Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = Cu-Al2O3 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13122 KB  
Article
A Novel CuAlMnFe/CeO2 Composite Alloy: Investigating the Wear and Corrosion Features
by Fatih Doğan and Erhan Duru
Solids 2025, 6(3), 43; https://doi.org/10.3390/solids6030043 - 11 Aug 2025
Viewed by 352
Abstract
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of [...] Read more.
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of different CeO2 (cerium dioxide) concentrations (0.01 wt.%, 0.1 wt.%, 0.5 wt.%, and 1.0 wt.%) on the properties of CuAlMnFe alloys produced via powder metallurgy (PM). Various analyses were performed, including scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD), as well as hardness, wear, and corrosion tests. The increase in wear rate is closely related to the formation of precipitates from CeO2 addition. Improvements in wear resistance and hardness are attributed to the effects of grain refinement and solid solution strengthening due to CeO2. Specifically, the wear rate increased from 1.5 × 10−3 mm3/(Nm) to 3.4 × 10−3 mm3/(Nm) with higher CeO2 content. Additionally, the friction coefficient of the CuAlMnFe alloy was reduced with CeO2 addition, indicating enhanced frictional properties. The optimal CeO2 concentration of 0.5% was found to improve grain uniformity, resulting in better wear resistance. Incorporating CeO2 particles into CuAlMnFe alloy enhances hardness and reduces wear rate when used in appropriate amounts. Additionally, it exhibits superior corrosion resistance, as evidenced by a positive shift in corrosion potential in Tafel measurements in solutions and a decrease in corrosion current density. The C0.5 specimen showed the highest corrosion potential (Ecorr, −588 V) and the lowest corrosion current density (icorr, 6.17 μA/cm2) during electrochemical corrosion in 3.5 wt.% NaCl solution. Full article
Show Figures

Figure 1

18 pages, 6311 KB  
Article
Unraveling the Excellent High-Temperature Oxidation Behavior of FeNiCuAl-Based Alloy
by Guangxin Wu, Gaosheng Li, Lijun Wei, Hao Chen, Yujie Wang, Yunze Qiao, Yu Hua, Chenyang Shi, Yingde Huang and Wenjie Yang
Materials 2025, 18(15), 3679; https://doi.org/10.3390/ma18153679 - 5 Aug 2025
Viewed by 403
Abstract
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) [...] Read more.
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) of FeNiCuAlCr, FeNiCuAlCo, and FeNiCuAlMn being approximately two to three orders of magnitude lower than that of the FeNiCu alloy. Specifically, FeNiCuAlCr exhibited the lowest kp value of 1.72 × 10−6 mg2·cm4/s, which is significantly lower than those of FeNiCuAlCo (3.29 × 10−6 mg2·cm4/s) and FeNiCuAlMn (1.71 × 10−5 mg2·cm4/s). This suggests that the addition of chromium promotes the formation of a dense Al2O3/Cr2O3 oxide layer, significantly enhancing the oxidation resistance. Furthermore, corrosion resistance was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. FeNiCuAlCr demonstrated exceptional resistance to localized corrosion, as indicated by its low corrosion current density (45.7 μA/cm2) and high pitting potential (−0.21 V), highlighting its superior corrosion performance. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

20 pages, 6287 KB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 584
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

12 pages, 6390 KB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 440
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

15 pages, 8131 KB  
Article
Utilizing Fly Ash from Coal-Fired Power Plants to Join ZrO2 and Crofer by Reactive Air Brazing
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2025, 18(9), 1956; https://doi.org/10.3390/ma18091956 - 25 Apr 2025
Viewed by 490
Abstract
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions [...] Read more.
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions in heterogeneous reactive air brazing (RAB) of the ZrO2 and Crofer alloy. The Ag-rich phase dominates the brazed zone. The interfacial reaction layers contain oxidation of the Cu-Ti coating layer, Crofer alloy, and the Si/Al-rich oxides from the fly ash particles. The 5% fly ash RAB joint maintained airtightness for 280 h under 2 psig helium at room temperature. When the test temperature was raised to 600 °C for 24 h, the pressure of the joint assembly still did not drop. When the fly ash addition was increased to 10 wt%, the joint assembly was no longer leak-free at room temperature. Many visible voids and cracks exist in the brazed zone and at the ZrO2/braze and braze/Crofer interfaces. A high volume fraction of the fly ash particles results in many brittle Si/Al-rich oxides in the joint after RAB, and the fracture of these oxides significantly deteriorates the airtightness of the joint. This study shows the feasibility and potential of introducing 5 wt% fly ash particles to the Ag-rich paste filler during the RAB of ZrO2 and Crofer for airtight applications. Full article
Show Figures

Figure 1

22 pages, 14262 KB  
Article
Comparison of the Self-Healing Behaviour of 60Sn40Pb and 99.3Sn0.7Cu Solder Alloy Reinforced Al6061 MMCs’
by Subrahmanya Ranga Viswanath Mantha, Gonal Basavaraja Veeresh Kumar, Ramakrishna Pramod, Chilakalapalli Surya Prakasha Rao, Mohd Shahneel Saharudin and Santosh Kumar Sahu
J. Manuf. Mater. Process. 2025, 9(5), 141; https://doi.org/10.3390/jmmp9050141 - 24 Apr 2025
Viewed by 764
Abstract
The self-healing characteristics of Al6061 reinforced with CuO have been examined experimentally. The solder alloys 60Pb40Sn and 99.3Sn0.7Cu with low melting points are incorporated to strengthen the Al6061 MMCs’; the self-healing properties have been investigated. Developed self-healing samples have undergone testing for hardness, [...] Read more.
The self-healing characteristics of Al6061 reinforced with CuO have been examined experimentally. The solder alloys 60Pb40Sn and 99.3Sn0.7Cu with low melting points are incorporated to strengthen the Al6061 MMCs’; the self-healing properties have been investigated. Developed self-healing samples have undergone testing for hardness, tensile, and impact characteristics in accordance with ASTM standard test protocols. The findings demonstrate how the solder filling affects the mechanical characteristics of self-healed Al6061 alloy and its MMCs’. The results showed that the composites formed a decent bond between the solder and matrix, confirming successful fabrication. Pb-Sn filled samples demonstrated higher self-healing efficiency for tensile and impact of 90.02% and 90.30% with 6 wt.% of CuO, respectively, and Sn-Cu filled samples witnessed higher self-healing efficiency for tensile and impact of 91.81% and 91.09% with 6 wt.% of CuO respectively. However, the self-healed composite did not split in two when subjected to Charpy impact and tensile strength tests, and the healing efficiency of Sn-Cu-filled composites is higher than that of the Pb-Sn-filled composites. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

20 pages, 11102 KB  
Article
Liquid Phase Sintering of Al Powder Using Al-X (X=Cu, Ca, Mg) Eutectic Alloy Powders: Effect of Alloy Elements and Oxide Film Thickness
by Ryotaro Kusunoki, Hideaki Hayashi, Erika Matsumoto, Asuka Suzuki, Naoki Takata, Makoto Kobashi, Akira Yoshida, Takahiro Hamada and Moe Mekata
Materials 2025, 18(8), 1755; https://doi.org/10.3390/ma18081755 - 11 Apr 2025
Viewed by 636
Abstract
Sinter-based additive manufacturing (AM) requires sintering for the densification of green bodies. Al powder is difficult to sinter due to the dense oxide film on the surface, and it is difficult to apply to sinter-based AM. Liquid phase sintering using Al-based eutectic alloy [...] Read more.
Sinter-based additive manufacturing (AM) requires sintering for the densification of green bodies. Al powder is difficult to sinter due to the dense oxide film on the surface, and it is difficult to apply to sinter-based AM. Liquid phase sintering using Al-based eutectic alloy powder is promising for sintering Al powder without external pressure. In this study, Al powders with various oxide film thicknesses were sintered using Al-X eutectic alloy powders (X=Cu, Ca, and Mg) to clarify suitable alloy elements in the sintering aids for the liquid phase sintering. When an as-supplied Al powder with an oxide film thickness of approximately 2 nm (presumably amorphous Al2O3 film) was used, Al-Cu and Al-Ca aids promoted the densification, whereas numerous pores were observed in the sample sintered using Al-Mg aid. The pores would be formed during the cooling after sintering, along with the homogenization of Mg distribution. When Al powder with an oxide film thickness of around 4 nm was used, a high relative density of over 95% was maintained using Al-Cu aid, whereas the relative density of the sample sintered using Al-Ca aid significantly degraded, presumably due to the formation of Ca-based oxide. These results indicate that the Al-Cu eutectic alloy powder is a promising sintering aid for the liquid phase sintering of Al powder. Full article
Show Figures

Figure 1

14 pages, 7169 KB  
Article
Improvement of Microstructure and Mechanical Properties of a Hot-Extruded Cu-Al2O3 Alloy After Thermomechanical Treatment
by Xu Wang, Xiaoqian Pan, Pengpeng Liu, Zhu Xiao, Tao Zhou, Chunlei Gan and Juan Wang
Materials 2025, 18(7), 1606; https://doi.org/10.3390/ma18071606 - 2 Apr 2025
Viewed by 561
Abstract
This article presented an investigation into the microstructure evolution of a hot-extruded Cu-0.23Al2O3 alloy during thermomechanical treatment. The results demonstrated that cold rolling deformation introduced high-density dislocations into the matrix, resulting in a significant enhancement in the strength of the [...] Read more.
This article presented an investigation into the microstructure evolution of a hot-extruded Cu-0.23Al2O3 alloy during thermomechanical treatment. The results demonstrated that cold rolling deformation introduced high-density dislocations into the matrix, resulting in a significant enhancement in the strength of the Cu-0.23Al2O3 alloy. Subsequent annealing at 500 for 1 h led to a reduction in dislocation density in the sample. Consequently, the strength of the sample decreased very slightly, while the elongation increased from 14% to 39%. There was little growth of the nano-scale Al2O3 particles due to their excellent thermal stability, with the average size remaining approximately 10 nm after annealing. The comprehensive properties of the Cu-0.23Al2O3 alloy were improved synchronously by thermomechanical treatment, with a tensile strength of 301 MPa and an electrical conductivity of 98.5%IACS. The calculation results of the strengthening mechanism indicated that refinement strengthening, work hardening and Orowan strengthening mainly contributed to the high strength of the Cu-0.23Al2O3 alloy. Full article
(This article belongs to the Special Issue Mechanical Properties and Strengthening Mechanism of New Superalloys)
Show Figures

Figure 1

15 pages, 5413 KB  
Article
Microstructural Optimization and Erosion–Corrosion Resistance of Cu-10Ni-3Al-1.8Fe-0.8Mn Alloy via Tailored Heat Treatment
by Yi Yuan, Yizhi Zhao, Yicheng Cao, Lue Huang, Hao Chu, Hongqian Wang, Dongyan Yue and Wenjing Zhang
Materials 2025, 18(7), 1511; https://doi.org/10.3390/ma18071511 - 27 Mar 2025
Viewed by 425
Abstract
This study systematically investigated the effects of tailored heat treatments on the microstructural evolution, mechanical properties, and erosion–corrosion resistance of Cu-10Ni-3Al-1.8Fe-0.8Mn alloy. Four heat treatment conditions—as-cast (AC-1); homogenized (H-2); and deformation–aged at 500 °C (D-3) and 750 °C (D-4)—were applied to elucidate the [...] Read more.
This study systematically investigated the effects of tailored heat treatments on the microstructural evolution, mechanical properties, and erosion–corrosion resistance of Cu-10Ni-3Al-1.8Fe-0.8Mn alloy. Four heat treatment conditions—as-cast (AC-1); homogenized (H-2); and deformation–aged at 500 °C (D-3) and 750 °C (D-4)—were applied to elucidate the interplay between microstructure and performance. The D-3 specimen, subjected to deformation followed by aging at 500 °C for 0.5 h, demonstrated superior properties: a Vickers hardness of 118 HV5 (83.3% higher than H-2) and an erosion–corrosion rate of 0.0075 mm/a (84.1% reduction compared to H-2). These enhancements were attributed to the uniform dispersion of nanoscale Ni3Al precipitates within the matrix, which optimized precipitation strengthening and reduced micro-galvanic corrosion. The D-3 specimen also formed a dense, crack-free Cu2O corrosion product film with a flat matrix interface, confirmed by SEM cross-sectional analysis and electrochemical impedance spectroscopy (EIS), exhibiting the highest charge transfer resistance and film impedance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 3850 KB  
Article
Laser-Cladding Cu-Cr-X Coating on Cu Alloy for Longer Service Life in Electrical Applications
by Xing Li, Lekang Lu, Jiashu Fang, Junjia Liang, Yesong Yang, Xiaojun Zhao, Sainan Liu, Lairong Xiao and Zhenyang Cai
Materials 2025, 18(5), 1103; https://doi.org/10.3390/ma18051103 - 28 Feb 2025
Viewed by 847
Abstract
Advancements in electrical components have intensified the challenges for copper alloy wear resistance and high-temperature performance in electrical applications. The surface coating preparation of Cu alloys is crucial for enhancing their lifespan and promoting sustainable resource development. This study explored the microstructure and [...] Read more.
Advancements in electrical components have intensified the challenges for copper alloy wear resistance and high-temperature performance in electrical applications. The surface coating preparation of Cu alloys is crucial for enhancing their lifespan and promoting sustainable resource development. This study explored the microstructure and properties of Cu-Cr-X coatings (X = Mo/W, Al2O3/TiO2) on Cu alloy substrates via laser-cladding to improve wear resistance and hardness, vital for electrical component reliability and switching capacity. The process involved adjusting the power and reinforcing the phase particle size. The results showed hardness > 110 HV for all coatings (vs. 67.4 HV for the substrate). Cu-Cr-W achieved the highest hardness at 179 HV due to W dispersion and WCr precipitate reinforcement. It also maintained a stable CoF and the lowest wear rate (1.87 mg/km), with a fivefold wear resistance compared to the substrate alone. Cu-Cr-W excelled in lifespan extension and material loss reduction due to superior hardness, wear resistance, and conductivity. Full article
(This article belongs to the Special Issue Corrosion Resistance and Protection of Metal Alloys)
Show Figures

Figure 1

14 pages, 6595 KB  
Article
Effect of GBF Process Conditions on the Microstructural Characteristic, Melt Quality and Mechanical Properties of Al-Si Alloys with Scrap Addition
by Minji Kim, Kyung Il Kim, Jeong-Keun Lee, Soong-Keun Hyun and Kyung-Taek Kim
Materials 2025, 18(5), 943; https://doi.org/10.3390/ma18050943 - 21 Feb 2025
Cited by 1 | Viewed by 590
Abstract
In this study, the applicability of an Al-Si alloy with 30 wt% added scrap for automobile pistons was evaluated by investigating the melt quality, microstructural characteristics, and tensile properties under modified GBF (gas bubbling filtration) process conditions, including increasing rotor rotation speed and [...] Read more.
In this study, the applicability of an Al-Si alloy with 30 wt% added scrap for automobile pistons was evaluated by investigating the melt quality, microstructural characteristics, and tensile properties under modified GBF (gas bubbling filtration) process conditions, including increasing rotor rotation speed and adjusting the air-line supply and the inclination angle of the impeller blade. The melt quality was dramatically improved under modified GBF process conditions, resulting in a very clean melt, with the D.I. value decreasing by 28%, the length of the oxide layer per kilogram decreasing by 65%, and inclusion content decreasing by 97% compared to that of the conventional GBF process conditions. Additionally, the size of primary Si decreased from 40 µm to 27 µm, and the eutectic Si and intermetallic compounds were refined, showing a very fine microstructure. The identified phases included Al4Cu2Mg8Si7, AlxCuyNiz, and MgO. The ultimate tensile strength was 275 MPa, and the elongation was 6.0%, indicating improved tensile properties compared to those of the conventional GBF process conditions. The fracture behavior changed from a brittle microcleavage fracture mode to a ductile dimple fracture mode as the primary Si, eutectic Si particles, and intermetallic compounds were refined under modified GBF process conditions. These results confirmed that Al-Si alloy with added scrap can be used as a material for automobile pistons. Full article
Show Figures

Figure 1

13 pages, 4472 KB  
Article
Boosting Electrooxidation of Ethanol by Nickel Addition to Metallic Glass Ribbon Precursors
by Jingjing Song, Bo Zhang, Yu Chen, Qingzhuo Hu, Fabao Zhang and Langxiang Zhong
Materials 2025, 18(3), 701; https://doi.org/10.3390/ma18030701 - 5 Feb 2025
Viewed by 819
Abstract
A CuNiCe-O nanocomposite was fabricated on the Cu40Ni20Al10Ce26Pt3Ru1 metallic glass (MG) ribbon surface by dealloying. The influences of Ni and dealloying time on the morphology and EOR performance were analyzed. The results [...] Read more.
A CuNiCe-O nanocomposite was fabricated on the Cu40Ni20Al10Ce26Pt3Ru1 metallic glass (MG) ribbon surface by dealloying. The influences of Ni and dealloying time on the morphology and EOR performance were analyzed. The results suggest that the catalytic activity and stability of the dealloyed MG ribbon could be significantly enhanced owing to the alloying of Ni to the Cu60Al10Ce26Pt3Ru1 MG ribbon precursor. The activated D-Cu40Ni20Al10Ce26Pt3Ru1 ribbon obtained at an etching time of 3 h had a better electrochemical ethanol oxidation reaction (EOR) performance than other dealloyed samples due to the formation of abundant active sites and the presence of defects within the CuNiCe-O composite. Full article
Show Figures

Figure 1

18 pages, 23143 KB  
Article
Effect of Al/Cu Ratio on Microstructure and High-Temperature Oxidation Resistance of AlxCoCrCuyFeNi High-Entropy Alloy Coatings
by Ling Zhou, Hongxi Liu, Qinghua Zhang, Jiazhu Liang, Yuanrun Peng, Xuanhong Hao, Chen Yang, Yaxia Liu and Yueyi Wang
J. Manuf. Mater. Process. 2025, 9(1), 13; https://doi.org/10.3390/jmmp9010013 - 5 Jan 2025
Cited by 4 | Viewed by 1635
Abstract
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate [...] Read more.
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate by a laser cladding technique. The results show that the coatings were mainly composed of FCC, BCC, and Ti-rich phases. Severe segregation of the Cu element occurred in the CoCrCuFeNi HEA coatings as a Cu-rich phase (FCC2). The Cu-rich phases decreased with a decreasing Cu content and completely disappeared until the Al content reached 1.0. The microhardnesses of the Cu1.0, Cu0.7Al0.3, Cu0.5Al0.5, Cu0.3Al0.7, and Al1.0 HEA coatings were 2.01, 2.06, 2.08, 2.09, and 2.11 times that of the substrate, and compared with those of a Ti6Al4V alloy substrate, the oxidation rates of the HEA coatings decreased by 55%, 51%, 47%, 42%, and 35%, respectively. The surface oxides of the five coatings were mainly composed of CuO, TiO2, Fe3O4, Cr2O3, and Al2O3. The increase in the Al content promoted the generation of Al2O3 film and Cr2O3 on the surfaces of the coatings, which significantly improved the high-temperature antioxidant performance of the high-entropy alloy coatings for 50 h at 800 °C. When x = 1.0, the coating showed the best high-temperature antioxidant performance. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

13 pages, 5099 KB  
Article
Effect of Cold Deformation on the Microstructural and Property Uniformity of Al2O3/Cu Composites
by Song Liu, Shaolin Li, Kexing Song, Xiuhua Guo, Hao Song, Keke Qi and Fuxiao Chen
Materials 2025, 18(1), 125; https://doi.org/10.3390/ma18010125 - 31 Dec 2024
Viewed by 801
Abstract
Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, Al2O3/Cu composites, reinforced with Al2O3, are a focal point in the field of high-strength, high-conductivity copper [...] Read more.
Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, Al2O3/Cu composites, reinforced with Al2O3, are a focal point in the field of high-strength, high-conductivity copper alloys, owing to their high strength, excellent electrical conductivity, and superior resistance to high-temperature softening. Cold deformation is an effective method for enhancing the mechanical properties of Al2O3/Cu composites. However, during cold deformation of large-cross-sectional Al2O3/Cu composites, the inhomogeneity in microstructure and properties induced by varying stress states cannot be overlooked. In this study, cold deformation of 1.12 wt% Al2O3/Cu large-cross-sectional composites was performed using a rolling process, coupled with finite element numerical simulations, to investigate the distribution characteristics of microstructure and properties during the rolling process. The results indicate that under cold deformation, the hardness of the material increases linearly from the surface layer to the core, while the change in electrical conductivity is minimal. The increase in hardness is closely related to variations in dislocation density and grain size, with dislocation density being the dominant strengthening mechanism. Quantitative analysis reveals that strain inhomogeneity during cold deformation is the primary cause of microstructural differences, leading to variations in mechanical properties at different positions. This study provides a theoretical basis for understanding the inhomogeneity of cold deformation in large-sized Al2O3/Cu composites and for controlling their microstructure–property relationships. Full article
Show Figures

Figure 1

16 pages, 22116 KB  
Article
Microstructure Development of Powder-Based Cu Composite During High Shear Strain Processing
by Lenka Kunčická, Josef Walek and Radim Kocich
Metals 2024, 14(12), 1331; https://doi.org/10.3390/met14121331 - 24 Nov 2024
Cited by 4 | Viewed by 1074
Abstract
Commercially pure Cu features excellent electric conductivity but low mechanical properties. In order to improve the mechanical properties of Cu, strengthening elements can be added to prepare alloys or composites featuring enhanced performances. This study focuses on the detailed characterization of the microstructure [...] Read more.
Commercially pure Cu features excellent electric conductivity but low mechanical properties. In order to improve the mechanical properties of Cu, strengthening elements can be added to prepare alloys or composites featuring enhanced performances. This study focuses on the detailed characterization of the microstructure of a Cu composite strengthened with Al2O3 particles during high shear strain processing. The Cu-Al2O3 mixture was prepared by powder metallurgy and directly consolidated by the intensive plastic deformation method of hot rotary swaging. Samples cut from the consolidated piece were further processed by the severe plastic deformation method of high pressure torsion (HPT). The primary aim was to investigate the effects of varying degrees of the imposed shear strain, i.e., the number of HPT revolutions, microstructure development (grain size and morphology, texture, grain misorientations, etc.) of the consolidated composite; the microstructure observations were supplemented with measurements of Vickers microhardness. The results showed that the added oxide particles effectively hindered the movement of dislocations and aggravated grain fragmentation, which also led to the relatively high presence of grain misorientations pointing to the occurrence of residual stress within the microstructure. The high shear strain imposed into (the peripheral region of) the sample subjected to four HPT revolutions imparted equiaxed ultra-fine grains and an average Vickers microhardness of more than 130 HV0.1. Full article
(This article belongs to the Special Issue Design and Development of Metal Matrix Composites)
Show Figures

Figure 1

Back to TopTop