Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Standards
2.3. Alkylation and Enzymatic Digestion
2.4. Mass Spectrometry
3. Results and Discussion
3.1. Selection of MALDI Matrices
3.2. Screening of Specific Peptides
3.3. Limit of Detection of Specific Peptides
3.4. Detection of Cow Milk Addition in Goat Milk
3.5. Detection of Adulteration in Actual Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampson, H.A.; O’Mahony, L.; Burks, A.W.; Plaut, M.; Lack, G.; Akdis, C.A. Mechanisms of food allergy. J. Allergy Clin. Immunol. 2018, 141, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petra, L.; Veronique, P.; Hans, W. Development and validation of a method for the quantification of milk proteins in food products based on liquid chromatography with mass spectrometric detection. J. AOAC Int. 2011, 94, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Sanz Ceballos, L.; Ramos Morales, E.; de la Torre Adarve, G.; Díaz Castro, J.; Pérez Matínez, L.; Sanz Sampelayo, M.R. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Liu, Y. A high sensitivity method of closed-tube loop-mediated isothermal amplification developed for visual and rapid detection of cow milk adulteration. Int. Dairy J. 2022, 127, 105214. [Google Scholar] [CrossRef]
- Giglioti, R.; Okino, C.H.; Azevedo, B.T.; Gutmanis, G.; Katiki, L.M.; de Sena Oliveira, M.C.; Filho, A.E.V. Novel lna probe-based assay for the A1 and A2 identification of β-casein gene in milk samples. Food Chem. Mol. Sci. 2021, 3, 100055. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.B.P.P.; Mafra, I. Cow’s milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products. Food Control 2020, 108, 106823. [Google Scholar] [CrossRef]
- Mayer, H.K.; Lenz, K.; Halbauer, E.-M. “A2 milk” authentication using isoelectric focusing and different PCR techniques. Food Res. Int. 2021, 147, 110523. [Google Scholar] [CrossRef]
- Atrick, W.; Hans, S.; Angelika, P. Determination of the bovine food allergen casein in white wines by quantitative indirect ELISA, SDS-PAGE, Western blot and immunostaining. J. Agric. Food Chem. 2009, 57, 8399–8405. [Google Scholar] [CrossRef]
- Moen, L.H.; Sletten, G.B.; Miller, I.; Plassen, C.; Gutleb, A.C.; Egaas, E. Rocket immunoelectrophoresis and ELlSA as complementary methods for the detection of casein in foods. Food Agr. Immunol. 2005, 16, 83–90. [Google Scholar] [CrossRef] [Green Version]
- He, S.F.; Li, X.; Gao, J.Y.; Tong, P.; Chen, H.B. Development of a H2O2-sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine β-lactoglobulin by monoclonal antibody. J. Sci. Food Agric. 2018, 98, 519–526. [Google Scholar] [CrossRef]
- Pilolli, R.; Angelis, E.D.; Monaci, L. Streamlining the analytical workflow for multiplex MS/MS allergen detection in processed foods. Food Chem. 2017, 221, 1747–1753. [Google Scholar] [CrossRef]
- Cristina, L.; Elena, A.; Davide, C.; Giribaldi, M.; Lucia, D.; Cristiano, G.; Marco, A.; Carlo, R.; Cavallarin, L.; Gabriella, G.M. Validation of a mass spectrometry-based method for milk traces detection in baked food. Food Chem. 2016, 199, 119–127. [Google Scholar] [CrossRef]
- Mota, M.V.T.; Ferreira, I.M.P.L.V.O.; Oliveira, M.B.P.; Rocha, C.; Teixeira, J.A.; Torres, D.; Goncalves, M.P. Enzymatic hydrolysis of whey protein concentrates: Peptide HPLC profiles. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 2625–2639. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.; Raymond, P.; Ben-Rejeb, S.; Lau, B. Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. J. Agric. Food Chem. 2006, 54, 1604–1610. [Google Scholar] [CrossRef]
- Monaci, L.; Losito, I.; Palmisano, F.; Visconti, A. Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 4300–4305. [Google Scholar] [CrossRef]
- Horká, M.; Šalplachta, J.; Karásek, P.; Roth, M. Sensitive identification of milk protein allergens using on-line combination of transient isotachophoresis/micellar electrokinetic chromatography and capillary isoelectric focusing in fused silica capillary with roughened part. Food Chem. 2022, 377, 131986. [Google Scholar] [CrossRef]
- Mohamed, H.; Johansson, M.; Lundh, Å.; Nagy, P.; Kamal-Eldin, A. Short communication: Caseins and α-lactalbumin content of camel milk (Camelus dromedarius) determined by capillary electrophoresis. J. Dairy Sci. 2020, 103, 11094–11099. [Google Scholar] [CrossRef]
- Gasilova, N.; Gassner, A.L.; Girault, H.H. Analysis of major milk whey proteins by immunoaffinity capillary electrophoresis coupled with MALDI-MS. Electrophoresis 2012, 33, 2390–2398. [Google Scholar] [CrossRef] [Green Version]
- Wieser, A.; Schneider, L.; Jung, J.; Schubert, S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 2012, 93, 965–974. [Google Scholar] [CrossRef]
- Russo, R.; Rega, C.; Chambery, A. Rapid detection of water buffalo ricotta adulteration or contamination by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 497–503. [Google Scholar] [CrossRef]
- Calvano, C.D.; De Ceglie, C.; Monopoli, A.; Zambonin, C.G. Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests. J. Mass Spectrom. 2012, 47, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Fanton, C.; Delogu, G.; Maccioni, E. Matrix-assisted laser desorption/ionization mass spectrometry in the dairy industry 2. The protein fingerprint of ewe cheese and its application to detection of adulteration by bovine milk. Rapid Commun. Mass Spectrom. 1998, 12, 1569–1573. [Google Scholar] [CrossRef]
- Cozzolino, R.; Passalacqua, S.; Salemi, S.; Malvagna, P.; Spina, E.; Garozzo, D. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 2001, 36, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, N.; Xu, Y.; Goodacre, R. MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal. Bioanal. Chem. 2001, 399, 3491–3502. [Google Scholar] [CrossRef]
- Di Girolamo, F.; Masotti, A.; Salvatori, G.; Scapaticci, M.; Muraca, M.; Putignani, L. A sensitive and effective proteomic approach to identify she-donkey’s and goat’s milk adulterations by MALDI-TOF MS fingerprinting. Int. J. Mol. Sci. 2014, 15, 13697–13719. [Google Scholar] [CrossRef] [Green Version]
- Sassi, M.; Arena, S.; Scaloni, A. MALDI-TOF-MS platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations. J. Agric. Food Chem. 2015, 63, 6157–6171. [Google Scholar] [CrossRef]
- Sanz Ceballos, L.; Sanz Sampelayo, M.R.; Gil Extremera, F.; Rodríguez Osorio, M. Evaluation of the allergenicity of goat milk, cow milk, and their lactosera in a guinea pig model. J. Dairy Sci. 2009, 92, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Hillenkamp, F.; Peter-Katalinic, J. MALDI MS: A Practical Guide to Instrumentation, Methods and Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2007; pp. 18–20. [Google Scholar]
- Zhang, C.J.; Zhang, H.X.; Litchfield, D.W.; Yeung, K.K.C. CHCA or DHB? Systematic comparison of the two most commonly used matrices for peptide mass fingerprint analysis with MALDI-MS. Spectroscopy 2010, 25, 48–62. [Google Scholar] [CrossRef]
- Thiede, B.; Hohenwarter, W.; Krah, A.; Mattow, J.; Schmid, M.; Schmidt, F.; Jungblut, P.R. Peptide mass fingerprinting. Methods 2005, 35, 237–247. [Google Scholar] [CrossRef]
Mass | Protein | Position | #MC | Peptide Sequence |
---|---|---|---|---|
830.4519 | β-casein | 192–198 | 0 | AVPYPQR |
1195.6793 | αs2-casein | 130–140 | 0 | NAVPITPTLNR |
1759.9449 | αs1-casein | 23–37 | 0 | HQGLPQEVLNENLLR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Dai, J.; Zhang, S.; Qiao, J.; Lian, H.; Mao, L. Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk. Foods 2023, 12, 1519. https://doi.org/10.3390/foods12071519
Lu Y, Dai J, Zhang S, Qiao J, Lian H, Mao L. Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk. Foods. 2023; 12(7):1519. https://doi.org/10.3390/foods12071519
Chicago/Turabian StyleLu, Yan, Jinxia Dai, Sen Zhang, Junqin Qiao, Hongzhen Lian, and Li Mao. 2023. "Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk" Foods 12, no. 7: 1519. https://doi.org/10.3390/foods12071519
APA StyleLu, Y., Dai, J., Zhang, S., Qiao, J., Lian, H., & Mao, L. (2023). Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk. Foods, 12(7), 1519. https://doi.org/10.3390/foods12071519