Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = FRP truss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5500 KB  
Article
Mechanical Property Analysis of a Boom–Membrane Structure Used for Aerospace Technologies
by Shuhong Xu, Xiaojiao Yu, Yue Gao, Sicong Wang and Lining Sun
Materials 2024, 17(13), 3204; https://doi.org/10.3390/ma17133204 - 1 Jul 2024
Cited by 1 | Viewed by 1398
Abstract
Traditional deployable truss space structures previously had upper limits on their key indicators, such as the deployed area, folded ratio and total weight, and hence, the application of new extendable mechanisms with novel deployment types is desired. Foldable extendable tape spring booms made [...] Read more.
Traditional deployable truss space structures previously had upper limits on their key indicators, such as the deployed area, folded ratio and total weight, and hence, the application of new extendable mechanisms with novel deployment types is desired. Foldable extendable tape spring booms made from FRP (fiber-reinforced polymer) laminate composites and their corresponding boom–membrane structures were invented in recent years to satisfy the needs of the large-scale requirements of spacecraft, especially for antennas, solar sails and solar arrays. This paper aimed to analyze the properties of the deployed states of extendable tape spring booms and their boom–membrane structures. By establishing an analytical model of the boom and the structure, the bending stiffness, critical buckling load of the boom and the fundamental frequency of the membrane structure were acquired. To provide more guidance on the boom–membrane structure design, a geometric and material parametric study was carried out. Meanwhile, an experimental study to investigate the deployed properties of the booms and membrane structures was introduced to afford some practical verification. Full article
Show Figures

Figure 1

21 pages, 7840 KB  
Article
Simple Nonlinear Numerical Modeling for Unreinforced and FRP-Reinforced Masonry Domes
by Alessandro Gandolfi, Natalia Pingaro and Gabriele Milani
Buildings 2024, 14(1), 166; https://doi.org/10.3390/buildings14010166 - 9 Jan 2024
Cited by 30 | Viewed by 2025
Abstract
This paper presents a new method to model the nonlinear behavior of double-curvature masonry structures, possibly reinforced by composite materials, by means of conventional elasto-plastic analyses. The method is meant to be used in professional design, especially for assessment and retrofitting purposes, based [...] Read more.
This paper presents a new method to model the nonlinear behavior of double-curvature masonry structures, possibly reinforced by composite materials, by means of conventional elasto-plastic analyses. The method is meant to be used in professional design, especially for assessment and retrofitting purposes, based on the exploitation of the simplest nonlinear finite elements available in commercial software, namely, trusses with elasto-fragile and elasto-ductile behavior (Cutoff Bars, according for instance to the definition provided by Strand7 R3.1.3a). Numerical static nonlinear analyses are carried out by considering elastic hexahedral elements for bricks and by lumping nonlinearities on joints. These are assumed, in turn, to be elastic–brittle and elastic–plastic by using 1D elements, namely, Point Contacts, under the No-Tension Material hypothesis, and Cutoff Bars, respectively, assigning a small tensile resistance to the material. The reinforcement, realized with FRP hooping strips, is successfully modeled in a similar fashion, i.e., by applying perfectly bonded elastic–plastic Cutoff Bars at the extrados of the dome, where debonding is accounted for in a conventional way, limiting the tensile strength according to Italian Standards’ indications. The procedure is validated against benchmark models with the same geometry, using experimental data and more refined structural model results for comparison. After an in-depth analysis of the obtained results, in terms of capacity curves, the robustness and accuracy of the proposed approach are assessed. Full article
(This article belongs to the Special Issue Recent Scientific Developments on the Mechanics of Masonry Structures)
Show Figures

Figure 1

23 pages, 10167 KB  
Article
A Metamodel-Based Multi-Scale Reliability Analysis of FRP Truss Structures under Hybrid Uncertainties
by Desheng Zhao, Xiaoyi Zhou and Wenqing Wu
Materials 2024, 17(1), 29; https://doi.org/10.3390/ma17010029 - 20 Dec 2023
Cited by 2 | Viewed by 1596
Abstract
This study introduces a Radial Basis Function-Genetic Algorithm-Back Propagation-Importance Sampling (RBF-GA-BP-IS) algorithm for the multi-scale reliability analysis of Fiber-Reinforced Polymer (FRP) composite structures. The proposed method integrates the computationally powerful RBF neural network with GA, BP neural network and IS to efficiently calculate [...] Read more.
This study introduces a Radial Basis Function-Genetic Algorithm-Back Propagation-Importance Sampling (RBF-GA-BP-IS) algorithm for the multi-scale reliability analysis of Fiber-Reinforced Polymer (FRP) composite structures. The proposed method integrates the computationally powerful RBF neural network with GA, BP neural network and IS to efficiently calculate inner and outer optimization problems for reliability analysis with hybrid random and interval uncertainties. The investigation profoundly delves into incorporating both random and interval parameters in the reliability appraisal of FRP constructs, ensuring fluctuating parameters within designated boundaries are meticulously accounted for, thus augmenting analytic exactness. In application, the algorithm was subjected to diverse structural evaluations, including a seven-bar planar truss, an architectural space dome truss, and an intricate nonlinear truss bridge. Results demonstrate the algorithm’s exceptional performance in terms of model invocation counts and accurate failure probability estimation. Specifically, within the seven-bar planar truss evaluation, the algorithm exhibited a deviation of 0.08% from the established failure probability benchmark. Full article
(This article belongs to the Special Issue Multiscale Analysis of Advanced Fiber Materials and Structures)
Show Figures

Figure 1

7 pages, 3142 KB  
Proceeding Paper
Efficacy of FRP Hooping in Masonry Domes: A Simple Numerical Approach
by Alessandro Gandolfi, Natalia Pingaro and Gabriele Milani
Eng. Proc. 2023, 53(1), 46; https://doi.org/10.3390/IOCBD2023-15936 - 9 Nov 2023
Cited by 1 | Viewed by 1153
Abstract
A simple numerical approach to predict the efficacy of FRP hooping in historical masonry domes is presented. The dome is modelled with 8-noded elastic hexahedron elements connected by 1D trusses/springs on meridians and on parallels, where all the non-linearity takes place. The aim [...] Read more.
A simple numerical approach to predict the efficacy of FRP hooping in historical masonry domes is presented. The dome is modelled with 8-noded elastic hexahedron elements connected by 1D trusses/springs on meridians and on parallels, where all the non-linearity takes place. The aim is to simulate the nonlinear behaviour of domes through every FE commercial software equipped only with non-linear 1D elements, namely point contacts and cutoff bars. The constitutive behaviour of the trusses is assumed to be either perfectly brittle or perfectly ductile. A possible orthotropic behaviour and the no-tension material case can be reproduced. External retrofitting is simulated using trusses with an elastic perfectly ductile behaviour, assuming a perfect bond between the substrate and the reinforcement and imposing an ultimate strength for the trusses, which takes into account the possible debonding/delamination from the substrate in a conventional way. The Italian code CNR DT200 and the existing specialized literature are used as references. The models are benchmarked on a masonry dome reinforced with three hooping FRP strips and experimentally tested at the University Architecture Institute of Venice IUAV, Italy. The procedure is validated through extensive comparisons with available experimental data and numerical results obtained in the literature with a variety of different models. Through the extensive comparisons that were made and discussed, the robustness and simplicity of the procedure are proven. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Buildings)
Show Figures

Figure 1

38 pages, 11371 KB  
Article
Optimizing Truss Structures Using Composite Materials under Natural Frequency Constraints with a New Hybrid Algorithm Based on Cuckoo Search and Stochastic Paint Optimizer (CSSPO)
by Nima Khodadadi, Ehsan Harati, Francisco De Caso and Antonio Nanni
Buildings 2023, 13(6), 1551; https://doi.org/10.3390/buildings13061551 - 18 Jun 2023
Cited by 15 | Viewed by 2674
Abstract
This article highlights the absence of published paradigms hybridized by The Cuckoo Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite materials under natural frequency constraints. The article proposes a novel optimization algorithm called CSSPO for optimizing truss structures [...] Read more.
This article highlights the absence of published paradigms hybridized by The Cuckoo Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite materials under natural frequency constraints. The article proposes a novel optimization algorithm called CSSPO for optimizing truss structures made of composite materials, known as fiber-reinforced polymer (FRP) composites, to address this gap. Optimization problems of truss structures under frequency constraints are recognized as challenging due to their non-linear and non-convex search spaces that contain numerous local optima. The proposed methodology produces high-quality optimal solutions with less computational effort than the original methods. The aim of this work is to compare the performance of carbon FRP (CFRP), glass FRP (GFRP), and steel using a novel hybrid algorithm to provide valuable insights and inform decision-making processes in material selection and design. Four benchmark structure trusses with natural frequency constraints were utilized to demonstrate the efficiency and robustness of the CSSPO. The numerical analysis findings indicate that the CSSPO outperforms the classical SPO and exhibits comparable or superior performance when compared to the SPO. The study highlights that implementing CFRP and GFRP composites in truss construction leads to a notable reduction in weight compared to using steel. Full article
Show Figures

Figure 1

42 pages, 15346 KB  
Review
A Review of Fibre Reinforced Polymer Bridges
by Jawed Qureshi
Fibers 2023, 11(5), 40; https://doi.org/10.3390/fib11050040 - 4 May 2023
Cited by 23 | Viewed by 18757
Abstract
Fibre-reinforced polymer composites (FRPs) offer various benefits for bridge construction. Lightweight, durability, design flexibility and fast erection in inaccessible areas are their unique selling points for bridge engineering. FRPs are used in four bridge applications: (1) FRP rebars/tendons in concrete; (2) repair and [...] Read more.
Fibre-reinforced polymer composites (FRPs) offer various benefits for bridge construction. Lightweight, durability, design flexibility and fast erection in inaccessible areas are their unique selling points for bridge engineering. FRPs are used in four bridge applications: (1) FRP rebars/tendons in concrete; (2) repair and strengthening of existing bridges; (3) new hybrid–FRP bridges with conventional materials and (4) all–FRP composite new bridges made entirely of FRP materials. This paper reviews FRP bridges, including all–FRP and hybrid–FRP bridges. FRP bridges’ history, materials, processes and bridge components—deck, girder, truss, moulded parts and cables/rebars are considered. This paper does not discuss the use of FRP as an architectural element and a strengthening system. While lack of design codes, material specifications and recycling are the major challenges, the high cost of FRPs still remains the most critical barrier to the progress of FRPs in bridges. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

23 pages, 9585 KB  
Article
Implementation of Modified Compression Field Theory to Simulate the Behavior of Fiber-Reinforced Polymer Shear-Strengthened Reinforced Concrete Beams under Monotonic Loading
by Nagwa Ibrahim, Said Elkholy, Ahmed Godat and Ahmed El-Kholy
Buildings 2023, 13(4), 898; https://doi.org/10.3390/buildings13040898 - 29 Mar 2023
Cited by 3 | Viewed by 2454
Abstract
The numerical modeling of structures is a widely preferable approach to investigate the structural behavior of RC beams since it delivers inexpensive predictions for confirming the required goals concurrently with reducing casting, testing time, and effort. Shear-strengthening of reinforced concrete (RC) beams using [...] Read more.
The numerical modeling of structures is a widely preferable approach to investigate the structural behavior of RC beams since it delivers inexpensive predictions for confirming the required goals concurrently with reducing casting, testing time, and effort. Shear-strengthening of reinforced concrete (RC) beams using externally bonded (EB) fiber-reinforced polymers (FRPs) has attracted much attention due to the fact that the FRP strengthening technique has the ability to alter the distribution of stresses between the structural elements and increase the load-carrying capacity. A significant number of experimental studies have been carried out to test the monotonic behavior of FRP shear-strengthened RC beams. Conversely, limited numerical research has been performed to investigate such performance. The VecTor2 software is developed based on the modified compression field theory (MCFT) and is directed to examine the monotonic behavior of retrofitted specimens using fiber-reinforced polymer (FRP) composites. To the authors’ knowledge, the behavior of FRP shear-strengthened beams has not been explored in the literature using the MCFT modeling approach. The main objective of this study is to detect the software’s capability of predicting the experimental outcomes of FRP shear-strengthened RC beams. This research study is carried out in two stages. Initially, the numerical study involves the development of an accurate finite element model to simulate the control specimens. The quality of this model is assessed by comparing the numerical results with the experimental outcomes. In the second phase of the numerical study, the control beam model is modified to accommodate the presence of external FRP composites. The accuracy of this model is again measured by comparing its predictions with the experimental measurements. The goal of these phases is to ensure that the numerical model captures the actual behavior of the tested beams. Additionally, two distinctive modeling approaches are investigated to represent the behavior of FRP composites. The accuracy of the numerical models is verified through comparisons of numerical predictions to experimental results in terms of ultimate loading capacity, load–deflection relationships, and failure modes. It can be stated that the validated numerical model provides alternate means for evaluating the monotonic behavior of both strengthened and non-strengthened RC beams. The predicted results compare very well with the test results of the control specimens when discrete truss elements are employed for the FRP composites. Furthermore, the numerical model provides useful information on the crack patterns and failure modes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 4543 KB  
Letter
The Use of Non-Destructive Testing (NDT) to Detect Bed Joint Reinforcement in AAC Masonry
by Łukasz Drobiec, Radosław Jasiński and Wojciech Mazur
Appl. Sci. 2020, 10(13), 4645; https://doi.org/10.3390/app10134645 - 5 Jul 2020
Cited by 7 | Viewed by 3466
Abstract
Detecting non-metallic reinforcement made of FRP (Fibre Reinforced Polymers) can be problematic, particularly at the stage of work inspection and constructional evaluation. In contrast to steel reinforcement, detecting non-metallic reinforcement is difficult using NDT (Non-Destructive Testing) techniques. These difficulties mainly arise from considerably [...] Read more.
Detecting non-metallic reinforcement made of FRP (Fibre Reinforced Polymers) can be problematic, particularly at the stage of work inspection and constructional evaluation. In contrast to steel reinforcement, detecting non-metallic reinforcement is difficult using NDT (Non-Destructive Testing) techniques. These difficulties mainly arise from considerably lower density, radiation resistance or electromagnetic impedance and cross-section of rebars when compared to steel reinforcement. Specific problems with the reinforcement detection are experienced in masonry structures, in which reinforcement is laid in bed joints. Measurements are made on a masonry face in the plane perpendicular to the reinforcement plane, and not the parallel one compared to reinforced concrete structures. Thus, the interpretation of results obtained from NDT can be complicated due to many physical phenomena occurring during tests, methods of presenting measurements and their accuracy. This paper compares different testing techniques used to detect non-metallic reinforcement in the masonry wall made of autoclaved aerated concrete (AAC). For the purpose of the tests, fibreglass and basalt meshes, traditional steel trusses and steel wire meshes were placed in bed joints of the masonry wall. An ultrasonic tomography and GPR (Ground-Penetrating Radar) scanner operating within a broad range of frequencies were used for the tests. We also used the electromagnetic device to detect metal meshes. As expected, the tests confirmed problems with detecting the non-metallic reinforcement. Only the radar method was effective in detecting the non-metallic method, whereas other methods failed. The electromagnetic method detected only the steel reinforcement in the masonry. Full article
(This article belongs to the Special Issue Structural Health Monitoring & Nondestructive Testing)
Show Figures

Figure 1

Back to TopTop