Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,146)

Search Parameters:
Keywords = FTIR-spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3727 KB  
Article
In Situ High-Temperature and High-Pressure Spectroscopic Study of the Thermal and Pressure Behavior of Hydrous Fe-Rich Ringwoodite
by Jiayi Yu, Tianze Chen and Li Zhang
Minerals 2025, 15(10), 1053; https://doi.org/10.3390/min15101053 (registering DOI) - 4 Oct 2025
Abstract
In situ high-temperature Raman spectroscopy (up to 550 °C) and infrared spectroscopy (up to 700 °C) were employed to analyze hydrous Fe-rich ringwoodite (Fo76 composition containing 0.69 wt% H2O). The results demonstrate that the hydrous Fe-rich ringwoodite sample undergoes irreversible structural [...] Read more.
In situ high-temperature Raman spectroscopy (up to 550 °C) and infrared spectroscopy (up to 700 °C) were employed to analyze hydrous Fe-rich ringwoodite (Fo76 composition containing 0.69 wt% H2O). The results demonstrate that the hydrous Fe-rich ringwoodite sample undergoes irreversible structural transformation above 300 °C at ambient pressure, converting to an amorphous phase. This indicates a lower thermal stability threshold compared to Fe-bearing ringwoodite (Fo90) with equivalent water content. Notably, identical infrared spectral evolution patterns were observed during heating (25–500 °C) for the studied Fo76 sample and previously reported Fo82/Fo90 specimens, suggesting minimal influence of iron content variation on hydroxyl group behavior. The material derived from Fe-rich ringwoodite through structural transformation at ~350 °C retains the capacity to preserve water within a defined temperature window (400–550 °C). In situ high-pressure Raman spectroscopy experiments conducted up to 20 GPa detected no notable structural modifications, suggesting that hydrous Fe-rich ringwoodite, hydrous Fe-bearing ringwoodite, and hydrous Mg-endmember ringwoodite exhibit comparable structural stability within this pressure range. Full article
Show Figures

Figure 1

13 pages, 5074 KB  
Article
Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance
by Congyu Cai, Yufeng Sun, Yulan Xiao, Weiye Zheng, Minhui Pan and Weiwei Wang
Molecules 2025, 30(19), 3980; https://doi.org/10.3390/molecules30193980 (registering DOI) - 4 Oct 2025
Abstract
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 [...] Read more.
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 reduction activity. The optimized catalyst exhibits CH4 and CO production rates that are 3.3 and 4.9 times higher, respectively, than those of pristine ZnFe2O4 over 6 h. This significant enhancement in photocatalytic performance is attributed to the Type-II band alignment, which not only broadens light absorption but also greatly promotes efficient charge separation. It is corroborated by a series of experimental evidence: a two-fold enhancement in photocurrent response, a 15.1% reduction in PL intensity, decreased electrochemical impedance, and an extended charge carrier lifetime. Furthermore, in situ FTIR spectroscopy confirms that the heterojunction facilitates the formation of key intermediates (specifically *COOH and HCOO). This study highlights the importance of precise interface design based on a Type-II heterojunction in heterostructured composite catalysts and provides mechanistic insights for developing highly efficient CO2 photoreduction systems. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 3223 KB  
Article
Oxidative Degradation Mechanism of Zinc White Acrylic Paint: Uneven Distribution of Damage Under Artificial Aging
by Mais Khadur, Victor Ivanov, Artem Gusenkov, Alexander Gulin, Marina Soloveva, Yulia Diakonova, Yulian Khalturin and Victor Nadtochenko
Heritage 2025, 8(10), 419; https://doi.org/10.3390/heritage8100419 - 3 Oct 2025
Abstract
Accelerated artificial aging of zinc oxide (ZnO)-based acrylic artists’ paint, filled with calcium carbonate (CaCO3) as an extender, was carried out for a total of 1963 h (~8 × 107 lux·h), with assessments at specific intervals. The total color difference [...] Read more.
Accelerated artificial aging of zinc oxide (ZnO)-based acrylic artists’ paint, filled with calcium carbonate (CaCO3) as an extender, was carried out for a total of 1963 h (~8 × 107 lux·h), with assessments at specific intervals. The total color difference ΔE* was <2 (CIELab-76 system) over 1725 h of aging, while the human eye notices color change at ΔE* > 2. Oxidative degradation of organic components in the paint to form volatile products was revealed by attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, micro-Raman spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). It appears that deep oxidation of organic intermediates and volatilization of organic matter may be responsible for the relatively small value of ΔE* color difference during aging of the samples. To elucidate the degradation pathways, principal component analysis (PCA) was applied to the spectral data, revealing: (1) the catalytic role of ZnO in accelerating photodegradation, (2) the Kolbe photoreaction, (3) the decomposition of the binder to form volatile degradation products, and (4) the relative photoinactivity of CaCO3 compared with ZnO, showing slower degradation in areas with a higher CaCO3 content compared with those dominated by ZnO. These results provide fundamental insights into formulation-specific degradation processes, offering practical guidance for the development of more durable artist paints and conservation strategies for acrylic artworks. Full article
Show Figures

Figure 1

17 pages, 2869 KB  
Article
Romanino’s Colour Palette in the “Musicians” Fresco of the Duomo Vecchio, Brescia
by Fatemeh Taati Anbuhi, Alfonso Zoleo, Barbara Savy and Gilberto Artioli
Heritage 2025, 8(10), 416; https://doi.org/10.3390/heritage8100416 - 3 Oct 2025
Abstract
This study examines the pigments and materials used in Girolamo Romanino’s Musicians fresco (1537–1538), located in the Duomo Vecchio in Brescia, with the aim of identifying and analyzing the artist’s colour palette. Ten samples of the pictorial layer and mortar were collected from [...] Read more.
This study examines the pigments and materials used in Girolamo Romanino’s Musicians fresco (1537–1538), located in the Duomo Vecchio in Brescia, with the aim of identifying and analyzing the artist’s colour palette. Ten samples of the pictorial layer and mortar were collected from two frescoes and characterized using microscopic and spectroscopic techniques. Confocal laser scanning microscopy (CLSM) was used to define the best positions where single-point, spectroscopic techniques could be applied. Raman spectroscopy and micro-Fourier transform Infrared spectroscopy (micro-FTIR) were used to detect pigments and organic binders, respectively. X-ray powder diffraction (XRPD) provided additional insights into the mineral composition of the pigmenting layers, in combination with environmental scanning electron microscopy equipped with energy-dispersive spectroscopy (ESEM-EDS). The analysis revealed the use of traditional fresco pigments, including calcite, carbon black, ochres, and copper-based pigments. Smalt, manganese earths, and gold were also identified, reflecting Romanino’s approach to colour and material selection. Additionally, the detection of modern pigments such as titanium white and baryte points to restoration interventions, shedding light on the fresco’s conservation history. This research provides one of the most comprehensive analyses of pigments in Romanino’s works, contributing to a deeper understanding of his artistic practices and contemporary fresco techniques. Full article
Show Figures

Figure 1

20 pages, 5025 KB  
Article
Characterization of Bulgarian Rosehip Oil by GC-MS, UV-VIS Spectroscopy, Colorimetry, FTIR Spectroscopy, and 3D Excitation–Emission Fluorescence Spectra
by Krastena Nikolova, Tinko Eftimov, Natalina Panova, Veselin Vladev, Samia Fouzar and Kristian Nikolov
Molecules 2025, 30(19), 3964; https://doi.org/10.3390/molecules30193964 - 2 Oct 2025
Abstract
We report the study of seven commercially available rosehip oils (Rosa canina L.) using GC-MS, colorimetry (CIELab), UV-VIS, FTIR, and 3D EEM fluorescence spectroscopy, including using a smartphone spectrometer. GC-MS revealed two groups of oil samples with different chemical constituents: ω-6-dominant [...] Read more.
We report the study of seven commercially available rosehip oils (Rosa canina L.) using GC-MS, colorimetry (CIELab), UV-VIS, FTIR, and 3D EEM fluorescence spectroscopy, including using a smartphone spectrometer. GC-MS revealed two groups of oil samples with different chemical constituents: ω-6-dominant with 45–51% α-linolenic acid (samples S1, S2, and S5–S7) and ω-3-dominant with 47–49% α-linolenic, 7.3–19.1% oleic, 1.9–2.8% palmitic, 1.0–1.8% stearic, and 0.1–0.72% arachidic acid (S3, S4). In S1 PUFA content was found to be ~75% with ω-6/ω-3 ≈ 2:1. Favorable lipid indices of AI 0.0197–0.0302, TI 0.0208–0.0304, and h/H 33.0–50.6 were observed. The highest h/H (50.55) was observed in S5 and the lowest TI (0.0208) in S3. FTIR showed characteristic lines at ~3021, 2929/2853, 1749, and ~1370 cm−1, and PCA yielded 60–80% variation and separated S1 from the rest of the samples, while the clusters grouped S5 and S6. The smartphone spectrometer also reproduced the individual differences in sample volumes ≤ 1 µL under 355–395 nm UV excitation. The non-destructive optical markers reflect the fatty acid profile and allow fast low-cost identification and quality control. An integrated control method including routine optical screening, periodic CG-MS verification, and chemometric models to trace oxidation and counterfeiting is suggested. Full article
(This article belongs to the Special Issue Advances in Food Analytical Methods)
17 pages, 1052 KB  
Article
Synthesis and Characterization of Imidazolium-Based Ionenes
by Eveline Elisabeth Kanatschnig, Florian Wanghofer, Markus Wolfahrt and Sandra Schlögl
Molecules 2025, 30(19), 3961; https://doi.org/10.3390/molecules30193961 - 2 Oct 2025
Abstract
Owing to multiple non-covalent interactions, ionic groups impart unique chemical and physical properties into polymers including ion conductivity/mobility, permeation, and intrinsic healability. Ionenes contain ionic groups in their polymer backbone, which offer great versatility in polymer design. Herein, selected aliphatic and aromatic imidazoles [...] Read more.
Owing to multiple non-covalent interactions, ionic groups impart unique chemical and physical properties into polymers including ion conductivity/mobility, permeation, and intrinsic healability. Ionenes contain ionic groups in their polymer backbone, which offer great versatility in polymer design. Herein, selected aliphatic and aromatic imidazoles were synthesized, which were used as monomeric building blocks for the preparation of thermoplastic ionenes by following a Sn2 step growth reaction across organic halides. The structure and molecular weight of the polymers was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) techniques. Once polymerized, anion-exchange reactions were carried out to replace the halides with four other counter-anions. Subsequently, the effect of the nature of the anion and the cation on the polymers’ thermal and hygroscopic properties was studied in detail by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR spectroscopy. Depending on the chemical structures of the polymeric cations and the related anions, tailored polymers with a glass transition temperature (Tg) in the range of 30 °C to 131 °C and a thermal stability varying between 170 °C and 385 °C were obtained. Full article
Show Figures

Figure 1

17 pages, 2528 KB  
Article
Potential Modulatory Effects of β-Hydroxy-β-Methylbutyrate on Type I Collagen Fibrillogenesis: Preliminary Study
by Izabela Świetlicka, Eliza Janek, Krzysztof Gołacki, Dominika Krakowiak, Michał Świetlicki and Marta Arczewska
Int. J. Mol. Sci. 2025, 26(19), 9621; https://doi.org/10.3390/ijms26199621 - 2 Oct 2025
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix (ECM) components, particularly collagen, which is crucial for maintaining the mechanical integrity of connective tissues. In this investigation, bovine type I collagen was polymerised in the presence of two concentrations of HMB (0.025 M and 0.25 M) to explore its potential function as a molecular modulator of fibrillogenesis. The morphology of the resulting collagen fibres and their molecular architecture were examined using atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy. The findings demonstrated that lower levels of HMB facilitated the formation of more regular and well-organised fibrillar structures, exhibiting increased D-band periodicity and enhanced stabilisation of the native collagen triple helix, as indicated by Amide I and III band profiles. Conversely, higher concentrations of HMB led to significant disruption of fibril morphology and alterations in secondary structure, suggesting that HMB interferes with the self-assembly of collagen monomers. These structural changes are consistent with a non-covalent influence on interchain interactions and fibril organisation, to which hydrogen bonding and short-range electrostatics may contribute. Collectively, the results highlight the potential of HMB as a small-molecule regulator for soft-tissue matrix engineering, extending its consideration beyond metabolic supplementation towards controllable, materials-oriented modulation of ECM structure. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Graphical abstract

26 pages, 5547 KB  
Article
Coffee Waste as a Green Precursor for Iron Nanoparticles: Toward Circular, Efficient and Eco-Friendly Dye Removal from Aqueous Systems
by Cristina Rodríguez-Rasero, Juan Manuel Garrido-Zoido, María del Mar García-Galán, Eduardo Manuel Cuerda-Correa and María Francisca Alexandre-Franco
J. Xenobiot. 2025, 15(5), 158; https://doi.org/10.3390/jox15050158 - 2 Oct 2025
Abstract
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been [...] Read more.
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been investigated. The nanoparticles, generated in situ in the presence of controlled amounts of hydrogen peroxide, were applied in the removal of organic dyes—including methylene blue, methyl orange, and orange G—through a heterogeneous Fenton-like catalytic process. The synthesized nZVI were thoroughly characterized by nitrogen adsorption at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). A statistical design of experiments and response surface methodology were employed to evaluate the effect of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. Results showed that under optimized conditions, a 100% removal efficiency could be achieved. This work highlights the potential of nZVI synthesized from agro-industrial waste through sustainable routes as an effective solution for water remediation, contributing to circular economy strategies and environmental protection. Full article
Show Figures

Graphical abstract

24 pages, 4277 KB  
Article
Effect of Gellan Gum on the Properties of Collagen-HPMC Freeze-Dried Hydrogels for Mucosal Administration
by Ioana Luca, Mădălina Georgiana Albu Kaya, Raluca Țuțuianu, Cristina Elena Dinu-Pîrvu, Maria Minodora Marin, Lăcrămioara Popa, Irina Titorencu, Valentina Anuța and Mihaela Violeta Ghica
Gels 2025, 11(10), 793; https://doi.org/10.3390/gels11100793 - 2 Oct 2025
Abstract
Mucosal drug delivery is gaining attention for its ability to provide localized treatment with reduced systemic side effects. The vaginal route has been proven effective for managing gynecological conditions, though it poses certain limitations. Biopolymers can help overcome these challenges by enhancing therapeutic [...] Read more.
Mucosal drug delivery is gaining attention for its ability to provide localized treatment with reduced systemic side effects. The vaginal route has been proven effective for managing gynecological conditions, though it poses certain limitations. Biopolymers can help overcome these challenges by enhancing therapeutic efficiency and offering beneficial properties. This study aimed to develop and evaluate hydrogels and their freeze-dried forms (wafers) based on collagen, hydroxypropyl methylcellulose, and gellan gum. Initially, a collagen gel was obtained by extraction from calfskin, which was brought to a concentration of 1% and a physiological pH with 1 M sodium hydroxide solution. This gel was combined with either 2% hydroxypropyl methylcellulose gel, 1.2% gellan gum gel, or both, in different proportions. Thus, five mixed hydrogels were obtained, which, along with the three individual gels (controls), were lyophilized to obtain wafers. Furthermore, the hydrogels were assessed for rheological behavior, while the collagen structural integrity in the presence of the other biopolymers was evaluated using circular dichroism and FT-IR spectroscopy. The wafers were characterized for morphology, wettability, swelling capacity, enzymatic degradation resistance, and in vitro biocompatibility. All hydrogels exhibited non-Newtonian, pseudoplastic behavior and showed collagen structure preservation. The wafers’ characterization showed that gellan gum enhanced the hydrophilicity and enzymatic stability of the samples. In addition, the extracts from the tested samples maintained cell viability and did not affect actin cytoskeleton morphology, indicating a lack of cytotoxic effects. This study emphasizes the importance of evaluating both the physicochemical properties and biocompatibility of biopolymeric supports as a key preliminary step in the development of vaginal drug delivery platforms with biomedical applications in the management of gynecological conditions. Full article
(This article belongs to the Special Issue Advances in Functional Hydrogels and Their Applications)
Show Figures

Figure 1

13 pages, 1618 KB  
Article
Application Potential of Lysinibacillus sp. UA7 for the Remediation of Cadmium Pollution
by Yue Liang, Peng Zhao, Haoran Shi and Feiyan Xue
BioChem 2025, 5(4), 34; https://doi.org/10.3390/biochem5040034 - 2 Oct 2025
Abstract
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation [...] Read more.
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation potential. Methods: The isolated strain UA7 was identified through 16S rDNA gene sequencing. Urease production was enhanced by optimizing the culture conditions, including temperature, dissolved oxygen levels—which were affected by the rotational speed and the design of the Erlenmeyer flask, and the concentration of urea added. Its Cd remediation efficacy was assessed both in water and soil. Results: UA7 was identified as Lysinibacillus sp., achieving peak urease activity of 188 U/mL. The immobilization rates of soluble Cd reached as high as 99.61% and 63.37%, respectively, at initial concentrations of 2000 mg/L in water and 50 mg/kg in soil. The mechanism of Cd immobilization by strain UA7 via MICP was confirmed by the microstructure of the immobilized products with attached bacteria, characteristic absorption peaks, and the formed compound Ca0.67Cd0.33CO3, which were analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The Cd-remediation effect of strain UA7, which reduces lodging in wheat plants, prevents the thinning and yellowing of stems and leaves, and hinders the transition of soluble Cd to the above-ground parts of the plant, was also demonstrated in a pot experiment. Conclusions: Therefore, Lysinibacillus sp. UA7 exhibited high potential for efficiently remediating contaminated Cd. Full article
Show Figures

Graphical abstract

20 pages, 7958 KB  
Article
Copper-Mediated Homocoupling of N-propargylcytisine—Synthesis and Spectral Characterization of Novel Cytisine-Based Diyne Dimer
by Anna K. Przybył, Adam Huczyński and Ewa Krystkowiak
Molecules 2025, 30(19), 3955; https://doi.org/10.3390/molecules30193955 - 1 Oct 2025
Abstract
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the [...] Read more.
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the development of new cytisine derivatives. Among these, N-propargylcytisine combines the biological activity of the parent compound with the synthetic versatility of the terminal alkyne group. Herein, we report the synthesis and characterization of N-propargylcytisine, and its symmetrical dimer linked through 1,3-diyne moiety obtained via a copper-mediated Glaser–Hay oxidative coupling. The products were analyzed by NMR, FT-IR, and mass spectrometry, confirming the introduction of the propargyl moiety and the formation of the diyne bridge. Solvatochromic study of both compounds were performed using UV-VIS absorption spectroscopy in solvents of varying polarity, including protic solvents capable of hydrogen bonding. The 1,3-diyne motif, commonly found in bioactive natural products, endows the resulting dimer with potential for further derivatization and biological evaluation. This study demonstrates the utility of the Glaser–Hay reaction in the functionalization of alkaloid scaffolds and highlights the prospects of N-propargylcytisine derivatives in drug discovery targeting the central nervous system. Full article
(This article belongs to the Special Issue Organic Synthesis of Nitrogen-Containing Molecules)
Show Figures

Figure 1

29 pages, 7735 KB  
Article
Preparation of Ecological Refractory Bricks from Phosphate Washing By-Products
by Mariem Hassen, Raja Zmemla, Mouhamadou Amar, Abdalla Gaboussa, Nordine Abriak and Ali Sdiri
Appl. Sci. 2025, 15(19), 10647; https://doi.org/10.3390/app151910647 - 1 Oct 2025
Abstract
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using [...] Read more.
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermal analysis (TGA-DTA). Bricks were formulated by substituting phosphate sludge with clay and diatomite, then activated with potassium silicate solution to produce geopolymeric materials. Specific formulations exhibited mechanical performance ranging from 7 MPa to 26 MPa, highlighting the importance of composition and minimal water absorption values of approximately 17.8% and 7.7%. The thermal conductivity of the bricks was found to be dependent on the proportions of diatomite and clay, reflecting their insulating potential. XRD analysis indicated the formation of an amorphous aluminosilicate matrix, while FTIR spectra confirmed the development of new chemical bonds characteristic of geopolymerization. Thermal analysis revealed good stability of the materials, with mass losses mainly related to dehydration and dehydroxylation processes. Environmental assessments showed that most samples are inert or non-hazardous, though attention is required for those with elevated chromium content. Overall, these findings highlight the viability of incorporating phosphate sludge into fired brick production, offering a sustainable solution for waste valorization in accordance with the circular economy. Full article
Show Figures

Figure 1

20 pages, 4133 KB  
Article
Dynamic Mechanical Behavior of Nanosilica-Based Epoxy Composites Under LEO-like UV-C Exposure
by Emanuela Proietti Mancini, Flavia Palmeri and Susanna Laurenzi
J. Compos. Sci. 2025, 9(10), 529; https://doi.org/10.3390/jcs9100529 - 1 Oct 2025
Abstract
The harsh conditions of the space environment necessitate advanced materials capable of withstanding extreme temperature fluctuations and ultraviolet (UV) radiation. While epoxy-based composites are widely utilized in aerospace due to their favorable strength-to-weight ratio, they are prone to degradation, especially under prolonged high-energy [...] Read more.
The harsh conditions of the space environment necessitate advanced materials capable of withstanding extreme temperature fluctuations and ultraviolet (UV) radiation. While epoxy-based composites are widely utilized in aerospace due to their favorable strength-to-weight ratio, they are prone to degradation, especially under prolonged high-energy UV-C exposure. This study investigated the mechanical and chemical stability of epoxy composites reinforced with nanosilica at 0, 2, 5, and 10 wt% before and after UV-C irradiation. Dynamic mechanical analysis (DMA) revealed that increased nanosilica content enhanced the storage modulus below the glass transition temperature (Tg) but reduced both Tg and the damping factor. Following UV-C exposure, all samples showed a decrease in storage modulus and Tg; however, composites with higher nanosilica content maintained better property retention. Frequency sweeps corroborated these findings, indicating improved instantaneous modulus but accelerated relaxation with increased nanosilica. Fourier-transform infrared (FTIR) spectroscopy of UV-C-exposed samples demonstrated significant oxidation and carboxylic group formation in neat epoxy, contrasting with minimal spectral changes in nanosilica-modified composites, signifying improved chemical resistance. Overall, nanosilica incorporation substantially enhances the thermomechanical and oxidative stability of epoxy composites under simulated space conditions, highlighting their potential for more durable performance in low Earth orbit applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

16 pages, 1470 KB  
Article
Establishment of a Real-Time Monitoring System for the Flow Rate and Concentration of Process Gases for Calculating Tier 4 Emissions in the Semiconductor/Display Industry
by Bong Gyu Jeong, Sang-Hoon Park, Deuk-Hoon Goh and Bong-Jae Lee
Metrology 2025, 5(4), 60; https://doi.org/10.3390/metrology5040060 - 1 Oct 2025
Abstract
In this study, we propose a simple and effective method for gas analysis by establishing a correlation between residual gas analyzer (RGA) intensity and gas concentration. To achieve this, we focused on CF4 and NF3, two high-global warming potential (GWP) [...] Read more.
In this study, we propose a simple and effective method for gas analysis by establishing a correlation between residual gas analyzer (RGA) intensity and gas concentration. To achieve this, we focused on CF4 and NF3, two high-global warming potential (GWP) gases commonly used in industrial applications. The experiment was conducted in four key steps: identifying gas species using optical emission spectroscopy (OES), calibrating RGA with a quadrupole mass spectrometer (QMS), constructing a five-point calibration graph to correlate RGA and Fourier-transform infrared spectroscopy (FT-IR) data, and estimating the concentration of unknown samples using the calibration graph. The results under plasma-on conditions demonstrated correlation and accuracy, confirming the reliability of our approach. In other words, the method effectively captured the relationship between RGA intensity and gas concentration, providing valuable insights into concentration trends. Thus, our approach serves as a useful tool for estimating gas concentrations and understanding the correlation between RGA intensity and gas composition. Full article
Show Figures

Figure 1

19 pages, 2040 KB  
Article
Physicochemical and Mechanical Performance of Dental Resins Formulated from Dimethacrylated Oligoesters Derived from PET Recycling via Glycolysis
by Stefanos Karkanis, Alexandros K. Nikolaidis, Elisabeth A. Koulaouzidou and Dimitris S. Achilias
Polymers 2025, 17(19), 2660; https://doi.org/10.3390/polym17192660 - 1 Oct 2025
Abstract
Growing concerns over the toxicity and sustainability of dental materials have driven the search for alternatives to bisphenol A-glycidyl methacrylate (Bis-GMA), a widely used dental resin monomer associated with health risks. This study highlights the potential of less health-hazardous dental formulations by incorporating [...] Read more.
Growing concerns over the toxicity and sustainability of dental materials have driven the search for alternatives to bisphenol A-glycidyl methacrylate (Bis-GMA), a widely used dental resin monomer associated with health risks. This study highlights the potential of less health-hazardous dental formulations by incorporating high-value materials derived from the glycolysis of poly(ethylene terephthalate) (PET). Dimethacrylated oligoesters (PET-GLY-DM), synthesized through the methacrylation of PET glycolysis products, were blended with Bis-GMA and triethylene glycol dimethacrylate (TEGDMA), toward the gradual replacement of Bis-GMA content. The innovative PET-GLY-DM-based resins exhibited a higher degree of conversion compared to traditional Bis-GMA/TEGDMA formulations, as measured by FTIR spectroscopy, accompanied by an increase in polymerization shrinkage, evaluated via a linear variable displacement transducer system. While the incorporation of PET-GLY-DM slightly reduced flexural strength and elastic modulus, it significantly decreased water sorption, resulting in a smaller reduction in mechanical properties after water immersion for 7 days at 37 °C and improved long-term performance. Furthermore, PET-GLY-DM resins exhibited low bisphenol-A (BPA) release measured with HPLC. It was thus confirmed that PET-GLY-DM resins derived from the glycolysis of PET wastes represent a promising alternative to conventional light-cured dental resins, offering reduced BPA release and improved water resistance. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

Back to TopTop