Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Cox–Merz rule

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2635 KB  
Article
Rescaling Flow Curves of Protein-Stabilized Emulsions
by Santiago F. Velandia, Philippe Marchal, Véronique Sadtler, Cécile Lemaitre, Daniel Bonn and Thibault Roques-Carmes
Nanomaterials 2025, 15(9), 650; https://doi.org/10.3390/nano15090650 - 25 Apr 2025
Viewed by 492
Abstract
In this study, we investigate the flow behavior of oil-in-water Pickering emulsions stabilized with bovine serum albumin (BSA). Through the use of a phase transition analogy and scaling parameters previously applied to surfactant-stabilized emulsions, we successfully describe the flow behavior, suggesting remarkable similarity [...] Read more.
In this study, we investigate the flow behavior of oil-in-water Pickering emulsions stabilized with bovine serum albumin (BSA). Through the use of a phase transition analogy and scaling parameters previously applied to surfactant-stabilized emulsions, we successfully describe the flow behavior, suggesting remarkable similarity in the rheology of these emulsion categories. Additionally, we explore the possibility of extending this modeling framework to the oscillatory mode. Above the jamming fraction, the scaled data in the oscillatory regime present a similar trend as the rotational rheology curves. However, upon closer examination of the scaling conditions, it becomes evident that the rescaling does not accurately describe the behavior of G*. Despite this, our findings shed light on the universality of scaling parameters and provide valuable insights into the rheological behavior of these complex fluids. Full article
Show Figures

Figure 1

23 pages, 4334 KB  
Article
Wall Slip-Free Viscosity Determination of Filled Rubber Compounds Using Steady-State Shear Measurements
by Dennis Kleinschmidt, Florian Brüning and Jonas Petzke
Polymers 2023, 15(22), 4406; https://doi.org/10.3390/polym15224406 - 14 Nov 2023
Cited by 2 | Viewed by 2291
Abstract
The high-pressure capillary rheometer (HPCR) represents a state-of-the-art instrument for the determination of rheological properties for plastics and rubber compounds. Rubber compounds have an increased tendency to exhibit flow anomalies depending on the compound ingredients and the processing parameters. Combined with non-isothermal effects [...] Read more.
The high-pressure capillary rheometer (HPCR) represents a state-of-the-art instrument for the determination of rheological properties for plastics and rubber compounds. Rubber compounds have an increased tendency to exhibit flow anomalies depending on the compound ingredients and the processing parameters. Combined with non-isothermal effects due to dissipative material heating, this causes rheological material measurements and the resulting material parameters derived from them to be affected by errors, since the fundamental analytical and numerical calculation approaches assume isothermal flow and wall adhesion. In this paper, the applicability of the empirical rheological transfer function of the Cox–Merz rule, which establishes a relationship between shear viscosity measured with a HPCR and complex viscosity measured with a closed cavity rheometer (CCR), is investigated. The Cox–Merz relation could not be verified for an unfilled EPDM raw polymer or for filled, practical rubber compounds. Using a closed cavity rheometer, a methodology based on ramp tests is then introduced to collect wall slip-free steady-state shear viscosity data under isothermal conditions. The generated data show high agreement with corrected viscosity data generated using the HPCR, while requiring less measurement effort. Full article
(This article belongs to the Special Issue Rheological Properties of Polymers and Polymer Composites)
Show Figures

Figure 1

14 pages, 1728 KB  
Article
Applicability of the Cox–Merz Relationship for Mayonnaise Enriched with Natural Extracts
by Somaris E. Quintana, Maria Zuñiga-Navarro, David Ramirez-Brewer and Luis A. García-Zapateiro
Fluids 2023, 8(11), 287; https://doi.org/10.3390/fluids8110287 - 27 Oct 2023
Cited by 3 | Viewed by 2133
Abstract
The Cox and Merz rules are empirical correlations between the apparent viscosity of polymers with the effect of shear rate and the complex dynamic viscosity with the effect of frequency. In this study, the rheological properties of mayonnaise-type emulsions enriched with Averrhoa carambola [...] Read more.
The Cox and Merz rules are empirical correlations between the apparent viscosity of polymers with the effect of shear rate and the complex dynamic viscosity with the effect of frequency. In this study, the rheological properties of mayonnaise-type emulsions enriched with Averrhoa carambola extracts were investigated using small-amplitude oscillatory shear (SAOS) and steady shear flow. The results showed that the shear-thinning behavior of the samples was non-Newtonian with yield stress and had time-dependent characteristics, as evidenced by curves from non-oscillatory measurements. It was observed that the experimental data on the complex and apparent viscosity of the samples obeyed the Cox–Merz rule. Full article
Show Figures

Figure 1

23 pages, 5610 KB  
Article
On Characterization of Shear Viscosity and Wall Slip for Concentrated Suspension Flows in Abrasive Flow Machining
by Can Peng, Hang Gao and Xuanping Wang
Materials 2023, 16(20), 6803; https://doi.org/10.3390/ma16206803 - 22 Oct 2023
Cited by 4 | Viewed by 2000
Abstract
In the realm of abrasive flow machining (AFM), precise finishing and maintaining dimensional accuracy have remained challenging due to non-uniformities in the AFM process and complexities associated with the abrasive media’s shear viscosity and wall slip behavior. By addressing these challenges, this study [...] Read more.
In the realm of abrasive flow machining (AFM), precise finishing and maintaining dimensional accuracy have remained challenging due to non-uniformities in the AFM process and complexities associated with the abrasive media’s shear viscosity and wall slip behavior. By addressing these challenges, this study introduces a comprehensive framework, combining theoretical foundations, measurement techniques, and experimental setups. Utilizing capillary flow, a novel compensation strategy is incorporated within the Mooney method to counter entrance pressure drop effects. This enhanced capillary flow method emerges as a promising alternative to the conventional Cox–Merz empirical rule, enabling precise characterization of wall slip behavior and shear viscosity, particularly at elevated shear rates. The abrasive media exhibit a Navier nonlinear wall slip, as highlighted by the Mooney method. Rigorous verification of the proposed methodologies and models against supplemental experiments showcases a high degree of congruence between predicted and observed results, emphasizing their accuracy and broad application potential in AFM. This research illuminates the intricacies of the abrasive media’s behavior, accentuating the need for meticulous characterization, and provides a robust foundation for genuine modeling and predictions in material removal within AFM. Full article
(This article belongs to the Special Issue Advanced Abrasive Processing Technology and Applications)
Show Figures

Figure 1

25 pages, 6410 KB  
Article
Enhanced Degradability, Mechanical Properties, and Flame Retardation of Poly(Lactic Acid) Composite with New Zealand Jade (Pounamu) Particles
by Lilian Lin, Quang A. Dang and Heon E. Park
Polymers 2023, 15(15), 3270; https://doi.org/10.3390/polym15153270 - 1 Aug 2023
Cited by 6 | Viewed by 1922
Abstract
Plastic pollution has become a global concern, demanding urgent attention and concerted efforts to mitigate its environmental impacts. Biodegradable plastics have emerged as a potential solution, offering the prospect of reduced harm through degradation over time. However, the lower mechanical strength and slower [...] Read more.
Plastic pollution has become a global concern, demanding urgent attention and concerted efforts to mitigate its environmental impacts. Biodegradable plastics have emerged as a potential solution, offering the prospect of reduced harm through degradation over time. However, the lower mechanical strength and slower degradation process of biodegradable plastics have hindered their widespread adoption. In this study, we investigate the incorporation of New Zealand (NZ) jade (pounamu) particles into poly(lactic acid) (PLA) to enhance the performance of the resulting composite. We aim to improve mechanical strength, flame retardation, and degradability. The material properties and compatibility with 3D printing technology were examined through a series of characterization techniques, including X-ray diffraction, dispersive X-ray fluorescence spectrometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, 3D printing, compression molding, pycnometry, rheometry, tensile tests, three-point bending, and flammability testing. Our findings demonstrate that the addition of NZ jade particles significantly affects the density, thermal stability, and mechanical properties of the composites. Compounding NZ jade shows two different changes in thermal stability. It reduces flammability suggesting potential flame-retardant properties, and it accelerates the thermal degradation process as observed from the thermogravimetric analysis and the inferred decrease in molecular weight through rheometry. Thus, the presence of jade particles can also have the potential to enhance biodegradation, although further research is needed to assess its impact. The mechanical properties differ between compression-molded and 3D-printed samples, with compression-molded composites exhibiting higher strength and stiffness. Increasing jade content in composites further enhances their mechanical performance. Th results of this study contribute to the development of sustainable solutions for plastic pollution, paving the way for innovative applications and a cleaner environment. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites)
Show Figures

Figure 1

14 pages, 3514 KB  
Article
Experimental Validation of a Micro-Extrusion Set-Up with In-Line Rheometry for the Production and Monitoring of Filaments for 3D-Printing
by João Sousa, Paulo F. Teixeira, Loïc Hilliou and José A. Covas
Micromachines 2023, 14(8), 1496; https://doi.org/10.3390/mi14081496 - 26 Jul 2023
Cited by 3 | Viewed by 2057
Abstract
The main objective of this work is to validate an in-line micro-slit rheometer and a micro-extrusion line, both designed for the in-line monitoring and production of filaments for 3D printing using small amounts of material. The micro-filament extrusion line is first presented and [...] Read more.
The main objective of this work is to validate an in-line micro-slit rheometer and a micro-extrusion line, both designed for the in-line monitoring and production of filaments for 3D printing using small amounts of material. The micro-filament extrusion line is first presented and its operational window is assessed. The throughputs ranged between 0.045 kg/h and 0.15 kg/h with a maximum 3% error and with a melt temperature control within 1 °C under the processing conditions tested for an average residence time of about 3 min. The rheological micro slit is then presented and assessed using low-density polyethylene (LDPE) and cyclic olefin copolymer (COC). The excellent matching between the in-line micro-rheological data and the data measured with off-line rotational and capillary rheometers validate the in-line micro-slit rheometer. However, it is shown that the COC does not follow the Cox–Merz rule. The COC filaments produced with the micro-extrusion line were successfully used in the 3D printing of specimens for tensile testing. The quality of both filaments (less than 6% variation in diameter along the filament’s length) and printed specimens validated the whole micro-set-up, which was eventually used to deliver a rheological mapping of COC printability. Full article
(This article belongs to the Special Issue 3D Printing Technology and Its Applications)
Show Figures

Figure 1

11 pages, 6099 KB  
Article
Morphology, Rheological and Mechanical Properties of Isotropic and Anisotropic PP/rPET/GnP Nanocomposite Samples
by Francesco Paolo La Mantia, Vincenzo Titone, Alessandro Milazzo, Manuela Ceraulo and Luigi Botta
Nanomaterials 2021, 11(11), 3058; https://doi.org/10.3390/nano11113058 - 13 Nov 2021
Cited by 13 | Viewed by 2798
Abstract
The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, [...] Read more.
The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight increase in the elastic modulus. However, it causes a slight decrease in elongation at break. Morphological analysis revealed a poor adhesion between the PP and PET phases. Moreover, GnPs distribute around the droplets of the PET phase with a honey-like appearance. Finally, the effect of the orientation on both systems gives rise not only to fibers with higher modulus values, but also with high deformability and a fibrillar morphology of the dispersed PET phase. A fragile-ductile transition driven by the orientation was observed in both systems. Full article
(This article belongs to the Special Issue Advances in Polymer Blend Nanocomposites)
Show Figures

Figure 1

13 pages, 2418 KB  
Article
Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution
by Qian Li, Yuehu Li, Zehua Jin, Yujie Li, Yifan Chen and Jinping Zhou
Molecules 2021, 26(11), 3201; https://doi.org/10.3390/molecules26113201 - 27 May 2021
Cited by 3 | Viewed by 2718
Abstract
Water-soluble cellulose ethers are widely used as stabilizers, thickeners, and viscosity modifiers in many industries. Understanding rheological behavior of the polymers is of great significance to the effective control of their applications. In this work, a series of cyanoethylcellulose (CEC) samples with different [...] Read more.
Water-soluble cellulose ethers are widely used as stabilizers, thickeners, and viscosity modifiers in many industries. Understanding rheological behavior of the polymers is of great significance to the effective control of their applications. In this work, a series of cyanoethylcellulose (CEC) samples with different molecular weights were prepared with cellulose and acrylonitrile in NaOH/urea aqueous solution under the homogeneous reaction. The rheological properties of water-soluble CECs as a function of concentration and molecular weight were investigated using shear viscosity and dynamic rheological measurements. Viscoelastic behaviors have been successfully described by the Carreau model, the Ostwald-de-Waele equation, and the Cox–Merz rule. The entanglement concentrations were determined to be 0.6, 0.85, and 1.5 wt% for CEC-11, CEC-7, and CEC-3, respectively. All of the solutions exhibited viscous behavior rather than a clear sol-gel transition in all tested concentrations. The heterogeneous nature of CEC in an aqueous solution was determined from the Cox–Merz rule due to the coexistence of single chain complexes and aggregates. In addition, the CEC aqueous solutions showed good thermal and time stability, and the transition with temperature was reversible. Full article
(This article belongs to the Special Issue Functional Biomass Derived Materials)
Show Figures

Figure 1

13 pages, 1826 KB  
Article
Applicability of the Cox-Merz Rule to High-Density Polyethylene Materials with Various Molecular Masses
by Raffael Rathner, Wolfgang Roland, Hanny Albrecht, Franz Ruemer and Jürgen Miethlinger
Polymers 2021, 13(8), 1218; https://doi.org/10.3390/polym13081218 - 9 Apr 2021
Cited by 12 | Viewed by 4136
Abstract
The Cox-Merz rule is an empirical relationship that is commonly used in science and industry to determine shear viscosity on the basis of an oscillatory rheometry test. However, it does not apply to all polymer melts. Rheological data are of major importance in [...] Read more.
The Cox-Merz rule is an empirical relationship that is commonly used in science and industry to determine shear viscosity on the basis of an oscillatory rheometry test. However, it does not apply to all polymer melts. Rheological data are of major importance in the design and dimensioning of polymer-processing equipment. In this work, we investigated whether the Cox-Merz rule is suitable for determining the shear-rate-dependent viscosity of several commercially available high-density polyethylene (HDPE) pipe grades with various molecular masses. We compared the results of parallel-plate oscillatory shear rheometry using the Cox-Merz empirical relation with those of high-pressure capillary and extrusion rheometry. To assess the validity of these techniques, we used the shear viscosities obtained by these methods to numerically simulate the pressure drop of a pipe head and compared the results to experimental measurements. We found that, for the HDPE grades tested, the viscosity data based on capillary pressure flow of the high molecular weight HDPE describes the pressure drop inside the pipe head significantly better than do data based on parallel-plate rheometry applying the Cox-Merz rule. For the lower molecular weight HDPE, both measurement techniques are in good accordance. Hence, we conclude that, while the Cox-Merz relationship is applicable to lower-molecular HDPE grades, it does not apply to certain HDPE grades with high molecular weight. Full article
(This article belongs to the Special Issue Rheology and Processing of Polymers)
Show Figures

Figure 1

17 pages, 3011 KB  
Article
Injectability of Thermosensitive, Low-Concentrated Chitosan Colloids as Flow Phenomenon through the Capillary under High Shear Rate Conditions
by Anna Rył and Piotr Owczarz
Polymers 2020, 12(10), 2260; https://doi.org/10.3390/polym12102260 - 1 Oct 2020
Cited by 20 | Viewed by 3335
Abstract
Low-concentrated colloidal chitosan systems undergoing a thermally induced sol–gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to [...] Read more.
Low-concentrated colloidal chitosan systems undergoing a thermally induced sol–gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to analyze the flow phenomenon of thermosensitive chitosan systems with the addition of disodium β-glycerophosphate through hypodermic needles. Injectability tests were performed using a texture analyzer and hypodermic needles in the sizes 14G–25G. The rheological properties were determined by the flow curve, three-interval thixotropy test (3ITT), and Cox–Merz rule. It was found that reducing the needle diameter and increasing its length and the crosshead speed increased the injection forces. It was claimed that under the considered flow conditions, there was no need to take into account the viscoelastic properties of the medium, and the model used to predict the injection force, based solely on the shear-thinning nature of the experimental material, showed very good agreement with the experimental data in the shear rate range of 200–55,000 s−1. It was observed that the increase in the shear rate value led to macroscopic structural changes of the chitosan sol caused by the disentangling and ordering of the polysaccharide chains along the shear field. Full article
(This article belongs to the Special Issue Functional Biopolymer-Based Hydrogels)
Show Figures

Graphical abstract

13 pages, 3984 KB  
Article
Alginate Gel Reinforcement with Chitin Nanowhiskers Modulates Rheological Properties and Drug Release Profile
by Valentina A. Petrova, Vladimir Y. Elokhovskiy, Sergei V. Raik, Daria N. Poshina, Dmitry P. Romanov and Yury A. Skorik
Biomolecules 2019, 9(7), 291; https://doi.org/10.3390/biom9070291 - 19 Jul 2019
Cited by 54 | Viewed by 6310
Abstract
Hydrogels are promising materials for various applications, including drug delivery, tissue engineering, and wastewater treatment. In this work, we designed an alginate (ALG) hydrogel containing partially deacetylated chitin nanowhiskers (CNW) as a filler. Gelation in the system occurred by both the protonation of [...] Read more.
Hydrogels are promising materials for various applications, including drug delivery, tissue engineering, and wastewater treatment. In this work, we designed an alginate (ALG) hydrogel containing partially deacetylated chitin nanowhiskers (CNW) as a filler. Gelation in the system occurred by both the protonation of alginic acid and the formation of a polyelectrolyte complex with deacetylated CNW surface chains. Morphological changes in the gel manifested as a honeycomb structure in the freeze-dried gel, unlike the layered structure of an ALG gel. Disturbance of the structural orientation of the gels by the introduction of CNW was also expressed as a decrease in the intensity of X-ray diffraction reflexes. All studied systems were non-Newtonian liquids that violated the Cox-Merz rule. An increase in the content of CNW in the ALG-CNW hydrogel resulted in increases in the yield stress, maximum Newtonian viscosity, and relaxation time. Inclusion of CNW prolonged the release of tetracycline due to changes in diffusion. The first phases (0–5 h) of the release profiles were well described by the Higuchi model. ALG-CNW hydrogels may be of interest as soft gels for controlled topical or intestinal drug delivery. Full article
(This article belongs to the Special Issue Carbohydrate Polymers: Science and Applications)
Show Figures

Figure 1

Back to TopTop