Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = CRISPR/Cas combined LAMP technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2386 KB  
Review
Detection Methods for Pine Wilt Disease: A Comprehensive Review
by Sana Tahir, Syed Shaheer Hassan, Lu Yang, Miaomiao Ma and Chenghao Li
Plants 2024, 13(20), 2876; https://doi.org/10.3390/plants13202876 - 14 Oct 2024
Cited by 11 | Viewed by 3955
Abstract
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus, is a highly destructive forest disease that necessitates rapid and precise identification for effective management and control. This study evaluates various detection methods for PWD, including morphological diagnosis, molecular techniques, and remote [...] Read more.
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus, is a highly destructive forest disease that necessitates rapid and precise identification for effective management and control. This study evaluates various detection methods for PWD, including morphological diagnosis, molecular techniques, and remote sensing. While traditional methods are economical, they are limited by their inability to detect subtle or early changes and require considerable time and expertise. To overcome these challenges, this study emphasizes advanced molecular approaches such as real-time polymerase chain reaction (RT-PCR), droplet digital PCR (ddPCR), and loop-mediated isothermal amplification (LAMP) coupled with CRISPR/Cas12a, which offer fast and accurate pathogen detection. Additionally, DNA barcoding and microarrays facilitate species identification, and proteomics can provide insights into infection-specific protein signatures. The study also highlights remote sensing technologies, including satellite imagery and unmanned aerial vehicle (UAV)-based hyperspectral analysis, for their capability to monitor PWD by detecting asymptomatic diseases through changes in the spectral signatures of trees. Future research should focus on combining traditional and innovative techniques, refining visual inspection processes, developing rapid and portable diagnostic tools for field application, and exploring the potential of volatile organic compound analysis and machine learning algorithms for early disease detection. Integrating diverse methods and adopting innovative technologies are crucial to effectively control this lethal forest disease. Full article
(This article belongs to the Special Issue Biotechnology and Genetic Engineering in Forest Trees)
Show Figures

Figure 1

10 pages, 4249 KB  
Article
Rapid and Sensitive Detection of Verticillium dahliae from Soil Using LAMP-CRISPR/Cas12a Technology
by Yuxiao Fang, Lijuan Liu, Wenyuan Zhao, Linpeng Dong, Lijuan He, Yuhan Liu, Jinyao Yin, Yufang Zhang, Weiguo Miao and Daipeng Chen
Int. J. Mol. Sci. 2024, 25(10), 5185; https://doi.org/10.3390/ijms25105185 - 10 May 2024
Cited by 3 | Viewed by 2262
Abstract
Cotton Verticillium wilt is mainly caused by the fungus Verticillium dahliae, which threatens the production of cotton. Its pathogen can survive in the soil for several years in the form of microsclerotia, making it a destructive soil-borne disease. The accurate, sensitive, and [...] Read more.
Cotton Verticillium wilt is mainly caused by the fungus Verticillium dahliae, which threatens the production of cotton. Its pathogen can survive in the soil for several years in the form of microsclerotia, making it a destructive soil-borne disease. The accurate, sensitive, and rapid detection of V. dahliae from complex soil samples is of great significance for the early warning and management of cotton Verticillium wilt. In this study, we combined the loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a technology to develop an accurate, sensitive, and rapid detection method for V. dahliae. Initially, LAMP primers and CRISPR RNA (crRNA) were designed based on a specific DNA sequence of V. dahliae, which was validated using several closely related Verticillium spp. The lower detection limit of the LAMP-CRISPR/Cas12a combined with the fluorescent visualization detection system is approximately ~10 fg/μL genomic DNA per reaction. When combined with crude DNA-extraction methods, it is possible to detect as few as two microsclerotia per gram of soil, with the total detection process taking less than 90 min. Furthermore, to improve the method’s user and field friendliness, the field detection results were visualized using lateral flow strips (LFS). The LAMP-CRISPR/Cas12a-LFS system has a lower detection limit of ~1 fg/μL genomic DNA of the V. dahliae, and when combined with the field crude DNA-extraction method, it can detect as few as six microsclerotia per gram of soil, with the total detection process taking less than 2 h. In summary, this study expands the application of LAMP-CRISPR/Cas12a nucleic acid detection in V. dahliae and will contribute to the development of field-deployable diagnostic productions. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

12 pages, 1976 KB  
Article
Ultrasensitive and Rapid Visual Detection of Escherichia coli O157:H7 Based on RAA-CRISPR/Cas12a System
by Lishan Zhu, Zhenda Liang, Yongtao Xu, Zhiquan Chen, Jiasi Wang and Li Zhou
Biosensors 2023, 13(6), 659; https://doi.org/10.3390/bios13060659 - 16 Jun 2023
Cited by 22 | Viewed by 4552
Abstract
Escherichia coli (E. coli) O157:H7 is a major foodborne and waterborne pathogen that can threaten human health. Due to its high toxicity at low concentrations, it is crucial to establish a time-saving and highly sensitive in situ detection method. Herein, we [...] Read more.
Escherichia coli (E. coli) O157:H7 is a major foodborne and waterborne pathogen that can threaten human health. Due to its high toxicity at low concentrations, it is crucial to establish a time-saving and highly sensitive in situ detection method. Herein, we developed a rapid, ultrasensitive, and visualized method for detecting E. coli O157:H7 based on a combination of Recombinase-Aided Amplification (RAA) and CRISPR/Cas12a technology. The CRISPR/Cas12a-based system was pre-amplified using the RAA method, which showed high sensitivity and enabled detecting as low as ~1 CFU/mL (fluorescence method) and 1 × 102 CFU/mL (lateral flow assay) of E. coli O157:H7, which was much lower than the detection limit of the traditional real-time PCR technology (103 CFU/mL) and ELISA (104~107 CFU/mL). In addition, we demonstrated that this method still has good applicability in practical samples by simulating the detection in real milk and drinking water samples. Importantly, our RAA-CRISPR/Cas12a detection system could complete the overall process (including extraction, amplification, and detection) within 55 min under optimized conditions, which is faster than most other reported sensors, which take several hours to several days. The signal readout could also be visualized by fluorescence generated with a handheld UV lamp or a naked-eye-detected lateral flow assay depending on the DNA reporters used. Because of the advantages of being fast, having high sensitivity, and not requiring sophisticated equipment, this method has a promising application prospect for in situ detection of trace amounts of pathogens. Full article
(This article belongs to the Special Issue Optical Sensing Technology for Point-of-Care Diagnostics)
Show Figures

Figure 1

15 pages, 3162 KB  
Review
CRISPR-Cas-Integrated LAMP
by Nazente Atçeken, Defne Yigci, Berin Ozdalgic and Savas Tasoglu
Biosensors 2022, 12(11), 1035; https://doi.org/10.3390/bios12111035 - 17 Nov 2022
Cited by 27 | Viewed by 6402
Abstract
Pathogen-specific point-of-care (PoC) diagnostic tests have become an important need in the fight against infectious diseases and epidemics in recent years. PoC diagnostic tests are designed with the following parameters in mind: rapidity, accuracy, sensitivity, specificity, and ease of use. Molecular techniques are [...] Read more.
Pathogen-specific point-of-care (PoC) diagnostic tests have become an important need in the fight against infectious diseases and epidemics in recent years. PoC diagnostic tests are designed with the following parameters in mind: rapidity, accuracy, sensitivity, specificity, and ease of use. Molecular techniques are the gold standard for pathogen detection due to their accuracy and specificity. There are various limitations in adapting molecular diagnostic methods to PoC diagnostic tests. Efforts to overcome limitations are focused on the development of integrated molecular diagnostics by utilizing the latest technologies available to create the most successful PoC diagnostic platforms. With this point of view, a new generation technology was developed by combining loop-mediated isothermal amplification (LAMP) technology with clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) technology. This integrated approach benefits from the properties of LAMP technology, namely its high efficiency, short turnaround time, and the lack of need for a complex device. It also makes use of the programmable function of CRISPR-Cas technology and the collateral cleavage activity of certain Cas proteins that allow for convenient reporter detection. Thus, this combined technology enables the development of PoC diagnostic tests with high sensitivity, specificity, and ease of use without the need for complicated devices. In this review, we discuss the advantages and limitations of the CRISPR/Cas combined LAMP technology. We review current limitations to convert CRISPR combined LAMP into pathogen-specific PoC platforms. Furthermore, we point out the need to design more useful PoC platforms using microfabrication technologies by developing strategies that overcome the limitations of this new technology, reduce its complexity, and reduce the risk of contamination. Full article
(This article belongs to the Collection Recent Developments in Microfluidics)
Show Figures

Figure 1

Back to TopTop