Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Fast-charge protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7593 KiB  
Article
Optimal Fast-Charging Strategy for Cylindrical Li-Ion Cells at Different Temperatures
by Joris Jaguemont, Ali Darwiche and Fanny Bardé
World Electr. Veh. J. 2024, 15(8), 330; https://doi.org/10.3390/wevj15080330 - 24 Jul 2024
Cited by 1 | Viewed by 1503
Abstract
Ensuring efficiency and safety is critical when developing charging strategies for lithium-ion batteries. This paper introduces a novel method to optimize fast charging for cylindrical Li-ion NMC 3Ah cells, enhancing both their charging efficiency and thermal safety. Using Model Predictive Control (MPC), this [...] Read more.
Ensuring efficiency and safety is critical when developing charging strategies for lithium-ion batteries. This paper introduces a novel method to optimize fast charging for cylindrical Li-ion NMC 3Ah cells, enhancing both their charging efficiency and thermal safety. Using Model Predictive Control (MPC), this study presents a cost function that estimates the thermal safety boundary of Li-ion batteries, emphasizing the relationship between the temperature gradient and the state of charge (SoC) at different temperatures. The charging control framework combines an equivalent circuit model (ECM) with minimal electro-thermal equations to estimate battery state and temperature. Optimization results indicate that at ambient temperatures, the optimal charging allows the cell’s temperature to self-regulate within a safe operating range, requiring only one additional minute to reach 80% SoC compared to a typical fast-charging protocol (high current profile). Validation through numerical simulations and real experimental data from an NMC 3Ah cylindrical cell demonstrates that the simple approach adheres to the battery’s electrical and thermal limitations during the charging process. Full article
Show Figures

Graphical abstract

25 pages, 2038 KiB  
Review
A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology
by Ahmed Zentani, Ali Almaktoof and Mohamed T. Kahn
Appl. Sci. 2024, 14(11), 4728; https://doi.org/10.3390/app14114728 - 30 May 2024
Cited by 22 | Viewed by 11798
Abstract
Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast [...] Read more.
Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast charging. It discusses various fast charging techniques, including inductive charging, ultra-fast charging (UFC), DC fast charging (DCFC), Tesla Superchargers, bidirectional charging integration, and battery swapping, analysing their advantages and limitations. Advanced infrastructure for DC fast charging is explored, covering charging standards, connector types, communication protocols, power levels, and charging modes control strategies. Electric vehicle battery chargers are categorized into on-board and off-board systems, with detailed functionalities provided. The status of DC fast charging station DC-DC converters classification is presented, emphasizing their role in optimizing charging efficiency. Control strategies for EV systems are analysed, focusing on effective charging management while ensuring safety and performance. Challenges and future trends in EV fast charging are thoroughly explored, highlighting infrastructure limitations, standardization efforts, battery technology advancements, and energy optimization through smart grid solutions and bidirectional chargers. The paper advocates for global collaboration to establish universal standards and interoperability among charging systems to facilitate widespread EV adoption. Future research areas include faster charging, infrastructure improvements, standardization, and energy optimization. Encouragement is given for advancements in battery technology, wireless charging, battery swapping, and user experience enhancement to further advance the EV fast charging ecosystem. In summary, this paper offers valuable insights into the current state, challenges, and future directions of EV fast charging, providing a comprehensive examination of technological advancements and emerging trends in the field. Full article
Show Figures

Figure 1

26 pages, 2508 KiB  
Article
Determining Fast Battery Charging Profiles Using an Equivalent Circuit Model and a Direct Optimal Control Approach
by Julio Gonzalez-Saenz and Victor Becerra
Energies 2024, 17(6), 1470; https://doi.org/10.3390/en17061470 - 19 Mar 2024
Cited by 3 | Viewed by 1607
Abstract
This work used an electrical equivalent circuit model combined with a temperature model and computational optimal control methods to determine minimum time charging profiles for a lithium–ion battery. To effectively address the problem, an optimal control problem formulation and direct solution approach were [...] Read more.
This work used an electrical equivalent circuit model combined with a temperature model and computational optimal control methods to determine minimum time charging profiles for a lithium–ion battery. To effectively address the problem, an optimal control problem formulation and direct solution approach were adopted. The results showed that, in most cases studied, the solution to the battery’s fast-charging problem resembled the constant current–constant voltage (CC-CV) charging protocol, with the advantage being that our proposed approach optimally determined the switching time between the CC and CV phases, as well as the final time of the charging process. Considering path constraints related to the terminal voltage and temperature gradient between the cell core and case, the results also showed that additional rules could be incorporated into the protocol to protect the battery against under/over voltage-related damage and high-temperature differences between the core and its case. This work addressed several challenges and knowledge gaps, including emulating the CC-CV protocol using a multi-phase optimal control approach and direct collocation methods, and improving it by including efficiency and degradation terms in the objective function and safety constraints. To the authors’ knowledge, this is the first time the CC-CV protocol has been represented as the solution to a multi-phase optimal control problem. Full article
Show Figures

Figure 1

12 pages, 8904 KiB  
Article
Comparison of EV Fast Charging Protocols and Impact of Sinusoidal Half-Wave Fast Charging Methods on Lithium-Ion Cells
by Sai Bhargava Althurthi, Kaushik Rajashekara and Tutan Debnath
World Electr. Veh. J. 2024, 15(2), 54; https://doi.org/10.3390/wevj15020054 - 6 Feb 2024
Cited by 6 | Viewed by 2809
Abstract
In electric vehicle fast charging systems, it is important to minimize the effect of fast charging on the grid and it is also important to operate the charging system at high efficiencies. In order to achieve these objectives, in this paper, a sinusoidal [...] Read more.
In electric vehicle fast charging systems, it is important to minimize the effect of fast charging on the grid and it is also important to operate the charging system at high efficiencies. In order to achieve these objectives, in this paper, a sinusoidal half-wave DC current charging protocol and a sinusoidal half-wave pulsed current charging protocol are proposed for the fast charging of Li-ion batteries. A detailed procedure is presented for implementing the following proposed methods: (a) a pre-defined half-sine wave current function and (b) a pulsed half-sine wave current method. Unlike the conventional full-wave sinusoidal ripple current charging protocols, the proposed study does not utilize any sinusoidal full-wave ripple. The performance of these new charging methods on Ni-Co-Al-type Li-cells is studied and compared with the existing constant current and positive pulsed current charging protocols, which have been discussed in the existing literature. In addition, the changes in the electrochemical impedance spectrograph of each cell are examined to study the effects of the applied charging methods on the internal resistance of the Li cell. Finally, the test results are presented for 250 life cycles of charging at 2C (C: charging rate) and the degradation in cell capacities are compared among the four different methods for the Ni-Co-Al-type Li cell. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

20 pages, 2327 KiB  
Article
Determination of Fast Battery-Charging Profiles Using an Electrochemical Model and a Direct Optimal Control Approach
by Julio Gonzalez-Saenz and Victor Becerra
Batteries 2024, 10(1), 2; https://doi.org/10.3390/batteries10010002 - 20 Dec 2023
Cited by 1 | Viewed by 2388
Abstract
This paper describes an approach to determine a fast-charging profile for a lithium-ion battery by utilising a simplified single-particle electrochemical model and direct collocation methods for optimal control. An optimal control problem formulation and a direct solution approach were adopted to address the [...] Read more.
This paper describes an approach to determine a fast-charging profile for a lithium-ion battery by utilising a simplified single-particle electrochemical model and direct collocation methods for optimal control. An optimal control problem formulation and a direct solution approach were adopted to address the problem effectively. The results shows that, in some cases, the optimal current profile resembles the current profile in the Constant Current–Constant Voltage charging protocol. Several challenges and knowledge gaps were addressed in this work, including a reformulation of the optimal control problem that utilises direct methods as an alternative to overcome the limitations of indirect methods employed in similar studies. The proposed formulation considers the minimum-time optimal control case, trade-offs between the total charging time, the maximisation of the lithium bulk concentration, and energy efficiency, along with inequality constraints and other factors not previously considered in the literature, which can be helpful in practical applications. Full article
Show Figures

Graphical abstract

11 pages, 4067 KiB  
Article
Distributed Generation Control Using Ripple Signaling and a Multiprotocol Communication Embedded Device
by Evangelos Boutsiadis, Nikolaos Pasialis, Nikolaos Lettas, Dimitrios Tsiamitros and Dimitrios Stimoniaris
Energies 2023, 16(22), 7604; https://doi.org/10.3390/en16227604 - 16 Nov 2023
Cited by 2 | Viewed by 1478
Abstract
Remotely performing real-time distributed generation control and a demand response is a basic aspect of the grid ancillary services provided by grid operators, both the transmission grid operators (TSOs) and distribution grid operators (DNOs), in order to ensure that voltage, frequency and power [...] Read more.
Remotely performing real-time distributed generation control and a demand response is a basic aspect of the grid ancillary services provided by grid operators, both the transmission grid operators (TSOs) and distribution grid operators (DNOs), in order to ensure that voltage, frequency and power loads of the grid remain within safe limits. The stochastic production of electrical power to the grid from the distributed generators (DGs) from renewable energy sources (RES) in conjunction with the newly appeared stochastic demand consumers (i.e., electric vehicles) hardens the efforts of the DNOs to keep the grid’s operation within safe limits and prevent cascading blackouts while staying in compliance with the SAIDI and SAIFI indices during repair and maintenance operations. Also taking into consideration the aging of the existing grid infrastructure, and making it more prone to failure year by year, it is yet of great significance for the DNOs to have access to real-time feedback from the grid’s infrastructure—which is fast, has low-cost upgrade interventions, is easily deployed on the field and has a fast response potential—in order to be able to perform real-time grid management (RTGM). In this article, we present the development and deployment of a control system for DG units, with the potential to be installed easily to TSO’s and DNO’s substations, RES plants and consumers (i.e., charging stations of electric vehicles). This system supports a hybrid control mechanism, either via ripple signaling or through a network, with the latter providing real-time communication capabilities. The system can be easily installed on the electric components of the grid and can act as a gateway between the different vendors communication protocols of the installed electrical equipment. More specifically, a commercially available, low-cost board (Raspberry Pi) and a ripple control receiver are installed at the substation of a PV plant. The board communicates in real-time with a remote server (decision center) via a 5G modem and with the PV plants inverters via the Modbus protocol, which acquires energy production data and controls the output power of each inverter, while one of its digital inputs can be triggered by the ripple control receiver. The ripple control receiver receives on-demand signals with the HEDNO, triggering the digital input on the board. When the input is triggered, the board performs a predefined control command (i.e., lower the inverter’s power output to 50%). The board can also receive control commands directly from the remote server. The remote server receives real-time feedback of the acquired inverter data, the control signals from the ripple control receiver and the state and outcome of each performed control command. Full article
(This article belongs to the Special Issue Novel Energy Management Approaches in Microgrid Systems)
Show Figures

Figure 1

15 pages, 5904 KiB  
Article
Intra-Layer Inhomogeneity of the Anode in Commercial Li-Ion Batteries
by Tuo Fang, Guangsen Jiang, Yong Xia and Pengfei Ying
Batteries 2023, 9(9), 463; https://doi.org/10.3390/batteries9090463 - 12 Sep 2023
Cited by 2 | Viewed by 2061
Abstract
The Li intercalation reaction exhibits non-uniform behavior along the thickness direction of the electrode in a Li-ion battery. This non-uniformity, or intra-layer inhomogeneity (ILIH), becomes more serious as the charging and discharging speed increases. Substantial ILIH can lead to Li plating and the [...] Read more.
The Li intercalation reaction exhibits non-uniform behavior along the thickness direction of the electrode in a Li-ion battery. This non-uniformity, or intra-layer inhomogeneity (ILIH), becomes more serious as the charging and discharging speed increases. Substantial ILIH can lead to Li plating and the emergence of inhomogeneous inner stress, resulting in a decrease in battery service life and an increase in battery safety risks. In this study, an operando optical observation was conducted based on the color change reaction during Li intercalation in the anode. Subsequently, we introduce a novel quantitative method to assess ILIH in commercial Li-ion batteries. A specific ILIH value (KILIH) is first used in this article for ILIH characterization. An analysis of KILIH at different charging and discharging rates was conducted, alongside the exploration of KILIH-SOC trends and their underlying mechanisms. The proposed method exhibits favorable mathematical convergence and physical interpretability, as supported by the results and mechanism analysis. By enabling the assessment of ILIH evolution in response to SOC and (dis)charging rate variations, the proposed method holds significant potential for optimizing fast charging protocols in commercial batteries and contributing to the development of refined electrochemical battery models in future research. Full article
Show Figures

Figure 1

24 pages, 3693 KiB  
Article
Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum–Classical Vibronic Approaches—Application to Coumarin C153 in Methanol
by Javier Cerezo, Sheng Gao, Nicola Armaroli, Francesca Ingrosso, Giacomo Prampolini, Fabrizio Santoro, Barbara Ventura and Mariachiara Pastore
Molecules 2023, 28(9), 3910; https://doi.org/10.3390/molecules28093910 - 5 May 2023
Cited by 9 | Viewed by 3086
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of [...] Read more.
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum–classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl–methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions. Full article
Show Figures

Figure 1

11 pages, 3027 KiB  
Article
Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk
by Yan Lu, Jinxia Dai, Sen Zhang, Junqin Qiao, Hongzhen Lian and Li Mao
Foods 2023, 12(7), 1519; https://doi.org/10.3390/foods12071519 - 3 Apr 2023
Cited by 12 | Viewed by 3128
Abstract
It is widely acknowledged that casein is an important allergenic protein in milk which may cause danger to customers. The identification and confirmation of caseins through mass spectrometry requires the selection of suitable characteristic peptides. In this study, by means of matrix-assisted laser [...] Read more.
It is widely acknowledged that casein is an important allergenic protein in milk which may cause danger to customers. The identification and confirmation of caseins through mass spectrometry requires the selection of suitable characteristic peptides. In this study, by means of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), the three most representative specific peptides of caseins in cow milk were screened out with mass-to-charge ratios (m/z) of 830, 1195, and 1759, respectively. By comparing 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) MALDI matrices, it was found that DHB was more suitable for peptide detection with the limits of detection (LODs) of 0.1 mg/L for α, β-casein. Furthermore, on the basis of verifying the characteristic peptides of casein from cow milk, this protocol was applied to goat milk authentication. Cow milk addition in goat milk was investigated by using the screened specific peptides. The results showed that the adulteration could be identified when the proportion of cow milk was 1% or more. When applied to inspect adulteration in five brands of commercial goat milk, specific peptides of bovine casein were detected in four of them. The method has the advantages of strong reliability, high throughput, simple preprocessing, and fast speed, which can provide powerful help for prewarning dairy allergen. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

23 pages, 10317 KiB  
Article
A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles
by Xingyu Zhou, Xuebing Han, Yanan Wang, Languang Lu and Minggao Ouyang
Batteries 2023, 9(3), 181; https://doi.org/10.3390/batteries9030181 - 20 Mar 2023
Cited by 15 | Viewed by 5059
Abstract
The accuracy of capacity estimation is of great importance to the safe, efficient, and reliable operation of battery systems. In recent years, data-driven methods have emerged as promising alternatives to capacity estimation due to higher estimation accuracy. Despite significant progress, data-driven methods are [...] Read more.
The accuracy of capacity estimation is of great importance to the safe, efficient, and reliable operation of battery systems. In recent years, data-driven methods have emerged as promising alternatives to capacity estimation due to higher estimation accuracy. Despite significant progress, data-driven methods are mainly developed by experimental data under well-controlled charge–discharge processes, which are seldom available for practical battery health monitoring under realistic conditions due to uncertainties in environmental and operational conditions. In this paper, a novel method to estimate the capacity of large-format LiFePO4 batteries based on real data from electric vehicles is proposed. A comprehensive dataset consisting of 85 vehicles that has been running for around one year under diverse nominal conditions derived from a cloud platform is generated. A classification and aggregation capacity prediction method is developed, combining a battery aging experiment with big data analysis on cloud data. Based on degradation mechanisms, IC curve features are extracted, and a linear regression model is established to realize high-precision estimation for slow-charging data with constant-current charging. The selected features are highly correlated with capacity (Pearson correlation coefficient < 0.85 for all vehicles), and the MSE of the capacity estimation results is less than 1 Ah. On the basis of protocol analysis and mechanism studies, a feature set including internal resistance, temperature, and statistical characteristics of the voltage curve is constructed, and a neural network (NN) model is established for multi-stage variable-current fast-charging data. Finally, the above two models are integrated to achieve capacity prediction under complex and changeable realistic working conditions, and the relative error of the capacity estimation method is less than 0.8%. An aging experiment using the battery, which is the same as those equipped in the vehicles in the dataset, is carried out to verify the methods. To the best of the authors’ knowledge, our study is the first to verify a capacity estimation model derived from field data using an aging experiment of the same type of battery. Full article
(This article belongs to the Special Issue Battery Energy Storage in Advanced Power Systems)
Show Figures

Figure 1

20 pages, 5208 KiB  
Article
Highly Stable Core-Shell Nanocolloids: Synergy between Nano-Silver and Natural Polymers to Prevent Biofilm Formation
by Ekaterina A. Kukushkina, Helena Mateos, Nazan Altun, Maria Chiara Sportelli, Pelayo Gonzalez, Rosaria Anna Picca and Nicola Cioffi
Antibiotics 2022, 11(10), 1396; https://doi.org/10.3390/antibiotics11101396 - 12 Oct 2022
Cited by 6 | Viewed by 2950
Abstract
Active investment in research time in the development and study of novel unconventional antimicrobials is trending for several reasons. First, it is one of the ways which might help to fight antimicrobial resistance and bacterial contamination due to uncontrolled biofilm growth. Second, minimizing [...] Read more.
Active investment in research time in the development and study of novel unconventional antimicrobials is trending for several reasons. First, it is one of the ways which might help to fight antimicrobial resistance and bacterial contamination due to uncontrolled biofilm growth. Second, minimizing harmful environmental outcomes due to the overuse of toxic chemicals is one of the highest priorities nowadays. We propose the application of two common natural compounds, chitosan and tannic acid, for the creation of a highly crosslinked polymer blend with not only intrinsic antimicrobial properties but also reducing and stabilizing powers. Thus, the fast and green synthesis of fine spherically shaped Ag nanoparticles and further study of the composition and properties of the colloids took place. A positively charged core-shell nanocomposition, with an average size in terms of the metal core of 17 ± 4 nm, was developed. Nanoantimicrobials were characterized by several spectroscopic (UV-vis and FTIR) and microscopic (transmission and scanning electron microscopies) techniques. The use of AgNPs as a core and an organic polymer blend as a shell potentially enable a synergistic long-lasting antipathogen effect. The antibiofilm potential was studied against the food-borne pathogens Salmonella enterica and Listeria monocytogenes. The antibiofilm protocol efficiency was evaluated by performing crystal violet assay and optical density measurements, direct visualization by confocal laser scanning microscopy and morphological studies by SEM. It was found that the complex nanocomposite has the ability to prevent the growth of biofilm. Further investigation for the potential application of this stable composition in food packaging will be carried out. Full article
Show Figures

Graphical abstract

16 pages, 2377 KiB  
Article
Development of an Adequate Formation Protocol for a Non-Aqueous Potassium-Ion Hybrid Supercapacitor (KIC) through the Study of the Cell Swelling Phenomenon
by Marie-Eve Yvenat, Benoit Chavillon, Eric Mayousse, Fabien Perdu and Philippe Azaïs
Batteries 2022, 8(10), 135; https://doi.org/10.3390/batteries8100135 - 21 Sep 2022
Cited by 4 | Viewed by 2685
Abstract
Hybrid supercapacitors have been developed in the pursuit of increasing the energy density of conventional supercapacitors without affecting the power density or the lifespan. Potassium-ion hybrid supercapacitors (KIC) consist of an activated carbon capacitor-type positive electrode and a graphitic battery-type negative one working [...] Read more.
Hybrid supercapacitors have been developed in the pursuit of increasing the energy density of conventional supercapacitors without affecting the power density or the lifespan. Potassium-ion hybrid supercapacitors (KIC) consist of an activated carbon capacitor-type positive electrode and a graphitic battery-type negative one working in an electrolyte based on potassium salt. Overcoming the inherent potassium problems (irreversible capacity, extensive volume expansion, dendrites formation), the non-reproducibility of the results was a major obstacle to the development of this KIC technology. To remedy this, the development of an adequate formation protocol was necessary. However, this revealed a cell-swelling phenomenon, a well-known issue whether for supercapacitors or Li-ion batteries. This phenomenon in the case of the KIC technology has been investigated through constant voltage (CV) tests and volume measurements. The responsible phenomena seem to be the solid electrolyte interphase (SEI) formation at the negative electrode during the first use of the system and the perpetual decomposition of the electrolyte solvent at high voltage. Thanks to these results, a proper formation protocol for KICs, which offers good energy density (14 Wh·kgelectrochemical core−1) with an excellent stability at fast charging rate, was developed. Full article
Show Figures

Graphical abstract

19 pages, 4032 KiB  
Review
A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems
by Peter Makeen, Hani A. Ghali and Saim Memon
Future Transp. 2022, 2(1), 281-299; https://doi.org/10.3390/futuretransp2010015 - 4 Mar 2022
Cited by 35 | Viewed by 10763
Abstract
Despite fast technological advances, the worldwide adoption of electric vehicles (EVs) is still hampered mainly by charging time, efficiency, and lifespan. Lithium-ion batteries have become the primary source for EVs because of their high energy density and long lifetime. Currently, several methods intend [...] Read more.
Despite fast technological advances, the worldwide adoption of electric vehicles (EVs) is still hampered mainly by charging time, efficiency, and lifespan. Lithium-ion batteries have become the primary source for EVs because of their high energy density and long lifetime. Currently, several methods intend to determine the health of lithium-ion batteries fast-charging protocols. Filling a gap in the literature, a clear classification of charging protocols is presented and investigated here. This paper categorizes fast-charging protocols into the power management protocol, which depends on a controllable current, voltage, and cell temperature, and the material aspects charging protocol, which is based on material physical modification and chemical structures of the lithium-ion battery. In addition, each of the charging protocols is further subdivided into more detailed methodologies and aspects. A full evaluation and comparison of the latest studies is proposed according to the underlying parameterization effort, the battery cell used, efficiency, cycle life, charging time, and increase in surface temperature of the battery. The pros and cons of each protocol are scrutinized to reveal possible research tracks concerning EV fast-charging protocols. Full article
Show Figures

Figure 1

18 pages, 5085 KiB  
Article
Wearable Device for Observation of Physical Activity with the Purpose of Patient Monitoring Due to COVID-19
by Angelos-Christos Daskalos, Panayiotis Theodoropoulos, Christos Spandonidis and Nick Vordos
Signals 2022, 3(1), 11-28; https://doi.org/10.3390/signals3010002 - 6 Jan 2022
Cited by 20 | Viewed by 5205
Abstract
In late 2019, a new genre of coronavirus (COVID-19) was first identified in humans in Wuhan, China. In addition to this, COVID-19 spreads through droplets, so quarantine is necessary to halt the spread and to recover physically. This modern urgency creates a critical [...] Read more.
In late 2019, a new genre of coronavirus (COVID-19) was first identified in humans in Wuhan, China. In addition to this, COVID-19 spreads through droplets, so quarantine is necessary to halt the spread and to recover physically. This modern urgency creates a critical challenge for the latest technologies to detect and monitor potential patients of this new disease. In this vein, the Internet of Things (IoT) contributes to solving such problems. This paper proposed a wearable device that utilizes real-time monitoring to detect body temperature and ambient conditions. Moreover, the system automatically alerts the concerned person using this device. The alert is transmitted when the body exceeds the allowed temperature threshold. To achieve this, we developed an algorithm that detects physical exercise named “Continuous Displacement Algorithm” based on an accelerometer to see whether a potential temperature rise can be attributed to physical activity. The people responsible for the person in quarantine can then connect via nRF Connect or a similar central application to acquire an accurate picture of the person’s condition. This experiment included an Arduino Nano BLE 33 Sense which contains several other sensors like a 9-axis IMU, several types of temperature, and ambient and other sensors equipped. This device successfully managed to measure wrist temperature at all states, ranging from 32 °C initially to 39 °C, providing better battery autonomy than other similar devices, lasting over 12 h, with fast charging capabilities (500 mA), and utilizing the BLE 5.0 protocol for data wireless data transmission and low power consumption. Furthermore, a 1D Convolutional Neural Network (CNN) was employed to classify whether the user is feverish while considering the physical activity status. The results obtained from the 1D CNN illustrated the manner in which it can be leveraged to acquire insight regarding the health of the users in the setting of the COVID-19 pandemic. Full article
(This article belongs to the Special Issue Deep Learning and Transfer Learning)
Show Figures

Figure 1

21 pages, 13161 KiB  
Article
Intelligent Multi-Vehicle DC/DC Charging Station Powered by a Trolley Bus Catenary Grid
by Michéle Weisbach, Tobias Schneider, Dominik Maune, Heiko Fechtner, Utz Spaeth, Ralf Wegener, Stefan Soter and Benedikt Schmuelling
Energies 2021, 14(24), 8399; https://doi.org/10.3390/en14248399 - 13 Dec 2021
Cited by 12 | Viewed by 3271
Abstract
This article deals with the major challenge of electric vehicle charging infrastructure in urban areas—installing as many fast charging stations as necessary and using them as efficiently as possible, while considering grid level power limitations. A smart fast charging station with four vehicle [...] Read more.
This article deals with the major challenge of electric vehicle charging infrastructure in urban areas—installing as many fast charging stations as necessary and using them as efficiently as possible, while considering grid level power limitations. A smart fast charging station with four vehicle access points and an intelligent load management algorithm based on the combined charging system interface is presented. The shortcomings of present implementations of the combined charging system communication protocol are identified and discussed. Practical experiments and simulations of different charging scenarios validate the concept and show that the concept can increase the utilization time and the supplied energy by a factor of 2.4 compared to typical charging station installations. Full article
(This article belongs to the Special Issue Smart Energy Management for Electric and Hybrid Electric Vehicles)
Show Figures

Graphical abstract

Back to TopTop