Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = DNA marking technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 265 KB  
Review
TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas
by Douglas M. Ruden
Genes 2025, 16(8), 896; https://doi.org/10.3390/genes16080896 - 28 Jul 2025
Viewed by 915
Abstract
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide [...] Read more.
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide RNA (tigRNA) to recognize both strands of target DNA without requiring a protospacer adjacent motif (PAM). These Tas proteins introduce double-stranded DNA cuts with characteristic 8-nucleotide 3′ overhangs and are significantly smaller than Cas9, offering delivery advantages for in vivo editing. Structural analyses reveal homology to box C/D snoRNP proteins, suggesting a previously unrecognized evolutionary lineage of RNA-guided nucleases. This review positions TIGR-Tas at the forefront of a new wave of RNA-programmable genome-editing technologies. In parallel, I provide comparative insight into the diverse and increasingly modular CRISPR-Cas systems, including Cas9, Cas12, Cas13, and emerging effectors like Cas3, Cas10, CasΦ, and Cas14. While the CRISPR-Cas universe has revolutionized molecular biology, TIGR-Tas systems open a complementary and potentially more versatile path for programmable genome manipulation. I discuss mechanistic distinctions, evolutionary implications, and potential applications in human cells, synthetic biology, and therapeutic genome engineering. Full article
(This article belongs to the Special Issue Advances in Developing Genomics and Computational Approaches)
Show Figures

Graphical abstract

17 pages, 4044 KB  
Article
Impact of Chemotherapy Alone and in Combination with Immunotherapy on Oral Microbiota in Cancer Patients—A Pilot Study
by Adriana Padure, Ioana Cristina Talpos-Niculescu, Paula Diana Ciordas, Mirabela Romanescu, Aimee Rodica Chis, Laura-Cristina Rusu and Ioan Ovidiu Sirbu
Microorganisms 2025, 13(7), 1565; https://doi.org/10.3390/microorganisms13071565 - 3 Jul 2025
Viewed by 584
Abstract
The oral cavity harbors a highly intricate and dynamic microbial ecosystem of multiple microhabitats supporting diverse microbial populations. As the second most complex microbiome in the human body, surpassed only by the gut, the oral microbiome comprises over 1000 species. Disruptions in the [...] Read more.
The oral cavity harbors a highly intricate and dynamic microbial ecosystem of multiple microhabitats supporting diverse microbial populations. As the second most complex microbiome in the human body, surpassed only by the gut, the oral microbiome comprises over 1000 species. Disruptions in the microbial balance have been associated with an increased risk of both oral diseases (dental caries and periodontitis) and systemic conditions, including inflammatory diseases and certain types of cancers. In our pilot study, we purified bacterial DNA from pre-treated, saponin-based, host-depleted saliva samples and performed 16S amplicon sequencing, using Oxford Nanopore Technologies, to identify bacterial composition and investigate changes in the oral microbiota of patients with solid tumors in response to chemotherapy, either alone or in combination with immunotherapy. We found significant reductions in microbial diversity of the oral microbiota following cancer treatment, which may contribute to post-therapeutic complications such as oral mucositis. Moreover, our findings indicate that on the one hand, following chemotherapy treatment the microbial profile is characterized by an increased abundance of Streptococcus, Gemella, and Granulicatella and a decrease in the abundance of Neisseria and Veillonella. On the other hand, post combined treatment, only Streptococcus relative abundance increased, Veillonella exhibited a slight decline, and Haemophilus and Neisseria displayed a marked decrease, whilst Granulicatella and Gemella remained relatively stable. Our findings underline the impact of cancer therapy on the oral microbiome, highlighting the potential for precision-based strategies to restore microbial balance and minimize treatment-related complications. Full article
(This article belongs to the Special Issue Oral Microbiota: Diseases, Health, and Beyond)
Show Figures

Figure 1

12 pages, 232 KB  
Review
Hypodiploidy: A Poor Prognostic Cytogenetic Marker in B-CLL
by Andrew Ruggero and Carlos A. Tirado
DNA 2025, 5(3), 32; https://doi.org/10.3390/dna5030032 - 1 Jul 2025
Viewed by 472
Abstract
In B-cell chronic lymphocytic leukemia (B-CLL), hypodiploidy is a rare but aggressive subtype of the disease with a very bad prognosis. Hypodiploidy, in contrast to normal B-CLL chromosomal aberrations, is marked by widespread genomic instability, which promotes treatment resistance and quick illness development. [...] Read more.
In B-cell chronic lymphocytic leukemia (B-CLL), hypodiploidy is a rare but aggressive subtype of the disease with a very bad prognosis. Hypodiploidy, in contrast to normal B-CLL chromosomal aberrations, is marked by widespread genomic instability, which promotes treatment resistance and quick illness development. Its persistence after treatment implies that chromosomal loss gives cancerous clones a selection edge, which is made worse by telomere malfunction and epigenetic changes. Since thorough genetic profiling has a major impact on patient outcomes, advanced diagnostic methods are crucial for early detection. Treatment approaches must advance beyond accepted practices because of its resistance to traditional medicines. Hematopoietic stem cell transplantation (HSCT) and chimeric antigen receptor (CAR) T-cell therapy are two potential new therapeutic modalities. Relapse and treatment-related morbidity continue to be limiting concerns, despite the noteworthy improvements in outcomes in high-risk CLL patients receiving HSCT. Although more research is required, CAR T-cell treatment is effective in treating recurrent B-ALL and may also be used to treat B-CLL with hypodiploidy. Novel approaches are essential for enhancing patient outcomes and redefining therapeutic success when hypodiploidy challenges established treatment paradigms. Hypodiploidy is an uncommon yet aggressive form of B-CLL that has a very bad prognosis. Hypodiploidy represents significant chromosomal loss and structural imbalance, which contributes to a disordered genomic environment, in contrast to more prevalent cytogenetic changes. This instability promotes resistance to certain new drugs as well as chemoimmunotherapy and speeds up clonal evolution. Its persistence after treatment implies that hypodiploid clones have benefits in survival, which are probably strengthened by chromosomal segregation issues and damaged DNA repair pathways. Malignant progression and treatment failure are further exacerbated by telomere erosion and epigenetic dysregulation. The need for more sensitive molecular diagnostics is highlighted by the fact that standard karyotyping frequently overlooks hypodiploid clones, particularly those concealed by endoreduplication, despite the fact that these complications make early and correct diagnosis crucial. Hypodiploidy requires a move toward individualized treatment because of their link to high-risk genetic traits and resistance to conventional regimens. Although treatments like hematopoietic stem cell transplantation and CAR T-cells show promise, long-term management is still elusive. To improve long-term results and avoid early relapse, addressing this cytogenetic population necessitates combining high-resolution genomic technologies with changing therapy approaches. Full article
19 pages, 2902 KB  
Article
The Use of DNA Markers in Rice Breeding for Blast Resistance and Submergence Tolerance as a Weed Control Factor
by Elena Dubina, Pavel Kostylev, Yulia Makukha and Margarita Ruban
Plants 2025, 14(12), 1815; https://doi.org/10.3390/plants14121815 - 13 Jun 2025
Viewed by 536
Abstract
Diseases and weeds occupy a leading place among the factors limiting the yield of agricultural crops, including rice. These factors can be overcome through the use of chemical protective agents, as well as through the creation and introduction into agricultural production of rice [...] Read more.
Diseases and weeds occupy a leading place among the factors limiting the yield of agricultural crops, including rice. These factors can be overcome through the use of chemical protective agents, as well as through the creation and introduction into agricultural production of rice varieties resistant to these stressors. The use of DNA marking technologies for target genes of economically valuable traits in the creation of promising varieties allows not only for the identification of genes but also the monitoring of their transmission during crosses and the selection of breeding-valuable genotypes with genes of interest. In addition, this ensures a reduction in the volume of breeding nurseries, as well as time and material costs during variety modeling, and rapid rotation of new high-yield varieties with specified characteristics. We have selected effective marker systems based on the use of DNA marking technologies for target genes for resistance to blast (Pi) and submergence tolerance (Sub1A). These systems allow for precise targeted selection of hybrid plants with these genes in the breeding process. In addition, we have automated the detection of transferred Pi-ta and Pi-b genes, which greatly relieves the DNA analysis during mass screening of breeding material. The final result of this work is the created rice varieties Al’yans, Lenaris and Kapitan with the Pi-ta blast resistance gene and the Pirouette rice variety with the Pi-1, Pi-2, and Pi-33 genes. These varieties exceed the standards by 0.64–2.2 t/ha, and their involvement in production makes it possible to obtain additional products by increasing yields in the amount of about RUB 80 thousand/ha. Full article
(This article belongs to the Special Issue Molecular Marker-Assisted Technologies for Crop Breeding)
Show Figures

Graphical abstract

21 pages, 2401 KB  
Review
Large-Scale Rice Mutant Establishment and High-Throughput Mutant Manipulation Help Advance Rice Functional Genomics
by Eyob Kassaye Wolella, Zhen Cheng, Mengyuan Li, Dandan Xia, Jianwei Zhang, Liu Duan, Li Liu, Zhiyong Li and Jian Zhang
Plants 2025, 14(10), 1492; https://doi.org/10.3390/plants14101492 - 16 May 2025
Viewed by 1711
Abstract
Rice (Oryza sativa L.) is a stable food for over half of the world population, contributing 50–80% of the daily calorie intake. The completion of rice genome sequencing marks a significant milestone in understanding functional genomics, yet the systematic identification of gene [...] Read more.
Rice (Oryza sativa L.) is a stable food for over half of the world population, contributing 50–80% of the daily calorie intake. The completion of rice genome sequencing marks a significant milestone in understanding functional genomics, yet the systematic identification of gene functions remains a bottleneck for rice improvement. Large-scale mutant libraries in which the functions of genes are lost or gained (e.g., through chemical/physical treatments, T-DNA, transposons, RNAi, CRISPR/Cas9) have proven to be powerful tools for the systematic linking of genotypes to phenotypes. So far, using different mutagenesis approaches, a million mutant lines have been established and about 5–10% of the predicted rice gene functions have been identified due to the high demands of labor and low-throughput utilization. DNA-barcoding-based large-scale mutagenesis offers unprecedented precision and scalability in functional genomics. This review summarizes large-scale loss-of-function and gain-of-function mutant library development approaches and emphasizes the integration of DNA barcoding for pooled analysis. Unique DNA barcodes can be tagged to transposons/retrotransposons, DNA constructs, miRNA/siRNA, gRNA, and cDNA, allowing for pooling analysis and the assignment of functions to genes that cause phenotype alterations. In addition, the integration of high-throughput phenotyping and OMICS technologies can accelerate the identification of gene functions. Full article
(This article belongs to the Special Issue Crop Improvement by Modern Breeding Strategies)
Show Figures

Figure 1

18 pages, 5189 KB  
Article
Fish Community Diversity and Spatiotemporal Dynamics in the Downstream of the Fujiang River Based on Environmental DNA
by Jiaming Zhang, Yifang Chen, Xinxin Zhou, Jiaxin Huang, Xiaohan Dong, Shuli Zhu and Yanjun Shen
Fishes 2025, 10(2), 43; https://doi.org/10.3390/fishes10020043 - 24 Jan 2025
Cited by 1 | Viewed by 1261
Abstract
Hydrological changes caused by dam construction are among the primary drivers of global freshwater biodiversity decline. To assess the current status of fish community diversity and examine the impacts of cascade hydropower development on fish diversity, this study employed environmental DNA (eDNA) technology [...] Read more.
Hydrological changes caused by dam construction are among the primary drivers of global freshwater biodiversity decline. To assess the current status of fish community diversity and examine the impacts of cascade hydropower development on fish diversity, this study employed environmental DNA (eDNA) technology from 2023 to 2024 to conduct seasonal surveys at 18 sampling sites across six river segments separated by five dams in the downstream section of the Fujiang River. The study aimed to uncover the temporal and spatial dynamics of fish diversity and community structure, as well as to analyze the influence of environmental factors on these patterns. The results identified 84 fish species spanning 60 genera, 19 families, and 7 orders, including 2 nationally protected species, 11 endemic species of the upper Yangtze River, and 13 alien species. The cascade dams were found to have significantly reduced fish diversity compared to historical records, with a marked decline in native species and a rise in alien species, contributing to the miniaturization and homogenization of fish communities. Environmental factor analysis revealed that chemical oxygen demand (COD), dissolved oxygen (DO), total dissolved solids (TDS), electrical conductivity (EC), and reservoir formation time were significant drivers of fish community structure and diversity. This study provides essential baseline data on fish diversity under the influence of cascade hydropower development in the Fujiang River. It also offers valuable insights into the current status of fish resources and supports efforts in fish conservation and aquatic ecosystem management in the region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

18 pages, 5073 KB  
Review
Molecular Origami: Designing Functional Molecules of the Future
by Hitoshi Ishida, Takeshi Ito and Akinori Kuzuya
Molecules 2025, 30(2), 242; https://doi.org/10.3390/molecules30020242 - 9 Jan 2025
Cited by 2 | Viewed by 2664
Abstract
In the field of chemical biology, DNA origami has been actively researched. This technique, which involves folding DNA strands like origami to assemble them into desired shapes, has made it possible to create complex nanometer-sized structures, marking a major breakthrough in nanotechnology. On [...] Read more.
In the field of chemical biology, DNA origami has been actively researched. This technique, which involves folding DNA strands like origami to assemble them into desired shapes, has made it possible to create complex nanometer-sized structures, marking a major breakthrough in nanotechnology. On the other hand, controlling the folding mechanisms and folded structures of proteins or shorter peptides has been challenging. However, recent advances in techniques such as protein origami, peptide origami, and de novo design peptides have made it possible to construct various nanoscale structures and create functional molecules. These approaches suggest the emergence of new molecular design principles, which can be termed “molecular origami”. In this review, we provide an overview of recent research trends in protein/peptide origami and DNA/RNA origami and explore potential future applications of molecular origami technologies in electrochemical biosensors. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Graphical abstract

16 pages, 3504 KB  
Article
The T2T Genome of the Domesticated Silkworm Bombyx mori
by Wan-Shun Li, Ying-Dan Xiao, Jian-Qiu Liu, Sheng-Long Li, Yue Chen, Ya-Jing Xu, Xue Yang, Yan-Jue Wang, Zhi-Qing Li, Qing-You Xia and Kazuei Mita
Int. J. Mol. Sci. 2024, 25(22), 12341; https://doi.org/10.3390/ijms252212341 - 17 Nov 2024
Cited by 2 | Viewed by 2274
Abstract
Genome sequences contain the fundamental genetic information that largely determines the biology of a species. Over the past 20 years, advancements in high-throughput sequencing technologies and bioinformatics tools have matured, facilitating genome assembly and ushering in the telomere-to-telomere (T2T) era. Bombyx mori is [...] Read more.
Genome sequences contain the fundamental genetic information that largely determines the biology of a species. Over the past 20 years, advancements in high-throughput sequencing technologies and bioinformatics tools have matured, facilitating genome assembly and ushering in the telomere-to-telomere (T2T) era. Bombyx mori is renowned as a silk-producing insect and serves as an important model organism extensively studied across various fields of biology. In this study, we present the first assembled T2T genome by integrating HiFi, ultra-long ONT, NGS, and Hi-C data. This assembly comprises 450,267,439 base pairs from 28 chromosomes and includes annotations for a total of 18,253 protein-coding genes. A completeness evaluation revealed that 99.1% of conserved single-copy genes were included, as determined by a BUSCO analysis. Furthermore, the consensus quality (QV) assessed through Merqury was recorded at 59.88. The proportion of repeat sequence achieved 60.77%, marking it as the highest reported value for B. mori to date. In comparison to previously published genomes, our assembly offers a more complete and higher quality representation, particularly concerning highly homologous tandem regions such as telomeres, rDNA clusters, and Gr family regions. Furthermore, our extensive experience in genome assembly, including sample preparation experience and assembly strategies to reduce complexity, will provide valuable references for other species aiming to achieve their own T2T genome assemblies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 1682 KB  
Review
Epigenetic Regulation for Heat Stress Adaptation in Plants: New Horizons for Crop Improvement under Climate Change
by Qiang Jin, Muzafaruddin Chachar, Aamir Ali, Zaid Chachar, Pingxian Zhang, Adeel Riaz, Nazir Ahmed and Sadaruddin Chachar
Agronomy 2024, 14(9), 2105; https://doi.org/10.3390/agronomy14092105 - 15 Sep 2024
Cited by 11 | Viewed by 6444
Abstract
Global warming poses a significant threat to plant ecosystems and agricultural productivity, primarily through heat stress (HS), which disrupts photosynthesis, respiration, and overall plant metabolism. Epigenetic modifications, including DNA methylation, histone modifications, and RNA modifications, enable plants to dynamically and heritably adjust gene [...] Read more.
Global warming poses a significant threat to plant ecosystems and agricultural productivity, primarily through heat stress (HS), which disrupts photosynthesis, respiration, and overall plant metabolism. Epigenetic modifications, including DNA methylation, histone modifications, and RNA modifications, enable plants to dynamically and heritably adjust gene expression in response to environmental stressors. These mechanisms not only help plants survive immediate stress but also confer stress memory, enhancing their resilience to future HS events. This review explores the mechanisms underlying plant thermotolerance, emphasizing the critical role of epigenetic regulation in adapting to HS. It also highlights how DNA methylation modulates stress-responsive genes, histone modifications facilitate transcriptional memory, and RNA modifications influence mRNA stability and translation. Recent advancements in genome editing technologies, such as CRISPR-Cas9, have enabled precise modifications of epigenetic traits, offering new avenues for breeding climate-resilient crops. The integration of these modern tools with traditional breeding methods holds significant promise for developing crops with enhanced thermotolerance. Despite the potential, challenges such as the stability and heritability of epigenetic marks and the complex interplay between different epigenetic modifications need to be addressed. Future research should focus on elucidating these interactions and identifying reliable epigenetic markers for selection. By leveraging the insights gained from epigenetic studies, we can develop innovative breeding strategies to improve crop resilience and ensure sustainable agricultural productivity in the face of global warming. This review underscores the importance of epigenetic regulation in plant adaptation to heat stress and its potential to revolutionize crop breeding, offering a pathway to secure food production and sustainability under changing climatic conditions. Full article
Show Figures

Figure 1

21 pages, 2998 KB  
Review
Identification, Design, and Application of Noncoding Cis-Regulatory Elements
by Lingna Xu and Yuwen Liu
Biomolecules 2024, 14(8), 945; https://doi.org/10.3390/biom14080945 - 5 Aug 2024
Cited by 2 | Viewed by 3422
Abstract
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of [...] Read more.
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of sophisticated and dynamic processes. The rapid advancement in the identification and characterization of these regulatory elements has been marked by initiatives such as the Encyclopedia of DNA Elements (ENCODE) project, which represents a significant milestone in the field. Concurrently, the development of CRE detection technologies, exemplified by massively parallel reporter assays, has progressed at an impressive pace, providing powerful tools for CRE discovery. The exponential growth of multimodal functional genomic data has necessitated the application of advanced analytical methods. Deep learning algorithms, particularly large language models, have emerged as invaluable tools for deconstructing the intricate nucleotide sequences governing CRE function. These advancements facilitate precise predictions of CRE activity and enable the de novo design of CREs. A deeper understanding of CRE operational dynamics is crucial for harnessing their versatile regulatory properties. Such insights are instrumental in refining gene therapy techniques, enhancing the efficacy of selective breeding programs, pushing the boundaries of genetic innovation, and opening new possibilities in microbial synthetic biology. Full article
Show Figures

Figure 1

12 pages, 3367 KB  
Communication
Combined Proteomic and Metabolomic Analysis Reveals Comprehensive Regulation of Somatostatin DNA Vaccine in Goats
by Ge Qin, Li Zhang, Jiaxue Guo, Shiyong Fang, Guangxin E, Yan Zeng, Yongfu Huang and Yanguo Han
Int. J. Mol. Sci. 2024, 25(13), 6888; https://doi.org/10.3390/ijms25136888 - 23 Jun 2024
Cited by 2 | Viewed by 1608
Abstract
Somatostatin (SS) plays crucial regulatory roles in animal growth and reproduction by affecting the synthesis and secretion of growth hormone (GH). However, the mechanism by which SS regulates growth and development in goats is still unclear. In order to investigate the regulatory networks [...] Read more.
Somatostatin (SS) plays crucial regulatory roles in animal growth and reproduction by affecting the synthesis and secretion of growth hormone (GH). However, the mechanism by which SS regulates growth and development in goats is still unclear. In order to investigate the regulatory networks of the hypothalamus and pituitary in goats affected by SS DNA vaccines, in this study, we used a previously established oral attenuated Salmonella typhimurium SS DNA vaccine, X9241 (ptCS/2SS-asd), to treat wethers. We analyzed the protein changes in hypothalamic and pituitary tissues using a TMT-based proteomics approach. Additionally, we examined the metabolic profiles of the serum of control and immunized wethers through untargeted metabolomics using liquid chromatography–mass spectrometry (LC–MS). Key signaling pathways were identified based on differentially expressed metabolites (DEMs) and differentially expressed proteins (DEPs). Furthermore, the effect of critical DEPs on signaling pathways was confirmed through Western blotting (WB) experiments, which elucidated the mechanism of active SS immunization in wethers. A proteomics analysis revealed that the expression of 58 proteins in the hypothalamus and 124 in the pituitary gland was significantly altered following SS vaccine treatment (fold change > 1.2 or < 0.83, p < 0.05). In the hypothalamus, many DEPs were associated with gene ontology (GO) terms related to neuronal signaling. In contrast, most DEPs were associated with metabolic pathways. In the pituitary gland, the DEPs were largely related to immune and nutrient metabolism functions, with significant enrichment in KEGG pathways, particularly those involving the metabolic pathway, sphingolipid signaling, and the cGMP-PKG signaling pathway. A metabolomic analysis further showed that active SS immunization in wethers led to significant alterations in seven serum metabolites. Notably, the sphingolipid signaling pathway, secondary bile acid synthesis, sphingolipid metabolism, and lysine synthesis were significantly disrupted. SS vaccines induced marked changes in hypothalamic–pituitary proteins in wethers, facilitating alterations in their growth processes. This study not only provides insights into the mechanism of the SS gene in regulating GH secretion in wethers but also establishes a basis for hormone immunoregulation technology to enhance livestock production performance. Full article
(This article belongs to the Special Issue Crosstalk between Metabolism and Neuroprotection)
Show Figures

Graphical abstract

18 pages, 11696 KB  
Article
Exploring the Impact of Tea (Camellia sinensis (L.) O. Ktze.)/Trachelospermum jasminoides (Lindl.) Lem. Intercropping on Soil Health and Microbial Communities
by Yulin Xiong, Shuaibo Shao, Dongliang Li, He Liu, Wei Xie, Wei Huang, Jing Li, Chuanpeng Nie, Jianming Zhang, Yongcong Hong, Qiuling Wang, Pumo Cai and Yanyan Li
Agronomy 2024, 14(6), 1261; https://doi.org/10.3390/agronomy14061261 - 11 Jun 2024
Cited by 4 | Viewed by 1872
Abstract
Intercropping, a well-established agroecological technique designed to bolster ecological stability, has been shown to have a significant impact on soil health. However, the specific effects of tea/Trachelospermum jasminoides intercropping on the physicochemical properties and functional microbial community structure in practical cultivation have [...] Read more.
Intercropping, a well-established agroecological technique designed to bolster ecological stability, has been shown to have a significant impact on soil health. However, the specific effects of tea/Trachelospermum jasminoides intercropping on the physicochemical properties and functional microbial community structure in practical cultivation have not been thoroughly investigated. In this study, we utilized high-throughput sequencing technology on the 16S/ITS rDNA genes to assess the impact of tea intercropping with T. jasminoides on the composition, diversity, and potential functions of the soil microbial community in tea gardens. The results indicated that the tea/T. jasminoides intercropping system significantly increased pH levels, soil organic matter, available nitrogen, phosphorus, potassium, and enzyme activity, ultimately augmenting soil nutrient levels. Furthermore, an in-depth analysis of the bacterial co-occurrence network and topological structure portrayed a more intricate and interconnected soil bacterial community in tea gardens. Remarkably, the abundance of beneficial genera, including Burkholderia, Mesorhizobium, Penicillium, and Trichoderma, underwent a substantial increase, whereas the relative abundance of pathogenic fungi such as Aspergillus, Fusarium, and Curvularia experienced a marked decline. Functional predictions also indicated a notable enhancement in the abundance of microorganisms associated with nitrogen and carbon cycling processes. In summary, the intercropping of tea and T. jasminoides holds the potential to enrich soil nutrient content, reshape the microbial community structure, bolster the abundance of functional microorganisms, and mitigate the prevalence of pathogenic fungi. Consequently, this intercropping system offers a promising solution for sustainable tea garden management, overcoming the limitations of traditional cultivation methods and providing valuable insights for sustainable agriculture practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

35 pages, 2243 KB  
Review
Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies
by Amrutha Banda, Olivia Impomeni, Aparana Singh, Abdul Rasheed Baloch, Wenhui Hu and Dabbu Kumar Jaijyan
Vaccines 2024, 12(6), 636; https://doi.org/10.3390/vaccines12060636 - 7 Jun 2024
Cited by 3 | Viewed by 4738
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy [...] Read more.
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application. Full article
(This article belongs to the Special Issue Feature Papers of DNA and mRNA Vaccines)
Show Figures

Figure 1

14 pages, 4320 KB  
Review
Nanopore Sequencing Technology as an Emerging Tool for Diversity Studies of Plant Organellar Genomes
by Jakub Sawicki, Katarzyna Krawczyk, Łukasz Paukszto, Mateusz Maździarz, Mateusz Kurzyński, Joanna Szablińska-Piernik and Monika Szczecińska
Diversity 2024, 16(3), 173; https://doi.org/10.3390/d16030173 - 7 Mar 2024
Cited by 6 | Viewed by 4335
Abstract
In this comprehensive review, we explore the significant role that nanopore sequencing technology plays in the study of plant organellar genomes, particularly mitochondrial and chloroplast DNA. To date, the application of nanopore sequencing has led to the successful sequencing of over 100 plant [...] Read more.
In this comprehensive review, we explore the significant role that nanopore sequencing technology plays in the study of plant organellar genomes, particularly mitochondrial and chloroplast DNA. To date, the application of nanopore sequencing has led to the successful sequencing of over 100 plant mitochondrial genomes and around 80 chloroplast genomes. These figures not only demonstrate the technology’s robustness but also mark a substantial advancement in the field, highlighting its efficacy in decoding the complex and dynamic nature of these genomes. Nanopore sequencing, known for its long-read capabilities, significantly surpasses traditional sequencing techniques, especially in addressing challenges like structural complexity and sequence repetitiveness in organellar DNA. This review delves into the nuances of nanopore sequencing, elaborating on its benefits compared to conventional methods and the groundbreaking applications it has fostered in plant organellar genomics. While its transformative impact is clear, the technology’s limitations, including error rates and computational requirements, are discussed, alongside potential solutions and prospects for technological refinement. Full article
(This article belongs to the Special Issue 2024 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

39 pages, 2720 KB  
Review
Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare
by Lara Marques, Bárbara Costa, Mariana Pereira, Abigail Silva, Joana Santos, Leonor Saldanha, Isabel Silva, Paulo Magalhães, Stephan Schmidt and Nuno Vale
Pharmaceutics 2024, 16(3), 332; https://doi.org/10.3390/pharmaceutics16030332 - 27 Feb 2024
Cited by 123 | Viewed by 25348
Abstract
The landscape of medical treatments is undergoing a transformative shift. Precision medicine has ushered in a revolutionary era in healthcare by individualizing diagnostics and treatments according to each patient’s uniquely evolving health status. This groundbreaking method of tailoring disease prevention and treatment considers [...] Read more.
The landscape of medical treatments is undergoing a transformative shift. Precision medicine has ushered in a revolutionary era in healthcare by individualizing diagnostics and treatments according to each patient’s uniquely evolving health status. This groundbreaking method of tailoring disease prevention and treatment considers individual variations in genes, environments, and lifestyles. The goal of precision medicine is to target the “five rights”: the right patient, the right drug, the right time, the right dose, and the right route. In this pursuit, in silico techniques have emerged as an anchor, driving precision medicine forward and making this a realistic and promising avenue for personalized therapies. With the advancements in high-throughput DNA sequencing technologies, genomic data, including genetic variants and their interactions with each other and the environment, can be incorporated into clinical decision-making. Pharmacometrics, gathering pharmacokinetic (PK) and pharmacodynamic (PD) data, and mathematical models further contribute to drug optimization, drug behavior prediction, and drug–drug interaction identification. Digital health, wearables, and computational tools offer continuous monitoring and real-time data collection, enabling treatment adjustments. Furthermore, the incorporation of extensive datasets in computational tools, such as electronic health records (EHRs) and omics data, is also another pathway to acquire meaningful information in this field. Although they are fairly new, machine learning (ML) algorithms and artificial intelligence (AI) techniques are also resources researchers use to analyze big data and develop predictive models. This review explores the interplay of these multiple in silico approaches in advancing precision medicine and fostering individual healthcare. Despite intrinsic challenges, such as ethical considerations, data protection, and the need for more comprehensive research, this marks a new era of patient-centered healthcare. Innovative in silico techniques hold the potential to reshape the future of medicine for generations to come. Full article
Show Figures

Figure 1

Back to TopTop