Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = CYGNSS spaceborne data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10008 KB  
Review
Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress
by Shuanggen Jin, Xuyang Meng, Gino Dardanelli and Yunlong Zhu
Remote Sens. 2024, 16(24), 4800; https://doi.org/10.3390/rs16244800 - 23 Dec 2024
Cited by 1 | Viewed by 2298
Abstract
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have [...] Read more.
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have been widely employed in positioning, navigation, and timing (PNT). Furthermore, GNSS refraction, reflection, and scattering signals can remotely sense the Earth’s surface and atmosphere with powerful implications for environmental remote sensing. In this paper, the recent developments and new application progress of multi-GNSS in Earth observation are presented and reviewed, including the methods of BDS/GNSS for Earth observations, GNSS navigation and positioning performance (e.g., GNSS-PPP and GNSS-NRTK), GNSS ionospheric modelling and space weather monitoring, GNSS meteorology, and GNSS-reflectometry and its applications. For instance, the static Precise Point Positioning (PPP) precision of most MGEX stations was improved by 35.1%, 18.7%, and 8.7% in the east, north, and upward directions, respectively, with PPP ambiguity resolution (AR) based on factor graph optimization. A two-layer ionospheric model was constructed using IGS station data through three-dimensional ionospheric model constraints and TEC accuracy was increased by about 20–27% with the GIM model. Ten-minute water level change with centimeter-level accuracy was estimated with ground-based multiple GNSS-R data based on a weighted iterative least-squares method. Furthermore, a cyclone and its positions were detected by utilizing the GNSS-reflectometry from the space-borne Cyclone GNSS (CYGNSS) mission. Over the years, GNSS has become a dominant technology among Earth observation with powerful applications, not only for conventional positioning, navigation and timing techniques, but also for integrated remote sensing solutions, such as monitoring typhoons, river water level changes, geological geohazard warnings, low-altitude UAV navigation, etc., due to its high performance, low cost, all time and all weather. Full article
Show Figures

Graphical abstract

24 pages, 7359 KB  
Article
Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods
by Yongfeng Zhang, Jinwei Bu, Xiaoqing Zuo, Kegen Yu, Qiulan Wang and Weimin Huang
Remote Sens. 2024, 16(15), 2793; https://doi.org/10.3390/rs16152793 - 30 Jul 2024
Cited by 10 | Viewed by 2623
Abstract
Vegetation water content (VWC) is a crucial parameter for evaluating vegetation growth, climate change, natural disasters such as forest fires, and drought prediction. Spaceborne global navigation satellite system reflectometry (GNSS-R) has become a valuable tool for soil moisture (SM) and biomass remote sensing [...] Read more.
Vegetation water content (VWC) is a crucial parameter for evaluating vegetation growth, climate change, natural disasters such as forest fires, and drought prediction. Spaceborne global navigation satellite system reflectometry (GNSS-R) has become a valuable tool for soil moisture (SM) and biomass remote sensing (RS) due to its higher spatial resolution compared with microwave measurements. Although previous studies have confirmed the enormous potential of spaceborne GNSS-R for vegetation monitoring, the utilization of this technology to fuse multiple RS parameters to retrieve VWC is not yet mature. For this purpose, this paper constructs a local high-spatiotemporal-resolution spaceborne GNSS-R VWC retrieval model that integrates key information, such as bistatic radar cross section (BRCS), effective scattering area, CYGNSS variables, and surface auxiliary parameters based on five ensemble machine learning (ML) algorithms (i.e., bagging tree (BT), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine (LightGBM)). We extensively tested the performance of different models using SMAP ancillary data as validation data, and the results show that the root mean square errors (RMSEs) of the BT, XGBoost, RF, and LightGBM models in VWC retrieval are better than 0.50 kg/m2. Among them, the BT and RF models performed the best in localized VWC retrieval, with RMSE values of 0.50 kg/m2. Conversely, the XGBoost model exhibits the worst performance, with an RMSE of 0.85 kg/m2. In terms of RMSE, the RF model demonstrates improvements of 70.00%, 52.00%, and 32.00% over the XGBoost, LightGBM, and GBDT models, respectively. Full article
Show Figures

Figure 1

19 pages, 3160 KB  
Article
Advancing Sea Surface Height Retrieval through Global Navigation Satellite System Reflectometry: A Model Interaction Approach with Cyclone Global Navigation Satellite System and FengYun-3E Measurements
by Jin Xing, Dongkai Yang, Zhibo Zhang and Feng Wang
Remote Sens. 2024, 16(11), 1896; https://doi.org/10.3390/rs16111896 - 24 May 2024
Cited by 1 | Viewed by 1738
Abstract
The measurement of sea surface height (SSH), which is of great importance in the field of oceanography, can be obtained through the innovative technique of GNSS-R for remote sensing. This research utilizes the dataset from spaceborne GNSS-R platforms, the Cyclone Global Navigation Satellite [...] Read more.
The measurement of sea surface height (SSH), which is of great importance in the field of oceanography, can be obtained through the innovative technique of GNSS-R for remote sensing. This research utilizes the dataset from spaceborne GNSS-R platforms, the Cyclone Global Navigation Satellite System (CYGNSS) and FengYun-3E (FY-3E), as the primary source of data for retrieving sea surface height (SSH). The utilization of artificial neural networks (ANNs) allows for the accurate estimation of ocean surface height with a precision of meter-level accuracy throughout the period of 1–17 August 2022. As a traditional machine learning method, an ANN is employed to extract pertinent data features, facilitating the acquisition of precise sea surface height estimations. Additionally, separate models are devised for both GNSS-R platforms, one based on constant velocity (CV) and the other on constant acceleration (CA). The Interactive Multiple Model (IMM) is utilized as the main method to combine the four models and convert the likelihood of each model. The transition between the models allows the filters to effectively adapt to dynamic changes and complex environments. This approach relies on the fundamental notion of the Kalman filter (KF), which showcases robust noise handling capabilities in predicting the SSH, separately. The results demonstrate that the model interaction technology is capable of efficiently filtering and integrating SSH data, yielding a Root Mean Square Error (RMSE) of 1.03 m. This corresponds to a 9.84% enhancement compared to the retrieved height from CYGNSS and a 37.19% enhancement compared to the retrieved height from FY-3E. The model proposed in this paper provides a potential scheme for the GNSS-R data fusion of multiple platforms and multiple models. In the future, more data sources and more models can be added to achieve more accurate adaptive fusion. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

17 pages, 5274 KB  
Review
Reviewing Space-Borne GNSS-Reflectometry for Detecting Freeze/Thaw Conditions of Near-Surface Soils
by Haishan Liang and Xuerui Wu
Remote Sens. 2024, 16(11), 1828; https://doi.org/10.3390/rs16111828 - 21 May 2024
Cited by 2 | Viewed by 1585
Abstract
GNSS-Reflectometry, a technique that harnesses the power of microwave remote sensing, is poised to revolutionize our ability to detect and monitor near-surface soil freeze/thaw processes. This technique’s theoretical underpinnings are deeply rooted in the comprehensive explanation of the Zhang–Zhao dielectric constant model, which [...] Read more.
GNSS-Reflectometry, a technique that harnesses the power of microwave remote sensing, is poised to revolutionize our ability to detect and monitor near-surface soil freeze/thaw processes. This technique’s theoretical underpinnings are deeply rooted in the comprehensive explanation of the Zhang–Zhao dielectric constant model, which provides crucial insights into the behavior of frozen and thawed soils. The model elucidates how the dielectric properties of soil change as it transitions between frozen and thawed states, offering a scientific basis for understanding reflectivity variations. Furthermore, the theoretical framework includes a set of formulas that are instrumental in calculating reflectivity at Lower Right (LR) polarization and in deriving Dual-Polarization Differential Observables (DDMs). These calculations are pivotal for interpreting the signals captured by GNSS-R sensors, allowing for the detection of subtle changes in the soil’s surface conditions. The evolution of GNSS-R as a tool for detecting freeze/thaw phenomena has been substantiated through qualitative analyses involving multiple satellite missions, such as SMAP-R, TDS-1, and CYGNSS. These analyses have provided empirical evidence of the technique’s effectiveness, illustrating its capacity to capture the dynamics of soil freezing and thawing processes. In addition to these qualitative assessments, the application of a discriminant retrieval algorithm using data from CYGNSS and F3E GNOS-R has further solidified the technique’s potential. This algorithm contributes to refining the accuracy of freeze/thaw detection by distinguishing between frozen and thawed soil states with greater precision. The deployment of space-borne GNSS-R for monitoring near-surface freeze/thaw cycles has yielded commendable results, exhibiting robust consistency and delivering relatively precise retrieval outcomes. These achievements stand as testaments to the technique’s viability and its growing significance in the field of remote sensing. However, it is imperative to recognize and actively address certain limitations that have been highlighted in this review. These limitations serve as critical focal points for future research endeavors, directing the efforts toward enhancing the technique’s overall performance and applicability. Addressing these challenges will be essential for leveraging the full potential of GNSS-R to advance our understanding and management of near-surface soil freeze/thaw processes. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

12 pages, 10545 KB  
Article
Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods
by Ting Yang, Jundong Wang, Zhigang Sun and Sen Li
Sensors 2023, 23(22), 9066; https://doi.org/10.3390/s23229066 - 9 Nov 2023
Cited by 2 | Viewed by 2246
Abstract
The Cyclone Global Navigation Satellite System (CYGNSS), a publicly accessible spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) data, provides a new alternative opportunity for large-scale soil moisture (SM) retrieval, but with interference from complex environmental conditions (i.e., vegetation cover and ground roughness). This [...] Read more.
The Cyclone Global Navigation Satellite System (CYGNSS), a publicly accessible spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) data, provides a new alternative opportunity for large-scale soil moisture (SM) retrieval, but with interference from complex environmental conditions (i.e., vegetation cover and ground roughness). This study aims to develop a high-accuracy model for CYGNSS SM retrieval. The normalized surface reflectivity calculated by CYGNSS is fused with variables that are highly related to the SM obtained from optical/microwave remote sensing to solve the problem of the influence of complicated environmental conditions. The Gradient Boost Regression Tree (GBRT) model aided by land-type data is then used to construct a multi-variables SM retrieval model with six different land types of multiple models. The methodology is tested in southeastern China, and the results correlate very well with the existing satellite remote sensing products and in situ SM data (R = 0.765, ubRMSE = 0.054 m3m−3 vs. SMAP; R = 0.653, ubRMSE = 0.057 m3 m−3 vs. ERA5 SM; R = 0.691, ubRMSE = 0.057 m3m−3 vs. in situ SM). This study makes contributions from two aspects: (1) improves the accuracy of the CYGNSS retrieval of SM based on fusion with other auxiliary data; (2) constructs the SM retrieval model with multi-layer multiple models, which is suitable for different land properties. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 9293 KB  
Article
Using Robust Regression to Retrieve Soil Moisture from CyGNSS Data
by Qi Liu, Shuangcheng Zhang, Weiqiang Li, Yang Nan, Jilun Peng, Zhongmin Ma and Xin Zhou
Remote Sens. 2023, 15(14), 3669; https://doi.org/10.3390/rs15143669 - 23 Jul 2023
Cited by 11 | Viewed by 2668
Abstract
Accurate global soil moisture (SM) data are crucial for modeling land surface hydrological cycles and monitoring climate change. Spaceborne global navigation satellite system reflectometry (GNSS-R) has attracted extensive attention due to its unique advantages, such as faster revisit time, lower payload costs, and [...] Read more.
Accurate global soil moisture (SM) data are crucial for modeling land surface hydrological cycles and monitoring climate change. Spaceborne global navigation satellite system reflectometry (GNSS-R) has attracted extensive attention due to its unique advantages, such as faster revisit time, lower payload costs, and all-weather operation. GNSS signal reflected at L-band also has significant advantages for SM estimation. Usually, SM is estimated based on the sensitivity of GNSS-R reflectivity to SM, but the noise in observations can significantly impact SM estimation results. A new SM retrieval method based on robust regression is proposed to address this issue in this work, and the effects of roughness and vegetation on the effective reflectivity of the Cyclone Global Navigation Satellite System (CyGNSS) are reconsidered. Ancillary data are provided by the SM Active Passive (SMAP) mission. The retrieved results from the training sets and test sets agree well with the referenced SMAP SM data. The correlation coefficient R is 0.93, the root mean square error (RMSE) is 0.058 cm3cm−3, the unbiased RMSE (ubRMSE) is 0.042 cm3cm−3, and the mean absolute error (MAE) is 0.040 cm3cm−3 in the training sets. For the test, the correlation coefficient is 0.91, the RMSE is 0.067 cm3cm−3, the ubRMSE is 0.051 cm3cm−3, and the MAE is 0.044 cm3cm−3. The proposed method has been evaluated using in situ measurements from the SMAP/in situ core validation site; in situ measurements and retrieval results exhibit good consistency with the ubRMSE value below 0.35 cm3cm−3. Moreover, the SM retrieval results using robust regression methods show better performance than CyGNSS official SM products that use linear regression. In addition, the land cover types significantly affect the accuracy of SM retrieval, and the incoherent scattering in densely vegetated areas (tropical forests) usually leads to more errors. Full article
Show Figures

Figure 1

20 pages, 7456 KB  
Article
Unsupervised Machine Learning for GNSS Reflectometry Inland Water Body Detection
by Stylianos Kossieris, Milad Asgarimehr and Jens Wickert
Remote Sens. 2023, 15(12), 3206; https://doi.org/10.3390/rs15123206 - 20 Jun 2023
Cited by 12 | Viewed by 2858
Abstract
Inland water bodies, wetlands and their dynamics have a key role in a variety of scientific, economic, and social applications. They are significant in identifying climate change, water resource management, agricultural productivity, and the modeling of land–atmosphere exchange. Changes in the extent and [...] Read more.
Inland water bodies, wetlands and their dynamics have a key role in a variety of scientific, economic, and social applications. They are significant in identifying climate change, water resource management, agricultural productivity, and the modeling of land–atmosphere exchange. Changes in the extent and position of water bodies are crucial to the ecosystems. Mapping water bodies at a global scale is a challenging task due to the global variety of terrains and water surface. However, the sensitivity of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) to different land surface properties offers the potential to detect and monitor inland water bodies. The extensive dataset available in the Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, is used in our investigation. Although the main mission of CYGNSS was to measure the ocean wind speed in hurricanes and tropical cyclones, we show its capability of detecting and mapping inland water bodies. Both bistatic radar cross section (BRCS) and signal-to-noise ratio (SNR) can be used to detect, identify, and map the changes in the position and extent of inland waterbodies. We exploit the potential of unsupervised machine learning algorithms, more specifically the clustering methods, K-Means, Agglomerative, and Density-based Spatial Clustering of Applications with Noise (DBSCAN), for the detection of inland waterbodies. The results are evaluated based on the Copernicus land cover classification gridded maps, at 300 m spatial resolution. The outcomes demonstrate that CYGNSS data can identify and monitor inland waterbodies and their tributaries at high temporal resolution. K-Means has the highest Accuracy (93.5%) compared to the DBSCAN (90.3%) and Agglomerative (91.6%) methods. However, the DBSCAN method has the highest Recall (83.1%) as compared to Agglomerative (82.7%) and K-Means (79.2%). The current study offers valuable insights and analysis for further investigations in the field of GNSS-R and machine learning. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation III)
Show Figures

Figure 1

18 pages, 9808 KB  
Article
The Correction Method of Water and Fresnel Reflection Coefficient for Soil Moisture Retrieved by CYGNSS
by Qi Wang, Jiaojiao Sun, Xin Chang, Taoyong Jin, Jinguang Shang and Zhiyong Liu
Remote Sens. 2023, 15(12), 3000; https://doi.org/10.3390/rs15123000 - 8 Jun 2023
Cited by 3 | Viewed by 2084
Abstract
Spaceborne GNSS-R technology is a new remote sensing method for soil moisture monitoring. Focusing on the significant influence of water on the surface reflectivity of CYGNSS, this paper improved the removal method of water influence according to the spatial resolution of CYGNSS data. [...] Read more.
Spaceborne GNSS-R technology is a new remote sensing method for soil moisture monitoring. Focusing on the significant influence of water on the surface reflectivity of CYGNSS, this paper improved the removal method of water influence according to the spatial resolution of CYGNSS data. Due to the disturbance effect of the incident angle, microwave frequency and soil type on the Fresnel reflection coefficient in surface reflectivity, a normalization method of Fresnel reflection coefficient was proposed after analyzing the data characteristics of variables in the Fresnel reflection coefficient. Finally, combined with the soil moisture retrieval method of linear equation, the accuracy was compared and verified by using measured data, SMAP products and official CYGNSS products. The results indicate that the normalization method of the Fresnel reflection coefficient could effectively reduce the influence of relevant parameters on the Fresnel reflection coefficient, but the normalization effect became worse at large incident angles (greater than 65°). Compared with the official CYGNSS product, the retrieval accuracy of optimized soil moisture was improved by 10%. The method proposed in this paper will play an important reference role in the study of soil moisture retrieval using spaceborne GNSS-R data. Full article
(This article belongs to the Special Issue GNSS-R Earth Remote Sensing from SmallSats)
Show Figures

Graphical abstract

17 pages, 48406 KB  
Article
Information Fusion for Spaceborne GNSS-R Sea Surface Height Retrieval Using Modified Residual Multimodal Deep Learning Method
by Qiang Wang, Wei Zheng, Fan Wu, Huizhong Zhu, Aigong Xu, Yifan Shen and Yelong Zhao
Remote Sens. 2023, 15(6), 1481; https://doi.org/10.3390/rs15061481 - 7 Mar 2023
Cited by 6 | Viewed by 2649
Abstract
Traditional spaceborne Global Navigation Satellite Systems Reflectometry (GNSS-R) sea surface height (SSH) retrieval methods have the disadvantages of complicated error models, low retrieval accuracy, and difficulty using full DDM information. To compensate for these deficiencies while considering the heterogeneity of the input data, [...] Read more.
Traditional spaceborne Global Navigation Satellite Systems Reflectometry (GNSS-R) sea surface height (SSH) retrieval methods have the disadvantages of complicated error models, low retrieval accuracy, and difficulty using full DDM information. To compensate for these deficiencies while considering the heterogeneity of the input data, this paper proposes an end-to-end Modified Residual Multimodal Deep Learning (MRMDL) method that can utilize the entire range of DDM information. First, the MRMDL method is constructed based on the modified Residual Net (MResNet) and Multi-Hidden layer neural network (MHL-NN). The MResNet applicable to DDM structures is used to adaptively capture productive features of the full DDM and to convert the two-dimensional DDM data into one-dimensional numerical form. Then, the extracted features and auxiliary parameters are fused as the input data for MHL-NN to retrieve the SSH. Second, the reliability of the model is verified using SSH with tide-corrected DTU Sea Surface Height 18 (DTU18) and spaceborne radar altimeters (Jason3, HY-2C, HY-2B). Compared to the SSH provided by the DTU18 validation model and the spaceborne radar altimeter, the Pearson correlation coefficients (PCC) are 0.98 and 0.97, respectively. However, the CYGNSS satellite is not primarily employed for ocean altimetry, and the mean absolute differences (MAD) are 3.92 m and 4.32 m, respectively. Finally, the retrieval accuracy of the MRMDL method and the HALF retracking approach are compared and analyzed. Finally, this study also implements the HALF retracking algorithm to derive the SSH, and the results are compared with those computed by the MRMDL method. The MRMDL method is more accurate than the HALF retracking approach according to MAD, Root-Mean-Square Error (RMSE), and PCC, with an improvement of 35.21%, 17.25%, and 2.08%, respectively. The MRMDL method will contribute a new theoretical and methodological reference for future GNSS-R altimetry satellites with high spatiotemporal SSH retrieval. Full article
(This article belongs to the Special Issue Precise Point Positioning with GPS, GLONASS, BeiDou, and Galileo II)
Show Figures

Figure 1

26 pages, 7007 KB  
Article
GloWS-Net: A Deep Learning Framework for Retrieving Global Sea Surface Wind Speed Using Spaceborne GNSS-R Data
by Jinwei Bu, Kegen Yu, Xiaoqing Zuo, Jun Ni, Yongfa Li and Weimin Huang
Remote Sens. 2023, 15(3), 590; https://doi.org/10.3390/rs15030590 - 18 Jan 2023
Cited by 22 | Viewed by 4509
Abstract
Spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) is a new remote sensing technology that uses GNSS signals reflected from the Earth’s surface to estimate geophysical parameters. Because of its unique advantages such as high temporal and spatial resolutions, low observation cost, wide coverage [...] Read more.
Spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) is a new remote sensing technology that uses GNSS signals reflected from the Earth’s surface to estimate geophysical parameters. Because of its unique advantages such as high temporal and spatial resolutions, low observation cost, wide coverage and all-weather operation, it has been widely used in land and ocean remote sensing fields. Ocean wind monitoring is the main objective of the recently launched Cyclone GNSS (CYGNSS). In previous studies, wind speed was usually retrieved using features extracted from delay-Doppler maps (DDMs) and empirical geophysical model functions (GMFs). However, it is a challenge to employ the GMF method if using multiple sea state parameters as model input. Therefore, in this article, we propose an improved deep learning network framework to retrieve global sea surface wind speed using spaceborne GNSS-R data, named GloWS-Net. GloWS-Net considers the fusion of auxiliary information including ocean swell significant wave height (SWH), sea surface rainfall and wave direction to build an end-to-end wind speed retrieval model. In order to verify the improvement of the proposed model, ERA5 and Cross-Calibrated Multi-Platform (CCMP) wind data were used as reference for extensive testing to evaluate the wind speed retrieval performance of the GloWS-Net model and previous models (i.e., GMF, fully connected network (FCN) and convolutional neural network (CNN)). The results show that, when using ERA5 winds as ground truth, the root mean square error (RMSE) of the proposed GloWS-Net model is 23.98% better than that of the MVE method. Although the GloWS-Net model and the FCN model have similar RMSE (1.92 m/s), the mean absolute percentage error (MAPE) of the former is improved by 16.56%; when using CCMP winds as ground truth, the RMSE of the proposed GloWS-Net model is 2.16 m/s, which is 20.27% better than the MVE method. Compared with the FCN model, the MAPE is improved by 17.75%. Meanwhile, the GloWS-Net outperforms the FCN, traditional CNN, modified CNN (MCNN) and CyGNSSnet models in global wind speed retrieval especially at high wind speeds. Full article
(This article belongs to the Special Issue GNSS-R Earth Remote Sensing from SmallSats)
Show Figures

Figure 1

20 pages, 5237 KB  
Article
Detection and Evaluation of Flood Inundation Using CYGNSS Data during Extreme Precipitation in 2022 in Guangdong Province, China
by Haohan Wei, Tongning Yu, Jinsheng Tu and Fuyang Ke
Remote Sens. 2023, 15(2), 297; https://doi.org/10.3390/rs15020297 - 4 Jan 2023
Cited by 14 | Viewed by 3537
Abstract
Floods are severe natural disasters that are harmful and frequently occur across the world. From May to July 2022, the strongest, broadest, and longest rainfall event in recent years occurred in Guangdong Province, China. The flooding caused by continuous precipitation and a typhoon [...] Read more.
Floods are severe natural disasters that are harmful and frequently occur across the world. From May to July 2022, the strongest, broadest, and longest rainfall event in recent years occurred in Guangdong Province, China. The flooding caused by continuous precipitation and a typhoon resulted in severe losses to local people and property. During flood events, there is an urgent need for timely and detailed flood inundation mapping for areas that have been severely affected. However, current satellite missions cannot provide sufficient information at a high enough spatio-temporal resolution for flooding applications. In contrast, spaceborne Global Navigation Satellite System reflectometry technology can be used to observe the Earth’s surface at a high spatio-temporal resolution without being affected by clouds or surface vegetation, providing a feasible scheme for flood disaster research. In this study, Cyclone Global Navigation Satellite System (CYGNSS) L1 science data were processed to obtain the change in the delay-Doppler map and surface reflectivity (SR) during the flood event. Then, a flood inundation map of the extreme precipitation was drawn using the threshold method based on the CYGNSS SR. Additionally, the flooded areas that were calculated based on the soil moisture from the Soil Moisture Active Passive (SMAP) data were used as a reference. Furthermore, the daily Dry Wet Abrupt Alternation Index (DWAAI) was used to identify the occurrence of the flood events. The results showed good agreement between the flood inundation that was derived from the CYGNSS SR and SMAP soil moisture. Moreover, compared with the SMAP results, the CYGNSS SR can provide the daily flood inundation with higher accuracy due to its high spatio-temporal resolution. Furthermore, the DWAAI can identify the transformation from droughts to floods in a relatively short period. Consequently, the distributions of and variations in flood inundation under extreme weather conditions can be identified on a daily scale with good accuracy using the CYGNSS data. Full article
Show Figures

Figure 1

22 pages, 42728 KB  
Article
Estimation of Swell Height Using Spaceborne GNSS-R Data from Eight CYGNSS Satellites
by Jinwei Bu, Kegen Yu, Hyuk Park, Weimin Huang, Shuai Han, Qingyun Yan, Nijia Qian and Yiruo Lin
Remote Sens. 2022, 14(18), 4634; https://doi.org/10.3390/rs14184634 - 16 Sep 2022
Cited by 16 | Viewed by 3193
Abstract
Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) technology has opened a new window for ocean remote sensing because of its unique advantages, including short revisit period, low observation cost, and high spatial-temporal resolution. In this article, we investigated the potential of estimating swell height [...] Read more.
Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) technology has opened a new window for ocean remote sensing because of its unique advantages, including short revisit period, low observation cost, and high spatial-temporal resolution. In this article, we investigated the potential of estimating swell height from delay-Doppler maps (DDMs) data generated by spaceborne GNSS-R. Three observables extracted from the DDM are introduced for swell height estimation, including delay-Doppler map average (DDMA), the leading edge slope (LES) of the integrated delay waveform (IDW), and trailing edge slope (TES) of the IDW. We propose one modeling scheme for each observable. To improve the swell height estimation performance of a single observable-based method, we present a data fusion approach based on particle swarm optimization (PSO). Furthermore, a simulated annealing aided PSO (SA-PSO) algorithm is proposed to handle the problem of local optimal solution for the PSO algorithm. Extensive testing has been performed and the results show that the swell height estimated by the proposed methods is highly consistent with reference data, i.e., the ERA5 swell height. The correlation coefficient (CC) is 0.86 and the root mean square error (RMSE) is 0.56 m. Particularly, the SA-PSO method achieved the best performance, with RMSE, CC, and mean absolute percentage error (MAPE) being 0.39 m, 0.92, and 18.98%, respectively. Compared with the DDMA, LES, TES, and PSO methods, the RMSE of the SA-PSO method is improved by 23.53%, 26.42%, 30.36%, and 7.14%, respectively. Full article
Show Figures

Figure 1

17 pages, 8648 KB  
Technical Note
Evaluation of CYGNSS Observations for Snow Properties, a Case Study in Tibetan Plateau, China
by Wenxiao Ma, Lingyong Huang, Xuerui Wu, Shuanggen Jin, Weihua Bai and Xuanran Li
Remote Sens. 2022, 14(15), 3772; https://doi.org/10.3390/rs14153772 - 5 Aug 2022
Cited by 3 | Viewed by 2011
Abstract
Snow plays an important role in the water cycle and global climate change, and the accurate monitoring of changes in snow depth is an important task. However, monitoring snow properties is still challenging and unclear, particularly in the Tibetan Plateau, which has rough [...] Read more.
Snow plays an important role in the water cycle and global climate change, and the accurate monitoring of changes in snow depth is an important task. However, monitoring snow properties is still challenging and unclear, particularly in the Tibetan Plateau, which has rough land and uneven terrain. The traditional monitoring methods have some limitations in monitoring snow depth changes, and the Global Navigation Satellite System-Reflectometry (GNSS-R) provides a new opportunity for snow monitoring. This paper employed data from the Cyclone Global Navigation Satellite System (CYGNSS) to discover the effect of snow properties. Firstly, the observations of CYGNSS were used to find the sensitive to snow properties, and the relationships between signal to noise ratio (SNR), leading edge slope (LES), surface reflectivity (SR), and snow depth were studied and analyzed, respectively. It is found that the correlation between the first two parameters and snow depth is poor, while SR can indicate the changes in snow depth, and is proposed as an indicator of SR change, namely, surface reflectivity–difference ratio factor (SR–DR factor). Furthermore, the long-time series data in the Tibetan Plateau (2018–2019) are used to analyze its effects on the time series of the SR–DR factor, while the influences of the soil freeze/thaw (F/T) process and soil moisture are excluded during the analysis. The results indicate that the SR–DR factor can be a good indicator and discriminator for snow depth. Our work shows that space-borne GNSS-R has the potential for the monitoring of snow properties. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques)
Show Figures

Graphical abstract

19 pages, 2416 KB  
Article
Retrieval and Assessment of Significant Wave Height from CYGNSS Mission Using Neural Network
by Feng Wang, Dongkai Yang and Lei Yang
Remote Sens. 2022, 14(15), 3666; https://doi.org/10.3390/rs14153666 - 30 Jul 2022
Cited by 19 | Viewed by 3017
Abstract
In this study, we investigate sea state estimation from spaceborne GNSS-R. Due to the complex scattering of electromagnetic waves on the rough sea surface, the neural network approach is adopted to develop an algorithm to derive significant wave height (SWH) from CYGNSS data. [...] Read more.
In this study, we investigate sea state estimation from spaceborne GNSS-R. Due to the complex scattering of electromagnetic waves on the rough sea surface, the neural network approach is adopted to develop an algorithm to derive significant wave height (SWH) from CYGNSS data. Eighty-nine million pieces of CYGNSS data from September to November 2020 and the co-located ECMWF data are employed to train a three-hidden-layer neural network. Ten variables are considered as the input parameters of the neural network. Without the auxiliary of the wind speed, the SWH retrieved using the trained neural network exhibits a bias and an RMSE of −0.13 and 0.59 m with respect to ECMWF data. When considering wind speed as the input, the bias and RMSE were reduced to −0.09 and 0.49 m, respectively. When the incidence angle ranges from 35° to 65° and the SNR is above 7 dB, the retrieval performance is better than that obtained using other values. The measurements derived from the “Block III” satellite offer worse results than those derived from other satellites. When the distance is considered as an input parameter, the retrieval performances for the areas near the coast are significantly improved. A soft data filter is used to synchronously improve the precision and ensure the desired sample number. The RMSEs of the retrieved SWH are reduced to 0.45 m and 0.41 m from 0.59 m and 0.49 m, and only 16.0% and 14.9% of the samples are removed. The retrieved SWH also shows a clear agreement with the co-located buoy and Jason-3 altimeter data. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

20 pages, 7422 KB  
Article
A New Coherence Detection Method for Mapping Inland Water Bodies Using CYGNSS Data
by Ji Wang, Yufeng Hu and Zhenhong Li
Remote Sens. 2022, 14(13), 3195; https://doi.org/10.3390/rs14133195 - 3 Jul 2022
Cited by 10 | Viewed by 3466
Abstract
Inland water is an important part of the Earth’s water cycle. Mapping inland water is vital for understanding surface hydrology and climate change. Spaceborne global navigation satellite systems reflectometry (GNSS-R) has been proven to be an effective technique to detect inland water bodies. [...] Read more.
Inland water is an important part of the Earth’s water cycle. Mapping inland water is vital for understanding surface hydrology and climate change. Spaceborne global navigation satellite systems reflectometry (GNSS-R) has been proven to be an effective technique to detect inland water bodies. This paper proposes a new method to map inland water bodies using the delay-Doppler map (DDM) measurements provided by the GNSS-R platform Cyclone GNSS (CYGNSS). In this new method, we develop a refined power ratio to identify the coherence in DDM caused by the inland water. Processed with an image segmentation method, the refined power ratio is then applied to discriminate the permanent inland water bodies from the land. Using CYGNSS data over the Amazon Basin and the Congo Basin in 2020, we successfully generated water masks with a spatial resolution of 0.01°. Compared with the reference optical water masks, the overall detection accuracy in the Amazon Basin is 94.48% and the water detection accuracy is 92.23%, and the corresponding accuracies in the Congo Basin are 96.12% and 93.16%, respectively. Compared with the previous DDM power-spread detector (DPSD) method, the new method’s false alarms and misses in the Amazon Basin are reduced by 17.1% and 9.1%, respectively, while the false alarms and misses in the Congo Basin are reduced by 10.2% and 22%, respectively. Moreover, our method is proven to be useful for detecting short-term flood inundation. Full article
(This article belongs to the Topic Advances in Environmental Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop