCr)3O4, displayed outstanding electrocatalytic behavior, delivering a notably low overpotential of 323 mV at a current density of 10 mA/cm2 in 1.0 M KOH—surpassing the performance of benchmark RuO2. Additionally, this material exhibited the smallest Tafel slope (56 mV/dec), the greatest double-layer capacitance (3.35 mF/cm2), and the most extensive electrochemically active surface area, all indicating enhanced charge transfer capability and high catalytic proficiency. The findings highlight the potential of element tailoring in HEOs as a promising strategy for optimizing water oxidation catalysis. Full article
Show Figures

Graphical abstract

14 pages, 2443 KB  
Article
Design of CoMoCe-Oxide Nanostructured Composites as Robust Bifunctional Electrocatalyst for Water Electrolysis Overall Efficiency
by Akbar I. Inamdar, Amol S. Salunke, Jyoti V. Patil, Sawanta S. Mali, Chang Kook Hong, Basit Ali, Supriya A. Patil, Nabeen K. Shrestha, Sejoon Lee and Sangeun Cho
Materials 2025, 18(17), 4052; https://doi.org/10.3390/ma18174052 - 29 Aug 2025
Viewed by 550
Abstract
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam [...] Read more.
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam substrates via a hydrothermal technique and employed for their catalytic activity in an alkaline electrolyte. For comparison, binary counterparts (CoMo, CoCe, and MoCe) were also fabricated under similar conditions. The synthesized catalysts’ electrodes exhibited diverse surface architectures, including microporous-flake hybrids, ultrathin flakes, nanoneedle-assembled microspheres, and randomly oriented hexagonal structures. Among them, the ternary CoMoCe-oxide electrode exhibited outstanding bifunctional electrocatalytic activity, delivering low overpotentials of 124 mV for the hydrogen evolution reaction (HER) at −10 mA cm−2, and 340 mV for the oxygen evolution reaction (OER) at 100 mA cm−2, along with excellent durability. Furthermore, in full water-splitting configuration, the CMC||CMC and RuO2||CMC electrolyzers required cell voltages of 1.69 V and 1.57 V, respectively, to reach a current density of 10 mA cm−2. Remarkably, the CMC-based electrolyzer reached an industrially relevant current density of 1000 mA cm−2 at a cell voltage of 2.18 V, maintaining excellent stability over 100 h of continuous operation. These findings underscore the impact of an optimized electronic structure and surface architecture on design strategies for high-performance ternary metal oxide electrocatalysts. Herein, a robust and straightforward approach is comprehensively presented for fabricating highly efficient ternary metal-oxide catalyst electrodes, offering significant potential for scalable water splitting. Full article
Show Figures

Figure 1

14 pages, 599 KB  
Article
Genotype-Specific Distribution of High-Risk Human Papillomavirus (HPV) and Microbial Co-Detections in HPV-Positive Women from Southern Croatia
by Vanja Kaliterna, Tomislav Meštrović, Mirjana Čorić-Mesarić and Ivana Božičević
Biomedicines 2025, 13(9), 2100; https://doi.org/10.3390/biomedicines13092100 - 28 Aug 2025
Cited by 1 | Viewed by 507
Abstract
Background/Objectives: High-risk human papillomavirus (HPV) is the principal etiological agent of cervical cancer, with distinct genotype-specific oncogenic potential. While HPV type 16 is most frequently implicated in carcinogenesis, the role of other genotypes and their interaction with sexually transmitted infections and cervico-vaginal [...] Read more.
Background/Objectives: High-risk human papillomavirus (HPV) is the principal etiological agent of cervical cancer, with distinct genotype-specific oncogenic potential. While HPV type 16 is most frequently implicated in carcinogenesis, the role of other genotypes and their interaction with sexually transmitted infections and cervico-vaginal dysbiosis is gaining recognition. This study aimed to assess the genotype-specific distribution of high-risk HPV among HPV-positive women from Southern Croatia and examine associations with age and co-infections with selected microbial pathogens. Methods: We conducted a retrospective cross-sectional study on 1211 HPV-positive women (out of 3098 tested) from Split and Dalmatia County between 2023 and 2024. Cervico-vaginal swabs were tested using molecular and culture-based methods for 14 high-risk HPV genotypes and several pathogens, including Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, Gardnerella vaginalis, and other microorganisms. In the analysis, each detected HPV genotype was also treated as a distinct line-level observation. Genotypes were grouped by phylogenetic and carcinogenic profiles, and statistical analyses—including chi-square tests and multinomial logistic regression—were performed to evaluate associations with age and co-infections. Results: Among high-risk HPV-positive women, the most frequently detected high-risk HPV genotypes were HPV 16 (23.3%), HPV 31 (22.4%), and HPV 51 (13.5%). Notably, HPV 18 was less prevalent (8.1%) and occurred at a similar frequency to HPV 58 and 68. Although younger age was significantly associated with high-risk HPV positivity (p < 0.001), no significant differences in HPV genotype group distribution were observed between age groups; however, C. trachomatis and Streptococcus agalactiae were significantly more prevalent in women aged ≤29 years (p < 0.001 and p = 0.029, respectively). Multinomial regression revealed that C. trachomatis was negatively associated with 16-related and lower-risk genotypes, while G. vaginalis showed a positive association with 16-related types. Conclusions: There is a complex interplay between high-risk HPV genotypes and microbial co-infections, which means the broader cervico-vaginal microbiome has to be considered in HPV risk assessment. The findings highlight the need for extended genotyping and microbial screening to inform regional prevention strategies. Full article
(This article belongs to the Special Issue Current Perspectives on Human Papillomavirus (HPV))
Show Figures

Figure 1

20 pages, 2741 KB  
Article
Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment
by Jakob Young, Maliea Nipko, Spencer Butterfield and Zachary Aanderud
BioTech 2025, 14(3), 67; https://doi.org/10.3390/biotech14030067 - 28 Aug 2025
Viewed by 510
Abstract
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system [...] Read more.
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system with three reactor types: (1) EBP tanks at 70–72 °C; (2) mesophilic Continuously Stirred Tank Reactors (CSTRs); (3) mesophilic Induced Bed Reactors (IBRs) receiving combined CSTR and EBP effluent. All reactors had a two-day hydraulic retention time. Samples were collected weekly for 60 days. pH, volatile fatty acid and bicarbonate concentrations, COD, and methane yield were measured to assess tank environmental conditions. Microbial community compositions were obtained via 16S rRNA gene sequencing. EBP pretreatment increased acetate availability but led to a decline in the relative abundance of acetoclastic Methanosarcina species in downstream IBRs. Rather, syntrophic methanogens, e.g., members of Methanobacteriaceae, increased in relative abundance and became central to microbial co-occurrence networks, particularly in association with hydrogen-producing bacteria. Network analysis also demonstrated that these syntrophic relationships were tightly coordinated in pretreated digestate but absent in the untreated CSTRs. By promoting syntrophic methanogenesis while increasing acetate concentrations, EBP pretreatment requires system configurations that enable acetoclast retention to prevent acetate underutilization and maximize methane yields. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

17 pages, 10533 KB  
Article
Heat Treatment-Assisted Optimization of the Water Splitting Performance of CoCrNi0.5Ti0.3V0.2Al0.4 Eutectic High-Entropy Alloy
by Mingran Sun, Zixiang Yin, Shuai Liu, Yangchuan Cai and Yu Zhang
Materials 2025, 18(17), 4015; https://doi.org/10.3390/ma18174015 - 27 Aug 2025
Viewed by 370
Abstract
In this study, the synergistic tuning mechanism of heat treatment (600, 800, and 1000 °C) and dealloying (40, 60, and 80 °C) on the microstructure and electrocatalytic performance of an FCC + BCC-type CoCrNi0.5Ti0.3V0.2Al0.4 eutectic high-entropy alloy (EHEA) was systematically investigated. The findings [...] Read more.
In this study, the synergistic tuning mechanism of heat treatment (600, 800, and 1000 °C) and dealloying (40, 60, and 80 °C) on the microstructure and electrocatalytic performance of an FCC + BCC-type CoCrNi0.5Ti0.3V0.2Al0.4 eutectic high-entropy alloy (EHEA) was systematically investigated. The findings indicate that with an increase in heat treatment temperature, there is a gradual increase in grain size and a change in the fraction of the two phases. Notably, heat treatment at 800 °C resulted in an FCC-dominated dual-phase structure with uniformly refined grains. As the dealloying temperature increased, the pore size also increased, leading to a uniform distribution of the internal FCC and BCC phases. The sample subjected to heat treatment at 800 °C and dealloying at 80 °C exhibited an OER overpotential of only 265 mV and a Tafel slope of 67.84 mV/dec, significantly enhancing the electrocatalytic activity and stability of the alloy. This study elucidates the mechanism by which the combination of heat treatment and dealloying processes optimizes the electrocatalytic performance of eutectic high-entropy alloys, providing a novel strategy for the design of non-precious metal electrocatalysts. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 5532 KB  
Article
Pulsed CO2 Laser-Fabricated Cascades of Double Resonance Long Period Gratings for Sensing Applications
by Tinko Eftimov, Sanaz Shoar Ghaffari, Georgi Dyankov, Veselin Vladev and Alla Arapova
Micromachines 2025, 16(8), 959; https://doi.org/10.3390/mi16080959 - 20 Aug 2025
Viewed by 466
Abstract
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn [...] Read more.
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn around point (TAP) gratings. A pulsed CO2 laser was used to fabricate ordinary and cascaded DR LPGs in a photosensitive optical fiber. The responses of the fabricated C DR LPGs to surrounding refractive index (SRI) temperature as well to longitudinal strain have been studied. A statistical comparison of the SRI sensitivities of ordinary and cascaded DR LPGs is presented to outline the capabilities and advantages of cascaded DR gratings. It was experimentally established that the temperature dependence of the wavelength split at the TAP follows a logarithmic dependence and the sensitivity to temperature is inversely proportional to the temperature itself. We evaluate the temperature stability needed for SRI-based sensing application and the importance of fine-tuning to the operational point slightly after the TAP to ensure maximum sensitivity of the sensor. Full article
Show Figures

Figure 1

Back to TopTop