Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,234)

Search Parameters:
Keywords = Chemical Product Engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2662 KB  
Review
Recent Progress in Cellulose Nanofibril Hydrogels for Biomedical Applications
by Taeyen Won, MeeiChyn Goh, Chaewon Lim, Jieun Moon, Kyueui Lee, Jaehyeung Park, Kyeongwoon Chung, Younghee Kim, Seonhwa Lee, Hye Jin Hong and Kihak Gwon
Polymers 2025, 17(17), 2272; https://doi.org/10.3390/polym17172272 - 22 Aug 2025
Viewed by 280
Abstract
Cellulose nanofibril (CNF)-based hydrogels, owing to their sustainability, biocompatibility, and versatile mechanical properties, are promising for biomedical applications. This review analyzes the recent advances and biomedical applications of CNF hydrogels. CNF hydrogels can be prepared via physical and chemical crosslinking. Physical crosslinking involves [...] Read more.
Cellulose nanofibril (CNF)-based hydrogels, owing to their sustainability, biocompatibility, and versatile mechanical properties, are promising for biomedical applications. This review analyzes the recent advances and biomedical applications of CNF hydrogels. CNF hydrogels can be prepared via physical and chemical crosslinking. Physical crosslinking involves surface charge density control, pH manipulation, and flow-based processing to generate stable networks, whereas chemical crosslinking employs agents such as epichlorohydrin and citric acid to form permanent covalent bonds. These approaches enable precise control over hydrogel properties, including mechanical strength, porosity, and stimuli responsiveness. CNF hydrogels are particularly promising in drug delivery systems and tissue engineering. CNFs as drug delivery vehicles offer enhanced bioavailability and drug loading capacity owing to their open pore structure and large surface area. Recent developments in stimuli-responsive and injectable CNF hydrogels have enabled controlled drug release and improved targeting capabilities. Moreover, CNF hydrogels serve as effective scaffolds for cell growth and tissue regeneration, with applications in cartilage engineering and wound healing. Integrating CNF hydrogels with 3D bioprinting technology has generated complex tissue structures. However, several challenges remain, including the need for the standardization of toxicology assessments, optimization of large-scale production processes, and development of sophisticated control mechanisms for drug delivery. Future research should advance manufacturing technologies, improve long-term stability, and develop standardized testing protocols for regulatory compliance. Full article
Show Figures

Figure 1

12 pages, 1831 KB  
Article
Inverse Chemical Equilibrium Problem in Reacting Gaseous Mixtures: The Choice of Temperature to Maximise Product Yield
by Igor Donskoy and Oleg Khamisov
Thermo 2025, 5(3), 31; https://doi.org/10.3390/thermo5030031 - 21 Aug 2025
Viewed by 387
Abstract
A usual problem in chemical engineering and fuel processing is to achieve the highest possible efficiency concerning the target products. In this paper, we consider the inverse problem of chemical equilibrium and propose mathematical methods to obtain conditions under which the equilibrium state [...] Read more.
A usual problem in chemical engineering and fuel processing is to achieve the highest possible efficiency concerning the target products. In this paper, we consider the inverse problem of chemical equilibrium and propose mathematical methods to obtain conditions under which the equilibrium state of the reacting system achieves the required characteristics. For the case of maximising the aim component yield, a new two-step algorithm is developed based on the inverse problem solution. The methods are tested using the methane reforming example. Full article
Show Figures

Figure 1

20 pages, 1017 KB  
Article
Energy Efficiency and Waste Reduction Through Maintenance Optimization: A Case Study in the Pharmaceutical Industry
by Nuno Soares Domingues and João Patrício
Waste 2025, 3(3), 28; https://doi.org/10.3390/waste3030028 - 21 Aug 2025
Viewed by 161
Abstract
The global rise in population, increased life expectancy, and heightened international mobility have escalated disease prevalence and pharmaceutical demand. This growth intensifies energy consumption and chemical waste production within the pharmaceutical industry, challenging environmental sustainability and operational efficiency. Chromatography, a vital analytical technique [...] Read more.
The global rise in population, increased life expectancy, and heightened international mobility have escalated disease prevalence and pharmaceutical demand. This growth intensifies energy consumption and chemical waste production within the pharmaceutical industry, challenging environmental sustainability and operational efficiency. Chromatography, a vital analytical technique for ensuring product quality and regulatory compliance, can also contribute to material waste and energy inefficiencies if not properly maintained and optimized. This study applies Failure Mode and Effects Analysis (FMEA) to chromatographic equipment maintenance within Hovione’s Engineering and Maintenance Department, aiming to identify and mitigate failure risks. By integrating environmental metrics derived from Life Cycle Assessment (LCA) into the FMEA framework, a hybrid risk evaluation tool was developed that prioritizes both equipment reliability and sustainability performance. The findings demonstrate how this integrated approach reduces unplanned downtime, lowers solvent waste, and improves energy efficiency. Additionally, the study proposes a conceptual dashboard to support proactive, sustainability-driven asset management in pharmaceutical laboratories. By bridging reliability engineering and environmental sustainability, this research offers a strategic model for optimizing resource use, minimizing chemical waste, and enhancing long-term operational resilience in regulated pharmaceutical environments. Full article
Show Figures

Figure 1

22 pages, 10063 KB  
Review
Flame-Retardant Polyurea Coatings: Mechanisms, Strategies, and Multifunctional Enhancements
by Danni Pan, Dehui Jia, Yao Yuan, Ying Pan, Wei Wang and Lulu Xu
Fire 2025, 8(8), 334; https://doi.org/10.3390/fire8080334 - 21 Aug 2025
Viewed by 280
Abstract
The imperative for high-performance protective materials has catalyzed the rapid evolution of polyurea (PUA) coatings, widely recognized for their mechanical robustness, chemical resistance, and rapid-curing properties. However, their inherent flammability and harmful combustion byproducts pose significant challenges for safe use in applications where [...] Read more.
The imperative for high-performance protective materials has catalyzed the rapid evolution of polyurea (PUA) coatings, widely recognized for their mechanical robustness, chemical resistance, and rapid-curing properties. However, their inherent flammability and harmful combustion byproducts pose significant challenges for safe use in applications where fire safety is a critical concern. In response, significant efforts focus on improving the fire resistance of PUA materials through chemical modifications and the use of functional additives. The review highlights progress in developing flame-retardant approaches for PUA coatings, placing particular emphasis on the underlying combustion mechanisms and the combined action of condensed-phase, gas-phase, and interrupted heat feedback pathways. Particular emphasis is placed on phosphorus-based, intumescent, and nano-enabled flame retardants, as well as hybrid systems incorporating two-dimensional nanomaterials and metal–organic frameworks, with a focus on exploring their synergistic effects in enhancing thermal stability, reducing smoke production, and maintaining mechanical integrity. By evaluating current strategies and recent progress, this work identifies key challenges and outlines future directions for the development of high-performance and fire-safe PUA coatings. These insights aim to guide the design of next-generation protective materials that meet the growing demand for safety and sustainability in advanced engineering applications. Full article
(This article belongs to the Special Issue Fire, Polymers, and Retardants: Innovations in Fire Safety)
Show Figures

Figure 1

14 pages, 2036 KB  
Article
Advancing Sustainable PVC Polymerization: Direct Water Recycling, Circularity, and Inherent Safety Optimization
by Rolando Manuel Guardo-Ruiz, Linda Mychell Puello-Castellón and Ángel Darío González-Delgado
Sustainability 2025, 17(16), 7508; https://doi.org/10.3390/su17167508 - 20 Aug 2025
Viewed by 340
Abstract
Polyvinyl chloride (PVC) remains one of the most widely used synthetic polymers worldwide, primarily due to its versatility, cost-effectiveness, and broad applicability across construction, healthcare, automotive, and consumer goods industries. However, its production involves hazardous chemicals, particularly vinyl chloride monomer (VCM), which requires [...] Read more.
Polyvinyl chloride (PVC) remains one of the most widely used synthetic polymers worldwide, primarily due to its versatility, cost-effectiveness, and broad applicability across construction, healthcare, automotive, and consumer goods industries. However, its production involves hazardous chemicals, particularly vinyl chloride monomer (VCM), which requires rigorous safety assessments. In this context, the present study applies the Inherent Safety Index (ISI) methodology to evaluate the safety performance of a suspension polymerization process for PVC production that incorporates direct water recycling as a sustainability measure. The integration of water reuse reduces the fractional water consumption index from 2.8 to 2.2 and achieves a recovered water purity of 99.6%, demonstrating clear environmental benefits in terms of resource conservation. Beyond water savings, the core objective is to assess how this integration influences the inherent risks associated with the process. The key operational stages—polymerization, VCM recovery, product purification, and water recirculation—were modeled and analyzed using computer-aided process engineering (CAPE) tools. The ISI analysis yielded a score of 33, surpassing the threshold typically associated with inherently safer designs, with VCM hazards alone contributing a score of 19 due to its high flammability and carcinogenicity. These findings reveal a critical trade-off between environmental performance and inherent safety, underscoring that resource integration measures, while beneficial for sustainability, may require complementary safety improvements. This study highlights the necessity of incorporating inherently safer design principles alongside process integration strategies to achieve balanced progress in operational efficiency, environmental responsibility, and risk minimization in PVC manufacturing. Full article
Show Figures

Figure 1

22 pages, 1474 KB  
Review
A Review Focused on 3D Hybrid Composites from Glass and Natural Fibers Used for Acoustic and Thermal Insulation
by Shabnam Nazari, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra and Miroslav Muller
J. Compos. Sci. 2025, 9(8), 448; https://doi.org/10.3390/jcs9080448 - 19 Aug 2025
Viewed by 269
Abstract
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s [...] Read more.
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s modulus range of 70–85 GPa, and are widely used in automotive, aerospace, construction, and marine applications due to their excellent mechanical properties, thermal conductivity of ~0.045 W/m·K, and resistance to fire and corrosion. On the other hand, natural fibers, derived from plants and animals, are increasingly recognized for their environmental benefits and potential in sustainable construction, offering advantages such as biodegradability, lower carbon footprints, and reduced energy consumption, with a sound absorption coefficient (SAC) range of 0.7–0.8 at frequencies above 2000 Hz and thermal conductivity range of 0.07–0.09 W/m·K. Notably, the integration of these materials in construction and automotive sectors reflects a growing trend towards sustainable practices, driven by the need to mitigate carbon emissions associated with traditional building materials and enhance fuel efficiency, as seen in hybrid composites achieving 44.9 dB acoustic insulation at 10,000 Hz and a thermal conductivity range of 0.05–0.06 W/m·K in applications such as the BMW i3 door panels. Natural fibers contribute to reducing reliance on fossil fuels, supporting a circular economy through the recycling of agricultural waste, while glass fibers are instrumental in creating lightweight composites for improved vehicle performance and structural integrity. However, both materials face distinct challenges. Glass fibers, while offering superior strength, are vulnerable to chemical degradation and can pose recycling difficulties due to the complex processes involved. On the other hand, natural fibers may experience moisture absorption, affecting their durability and mechanical properties, necessitating innovations to enhance their application in demanding environments. The ongoing research into optimizing the performance of both materials highlights their relevance in future sustainable engineering practices. In summary, this review underscores the growing importance of glass and natural fibers in addressing modern environmental challenges while also improving product performance. As industries increasingly prioritize sustainability, these materials are poised to play crucial roles in shaping the future of construction and transportation, driving innovations that align with ecological goals and consumer expectations. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

23 pages, 1210 KB  
Review
Advances in the Biosynthetic Regulation and Functional Mechanisms of Glycine Betaine for Enhancing Plant Stress Resilience
by Jiaxu Chen, Jing Zhang, Yihang Liu, Kailu Zhang, Fuyuan Zhu and Yanjie Xie
Int. J. Mol. Sci. 2025, 26(16), 7971; https://doi.org/10.3390/ijms26167971 - 18 Aug 2025
Viewed by 346
Abstract
Plants are frequently exposed to a range of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metals, that severely impair their growth and productivity. Among the adaptive mechanisms that plants have evolved, the accumulation of glycine betaine (GB), a naturally occurring, zwitterionic, [...] Read more.
Plants are frequently exposed to a range of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metals, that severely impair their growth and productivity. Among the adaptive mechanisms that plants have evolved, the accumulation of glycine betaine (GB), a naturally occurring, zwitterionic, and chemically stable osmoprotectant, has been widely recognized as a key strategy for stress tolerance. In higher plants, GB is primarily synthesized via the two-step oxidation of choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH). GB contributes to cellular homeostasis by modulating osmotic balance, regulating ion flux, scavenging reactive oxygen species (ROS), enhancing antioxidant defense systems, and stabilizing proteins and membrane structures. Both exogenous application of GB and genetic engineering approaches aimed at enhancing endogenous GB biosynthesis have been shown to significantly improve plant tolerance to a variety of abiotic stresses. In this review, we provide a comprehensive overview of recent advances in the understanding of GB biosynthesis, its regulatory mechanisms, and its multifaceted roles in plant stress responses. We also highlight emerging prospects for leveraging GB-centered strategies to enhance crop resilience in challenging environmental conditions. Full article
(This article belongs to the Collection Advances in Molecular Plant Sciences)
Show Figures

Figure 1

29 pages, 1604 KB  
Review
Engineering Targeted Gene Delivery Systems for Primary Hereditary Skeletal Myopathies: Current Strategies and Future Perspectives
by Jiahao Wu, Yimin Hua, Yanjiang Zheng, Xu Liu and Yifei Li
Biomedicines 2025, 13(8), 1994; https://doi.org/10.3390/biomedicines13081994 - 16 Aug 2025
Viewed by 501
Abstract
Skeletal muscle, constituting ~40% of body mass, serves as a primary effector for movement and a key metabolic regulator through myokine secretion. Hereditary myopathies, including dystrophinopathies (DMD/BMD), limb–girdle muscular dystrophies (LGMD), and metabolic disorders like Pompe disease, arise from pathogenic mutations in structural, [...] Read more.
Skeletal muscle, constituting ~40% of body mass, serves as a primary effector for movement and a key metabolic regulator through myokine secretion. Hereditary myopathies, including dystrophinopathies (DMD/BMD), limb–girdle muscular dystrophies (LGMD), and metabolic disorders like Pompe disease, arise from pathogenic mutations in structural, metabolic, or ion channel genes, leading to progressive weakness and multi-organ dysfunction. Gene therapy has emerged as a transformative strategy, leveraging viral and non-viral vectors to deliver therapeutic nucleic acids. Adeno-associated virus (AAV) vectors dominate clinical applications due to their efficient transduction of post-mitotic myofibers and sustained transgene expression. Innovations in AAV engineering, such as capsid modification (chemical conjugation, rational design, directed evolution), self-complementary genomes, and tissue-specific promoters (e.g., MHCK7), enhance muscle tropism while mitigating immunogenicity and off-target effects. Non-viral vectors (liposomes, polymers, exosomes) offer advantages in cargo capacity (delivering full-length dystrophin), biocompatibility, and scalable production but face challenges in transduction efficiency and endosomal escape. Clinically, AAV-based therapies (e.g., Elevidys® for DMD, Zolgensma® for SMA) demonstrate functional improvements, though immune responses and hepatotoxicity remain concerns. Future directions focus on AI-driven vector design, hybrid systems (AAV–exosomes), and standardized manufacturing to achieve “single-dose, lifelong cure” paradigms for muscular disorders. Full article
(This article belongs to the Collection Feature Papers in Gene and Cell Therapy)
Show Figures

Figure 1

20 pages, 2443 KB  
Article
Electrospun PEDOT-Based Meshes for Skin Regeneration
by Alexandra I. F. Alves, Nuno M. Alves and Juliana R. Dias
Polymers 2025, 17(16), 2227; https://doi.org/10.3390/polym17162227 - 15 Aug 2025
Viewed by 289
Abstract
The application of conductive polymers in wound dressings presents great potential for accelerated wound healing since their high electrical conductivity and biocompatibility facilitate the delivery of external electrical stimuli to cells and tissues, promoting cell differentiation and proliferation. Electrospinning is a very straightforward [...] Read more.
The application of conductive polymers in wound dressings presents great potential for accelerated wound healing since their high electrical conductivity and biocompatibility facilitate the delivery of external electrical stimuli to cells and tissues, promoting cell differentiation and proliferation. Electrospinning is a very straightforward method for the preparation of polymeric wound dressings capable of mimicking the extracellular matrix of skin, promoting hemostasis, absorbing wound exudate, allowing atmospheric oxygen permeation and maintaining an appropriately moist environment. In this work, in situ chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) was achieved through hyaluronic acid-doping. The synthesized PEDOT was used for the production of conductive and biodegradable chitosan (CS)/gelatin (GEL)/PEDOT electrospun meshes. Additionally, the randomly aligned meshes were crosslinked with a 1,4-butanediol diglycidyl ether and their physicochemical and mechanical properties were investigated. The results show that the incorporation of a conductive polymer led to an increase in conductivity of the solution, density and fiber diameter that influenced porosity, water uptake, and dissolvability and biodegradability of the meshes, while maintaining appropriate water vapor permeation values. Due to their intrinsic similarity to the extracellular matrix and cell-binding sequences, CS/GEL/PEDOT electrospun nanofibrous meshes show potential as conductive nanofibrous structures for electrostimulated wound dressings in skin tissue engineering applications. Full article
(This article belongs to the Special Issue Advances in Electrospun Nanofibers for Skin Regeneration)
Show Figures

Graphical abstract

11 pages, 1103 KB  
Article
Discovery of Tricyclic Aromatic Polyketides Reveals Hidden Chain-Length Flexibility in Type II Polyketide Synthases
by Yao Liu, Lijun Wang, Haiyan Wang, Yuchen Zhu, Jianing Sun, Boyang Ma, Lin Liu, Xunrui Bao, Jinwei Ren, Keqiang Fan, Liyan Wang, Xiao Li and Guohui Pan
Int. J. Mol. Sci. 2025, 26(16), 7801; https://doi.org/10.3390/ijms26167801 - 13 Aug 2025
Viewed by 227
Abstract
Type II polyketide synthases (PKSs) collectively generate polyketide intermediates of varying chain lengths, which undergo cyclization and further tailoring to produce structurally diverse aromatic polyketides. The length of the polyketide chain is a critical factor shaping the core scaffold of the final product. [...] Read more.
Type II polyketide synthases (PKSs) collectively generate polyketide intermediates of varying chain lengths, which undergo cyclization and further tailoring to produce structurally diverse aromatic polyketides. The length of the polyketide chain is a critical factor shaping the core scaffold of the final product. However, individual type II PKSs typically produce intermediates with a fixed chain length, thereby limiting the structural diversity accessible from a single biosynthetic system. In this study, we report the discovery of two pairs of novel tricyclic aromatic polyketides, varsomycin C/C′ and oxtamycin A/A′, along with two known analogues. These compounds are derived from the var and oxt gene clusters in Streptomyces varsoviensis/varR1, which primarily produce decaketide-derived tetracycline natural products, varsomycin A-B and oxytetracycline. Bioinformatic analysis combined with metabolite profiling of gene-disrupted mutants indicated that varsomycin C and C′ are co-produced by enzymes encoded in the var cluster, with contributions from oxtJ and oxtF in the oxt cluster, resulting in nonaketide-derived tricyclic scaffolds. Oxtamycin A and A′, along with the two analogues, are predicted to be biosynthesized by the oxt cluster. These results suggest that the minimal PKSs from both clusters possess intrinsic flexibility in controlling polyketide chain length, enabling the production of both decaketide and nonaketide intermediates, which represents a rare example of dual chain-length programming in type II PKSs. This flexibility reveals new natural sources of nonaketide biosynthetic enzymes and enriches the chemical diversity of tricyclic aromatic polyketides. Our findings deepen the understanding of type II PKS chain-length regulation and provide a foundation for future engineering of PKSs to produce customized bioactive aromatic polyketides. Full article
(This article belongs to the Special Issue Molecular Research on Microbial Natural Products)
Show Figures

Figure 1

20 pages, 3853 KB  
Article
Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute
by Marta Ostojčić, Marija Stjepanović, Blanka Bilić Rajs, Ivica Strelec, Natalija Velić, Mirna Brekalo, Volker Hessel and Sandra Budžaki
Processes 2025, 13(8), 2548; https://doi.org/10.3390/pr13082548 - 12 Aug 2025
Viewed by 270
Abstract
As the supply of cocoa becomes increasingly volatile, biotechnological innovations such as lipid engineering with lipases play a crucial role in supporting more stable, ethical, and sustainable chocolate production systems. This study explores the potential of Pseudomonas fluorescens lipase immobilized on eggshell membrane-based [...] Read more.
As the supply of cocoa becomes increasingly volatile, biotechnological innovations such as lipid engineering with lipases play a crucial role in supporting more stable, ethical, and sustainable chocolate production systems. This study explores the potential of Pseudomonas fluorescens lipase immobilized on eggshell membrane-based carriers for the synthesis of a cocoa butter substitute (CBS). The carriers were prepared by treating eggshells with different acids to generate chemically distinct support materials. Lipase immobilization was performed using both adsorption and covalent binding techniques. All resulting biocatalysts were characterized and compared to the free enzyme with respect to pH and temperature optima, as well as thermal and solvent stability. Immobilization caused shifts in the enzyme’s optimal operating conditions and significantly improved its stability at elevated temperatures and in the presence of organic solvents. Among the tested systems, the lipase immobilized by adsorption onto a hydrochloric acid-treated carrier exhibited the best performance. Using this biocatalyst, a CBS containing 93.54 ± 0.16% of the target triacylglycerols (POP, POS, and SOS) was successfully synthesized and reused over five consecutive synthesis cycles without significant loss of activity. These findings demonstrate the potential of waste-derived biomaterials for the development of efficient, stable, and reusable biocatalysts in the enzymatic production of functional lipids. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

29 pages, 3331 KB  
Article
Advanced Delayed Acid System for Stimulation of Ultra-Tight Carbonate Reservoirs: A Field Study on Single-Phase, Polymer-Free Delayed Acid System Performance Under Extreme Sour and High-Temperature Conditions
by Charbel Ramy, Razvan George Ripeanu, Daniel A. Hurtado, Carlos Sirlupu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță, Constantin Cristian Muresan and Ayham Mhanna
Processes 2025, 13(8), 2547; https://doi.org/10.3390/pr13082547 - 12 Aug 2025
Viewed by 444
Abstract
This field study describes the successful implementation and evaluation of a Polymer-free Delayed Acid System, a next-generation acid retarder system that is chemically superior to traditional emulsified acid systems with an amphoteric-based surfactant. It is a polymer-free system that stimulates ultra-tight carbonate reservoirs [...] Read more.
This field study describes the successful implementation and evaluation of a Polymer-free Delayed Acid System, a next-generation acid retarder system that is chemically superior to traditional emulsified acid systems with an amphoteric-based surfactant. It is a polymer-free system that stimulates ultra-tight carbonate reservoirs in extreme sour and high-temperature conditions. The candidate well, located in an onshore gulf region field, for a major oil and gas company demonstrated chronically unstable production behavior for over two years, with test volumes fluctuating unpredictably between 200 and 400 barrels of oil per day. This indicated severe near-wellbore damage, high skin, and limited matrix permeability (<0.3 mD). The well was chosen for a pilot trial of the Polymer-free Delayed Acid System technology after a thorough formation study, which included mineralogical characterization and capillary diagnostics. The innovative acid retarder formulation, designed for deep matrix penetration and controlled acid–rock reaction, uses intrinsic encapsulation kinetics to significantly increase the acid’s reactivity, allowing it to bypass damaged zones, minimize acid leak-off, and initiate dominant wormhole propagation into the tight formation. The stimulation procedure began with a custom pre-flush designed to change nanoscale wettability and interfacial tension, so increasing acid displacement and assuring effective contact with the formation rock. Real-time injectivity testing and operational data collecting were performed prior to, during, and following the acid job, with pre-stimulation injectivity peaking at 1.2 bpm, indicating poor formation conductivity. Treatment with the Polymer-free Delayed Acid System resulted in a 592% increase in post-stimulation injectivity, indicating significant increases in near-wellbore permeability and successful propagation. However, a substantial operational difficulty arose: the well remained shut down for more than two months following the acid stimulation work due to surface infrastructure delays, notably the scheduling and execution of a flowline cleanup campaign. This lengthy closure slowed immediate flowback analysis and impeded direct assessment of treatment performance because production could not be tracked in real time. Despite this, once the surface system was operational and the well was open to flow, a structured production testing program was carried out over four quarterly intervals. The well regularly produced at an average stable rate of 500 bbl/day, more than doubling pre-treatment performance and demonstrating the long-term effectiveness and mechanical durability of the acid-induced wormhole network. Despite the post-job shut-in, the Polymer-free Delayed Acid System maintained the stimulating impact even under non-ideal settings, demonstrating its robustness. The Polymer-free Delayed Acid System outperforms conventional emulsified acid systems, giving better control over acid placement and reactivity, especially under severe reservoir conditions with bottomhole temperatures reaching 200 °F. This project offers a field-proven methodology that combines advanced chemical engineering, formation-specific design, and live diagnostics, as well as a scalable blueprint for unlocking hydrocarbon potential in similarly complicated, low-permeability reservoirs. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

33 pages, 2003 KB  
Review
Polyacrylamide-Based Solutions: A Comprehensive Review on Nanomaterial Integration, Supramolecular Design, and Sustainable Approaches for Integrated Reservoir Management
by Moamen Hassan Mohamed and Mysara Eissa Mohyaldinn Elhaj
Polymers 2025, 17(16), 2202; https://doi.org/10.3390/polym17162202 - 12 Aug 2025
Viewed by 784
Abstract
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically [...] Read more.
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically analyzes advancements in PAM-based materials for enhanced oil recovery (EOR), conformance control, and sand management. We show that nanomaterial integration (e.g., magnetic NPs, nanoclays) significantly augments PAM’s rheological control, thermal and salinity stability, interfacial properties, and wettability alteration. Furthermore, the emergence of supramolecular chemistry has endowed PAM systems with unprecedented resilience, enabling self-healing and adaptive performance under extreme subsurface conditions. The review highlights a crucial paradigm shift towards integrated reservoir management, synergizing these advanced chemical designs with mechanical strategies and leveraging sophisticated monitoring and predictive analytics. Critically, innovations in sustainable and bio-inspired PAM materials offer environmentally responsible solutions with enhanced biodegradability. This synthesis provides a holistic understanding of the state of the art. Despite persistent challenges in scalability and predictability, continually re-engineered PAM systems are positioned as an indispensable and increasingly sustainable cornerstone for future hydrocarbon recovery in the complex energy landscape. Full article
Show Figures

Figure 1

19 pages, 2531 KB  
Review
Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review
by Yi Chen, Li Zhu, Xinyao Yan, Zhangjun Liao, Wen Teng, Yule Wang, Zhiguang Xing, Yun Chen and Lijun Liu
Agronomy 2025, 15(8), 1938; https://doi.org/10.3390/agronomy15081938 - 12 Aug 2025
Viewed by 434
Abstract
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, [...] Read more.
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, reduced effectiveness, and non-target toxicity, rendering them unsustainable for agricultural practices. Nanomaterials (NMs) present a promising alternative due to their small size, tunable release properties, and diverse mechanisms for disease resistance. This review examines how NMs can enhance rice disease management through (1) direct pathogen suppression; (2) the activation of plant defense pathways; (3) the formation of nanoscale barriers on leaves to obstruct pathogens; (4) targeted delivery and controlled release of fungicides; and (5) modulation of the microbiome to bolster resilience. Moreover, we critically analyze the agricultural potential and environmental implications of NMs, develop optimized application strategies, and, for the first time, propose the innovative ‘NMs-Rice-Soil’ Ternary System framework. This groundbreaking approach integrates nanotechnology, plant physiology, and soil ecology. The pioneering framework offers transformative solutions for sustainable crop protection, illustrating how strategically engineered NMs can synergistically enhance rice productivity, grain quality, and global food security through science-based risk management and interdisciplinary innovation. Full article
Show Figures

Figure 1

19 pages, 1664 KB  
Review
Recent Advances, Challenges, and Functional Applications of Protein Chemical Modification in the Food Industry
by Peiming Zhao, Zhiyan Zhang, Wei Ran, Ting Bai, Jie Cheng and Jiamin Zhang
Foods 2025, 14(16), 2784; https://doi.org/10.3390/foods14162784 - 10 Aug 2025
Viewed by 441
Abstract
Proteins serve as crucial functional components in food processing, with their unique physicochemical properties directly influencing the texture and stability of food products. Proteins exhibit a range of functional properties, including emulsification, foaming, gelation, and hydration. These properties arise from the structural differences [...] Read more.
Proteins serve as crucial functional components in food processing, with their unique physicochemical properties directly influencing the texture and stability of food products. Proteins exhibit a range of functional properties, including emulsification, foaming, gelation, and hydration. These properties arise from the structural differences in protein molecules. To equip proteins with enhanced and diversified biological functions, researchers have developed a variety of protein modification techniques. Recent breakthroughs in artificial intelligence technologies have opened new opportunities for research on protein chemical modifications. Novel algorithms based on advanced techniques, such as deep learning, image recognition, and natural language processing, have been developed for intelligent prediction of protein modification sites. The application of these AI technologies provides innovative research tools and methodological support for rational design and targeted engineering of protein functions. This review delves into the applications of chemical modification methods aimed at improving protein solubility, emulsifying capabilities, gelation capacity, antioxidant activity, antimicrobial properties, and nutritional value. These modifications alter the structural and functional attributes of proteins, significantly enhancing their performance within food systems and expanding their application prospects in such domains as medicine and biomaterials. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop