Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Forge NxT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3997 KB  
Article
Investigation of Die Design Influence on Required Forces in Near-Solidus Forging of Complex Components
by John Damilola Sunday, Alberto Murillo-Marrodán, Eduardo García and Carl Slater
J. Manuf. Mater. Process. 2025, 9(7), 245; https://doi.org/10.3390/jmmp9070245 - 21 Jul 2025
Viewed by 548
Abstract
This study investigates the influence of die design parameters on forging forces and thermomechanical responses during near-solidus forging (NSF) of complex steel components. Finite element simulations using Forge NxT analyzed six die configurations varying geometry orientation, gating system design (conical, cylindrical, curvilinear), and [...] Read more.
This study investigates the influence of die design parameters on forging forces and thermomechanical responses during near-solidus forging (NSF) of complex steel components. Finite element simulations using Forge NxT analyzed six die configurations varying geometry orientation, gating system design (conical, cylindrical, curvilinear), and draft angles (20° and 30°), with 42CrMo4E steel modeled at 1360 °C. Key responses including punch and lateral forces, temperature distribution, strain localization, and die stress were evaluated to assess design effects. Results showed that the gating system geometry critically controls material flow and load requirements. The conical gating design with a 30° draft angle yielded the lowest punch (141.54 t) and lateral (149.44 t) forces, alongside uniform temperature and strain distributions, which improve product quality by minimizing defects and incomplete filling. Lower lateral forces also reduce die opening risk, enhancing die life. In contrast, the base case with a 20° draft angle exhibited higher forces and uneven strain, increasing die stress and compromising part quality. These findings highlight the importance of selecting appropriate gating systems and draft angles to reduce forming loads, increase die life, and improve uniform material flow, contributing to better understanding of die design in NSF of complex steel components. Full article
Show Figures

Figure 1

27 pages, 3720 KB  
Article
Thermal Management in Multi-Stage Hot Forging: Computational Advances in Contact and Spray-Cooling Modelling
by Gonzalo Veiga-Piñeiro, Elena Martin-Ortega and Salvador Pérez-Betanzos
Materials 2025, 18(14), 3318; https://doi.org/10.3390/ma18143318 - 15 Jul 2025
Viewed by 648
Abstract
Innovative approaches in hot forging, such as the use of floating dies, which aim to minimise burr formation by controlling material flow, require precise management of die geometry distortions. These distortions, primarily caused by thermal gradients, must be tightly controlled to prevent malfunctions [...] Read more.
Innovative approaches in hot forging, such as the use of floating dies, which aim to minimise burr formation by controlling material flow, require precise management of die geometry distortions. These distortions, primarily caused by thermal gradients, must be tightly controlled to prevent malfunctions during production. This study introduces a comprehensive thermal analysis framework that captures the complete forging cycle—from billet transfer and die closure to forging, spray-cooling, and lubrication. Two advanced heat transfer models were developed: a pressure- and lubrication-dependent contact heat transfer model and a spray-cooling model that simulates fluid dispersion over die surfaces. These models were implemented within the finite element software FORGE-NxT to evaluate the thermal behaviour of dies under realistic operating conditions. These two new models, contact and spray-cooling, implemented within a full-cycle thermal simulation and validated with industrial thermal imaging data, represent a novel contribution. The simulation results showed an average temperature deviation of just 5.8%, demonstrating the predictive reliability of this approach. This validated framework enables accurate estimation of thermal fields in the dies, and offers a practical tool for optimising process parameters, reducing burr formation, and extending die life. Moreover, its structure and methodology can be adapted to various hot forging applications where thermal control is critical to ensuring part quality and process efficiency. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Manufacturing Processes)
Show Figures

Figure 1

24 pages, 11244 KB  
Article
The Influence of Hot Deformation on the Mechanical and Structural Properties of Mild Carbon Steel for Industrial Application
by Mariana Pop, Ioana-Monica Sas-Boca, Dan Frunză and Adriana Neag
Metals 2025, 15(7), 756; https://doi.org/10.3390/met15070756 - 4 Jul 2025
Viewed by 320
Abstract
The aim of this work was to study the influence of temperature and strain rate on the formability and structure of C22 steel. This study was based on tensile and compression tests. In the case of the compression test, the study of the [...] Read more.
The aim of this work was to study the influence of temperature and strain rate on the formability and structure of C22 steel. This study was based on tensile and compression tests. In the case of the compression test, the study of the influence that the process parameters (temperature and strain rate) have on the nonuniformity of the deformation was taken into account. This work presents an experimental analysis of the effects of temperature and strain rate on the mechanical and structural properties of C22 mild steel. Uniaxial tension and compression testing at high temperatures (800 °C, 900 °C, 1000 °C, and 1100 °C) and strain rates 0.001 1/s, 0.012 1/s, and 0.089 1/s for tension and 6.35 1/s, 5.72 1/s, 4.67 1/s and, respectively, 0.106 1/s for the compression hammer and hydraulic press served as the foundation for the studies. Analysis was carried out on how temperature and strain rate affected yield stress, strain to fracture, hardness, and structural evolution. Additionally, the nonuniformity of the deformations obtained at various temperature and strain rate values was examined. The fracture behavior of C22 steel can be enhanced by raising the deformation temperature and lowering the strain rate. In the tensile tests, the study of stress and strain distribution and the variation in the normalized Latham–Cockroft failure criterion was performed by numerical simulation using FORGE® NxT 4.1 software. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metals and Alloys)
Show Figures

Figure 1

16 pages, 3886 KB  
Article
The Effect of the Burnishing Process on the Strain Rate and State Stress in Hollow Steel Tubes
by Tomasz Cyryl Dyl and Wioletta Kuśmierska-Matyszczak
Metals 2025, 15(7), 694; https://doi.org/10.3390/met15070694 - 22 Jun 2025
Cited by 1 | Viewed by 436
Abstract
In this paper, we propose the use of burnishing internal cylindrical surfaces with a hard tool in a mandrel shape. The burnishing force is exerted mainly by the press slide, which has pushing properties, moving the burnisher through the hollow tube. The burnishing [...] Read more.
In this paper, we propose the use of burnishing internal cylindrical surfaces with a hard tool in a mandrel shape. The burnishing force is exerted mainly by the press slide, which has pushing properties, moving the burnisher through the hollow tube. The burnishing of hollow surfaces is used as the finishing step for elements such as tubes. The purpose of using the burnishing method may be, for example, to increase the smoothness and accuracy of the object, for the improvement of its functional and operational properties, for economic reasons, or to increase its resistance to corrosion and fatigue. The depth of plastic deformation and the accuracy of processing are the main differences in the machining effects for individual burnishing methods. The selection of the burnishing conditions depends on the method of exerting pressure from the burnishing elements on the machined surface, which can be elastic or rigid. Computer simulations of the burnishing process were performed in FORGE® NxT 2.1 software. A numerical analysis was performed using a three-dimensional triangular mesh. The theoretical and experimental research was determined to have very good compatibility, as determined by the numerically calculated results and by the mean deviation of residual stress method. This research analyzed the stress and strain state after the burnishing process, and a depth of deformation of approximately 20 μm to 30 μm in the material was determined. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

16 pages, 4132 KB  
Article
Analysis of the Rolling Process of Alloy 6082 on a Three-High Skew Rolling Mill
by Rail Sovetbayev, Yerik Nugman, Yerzhan Shayakhmetov, Yermek Abilmazhinov, Anna Kawalek and Kirill Ozhmegov
Materials 2025, 18(11), 2618; https://doi.org/10.3390/ma18112618 - 3 Jun 2025
Viewed by 536
Abstract
Modern requirements for aluminum alloys used in mechanical engineering and aviation include increased strength characteristics and refined microstructure. One of the promising methods for improving the properties of aluminum alloys is rolling on a three-high skew rolling mill, which provides intense plastic deformation [...] Read more.
Modern requirements for aluminum alloys used in mechanical engineering and aviation include increased strength characteristics and refined microstructure. One of the promising methods for improving the properties of aluminum alloys is rolling on a three-high skew rolling mill, which provides intense plastic deformation and a fine-grained structure. This study describes the results of numerical modeling of the rolling process of aluminum alloy 6082 rods in a three-high skew-type mill. Numerical modeling of alloy 6082 was conducted using the ForgeNxT 2.1 software designed to simulate metal-forming processes, including rolling. The rheological behavior of the material under study was investigated by compression tests using a Gleeble 3800 plastometer (“DSI”, Austin, TX, USA), which enabled the determination of the main parameters of material flow under specified conditions. The process of rolling bars of alloy 6082 on a three-high skew mill was numerically analyzed in the temperature range of 350–400 °C. This allowed for the study of the distribution of stresses, temperatures, and strain rates from the rolling mode. A physical experiment was conducted to validate the results of numerical modeling. The obtained results enabled the identification of rolling modes that promote microstructure refinement and enhance the mechanical properties of the alloy. Full article
Show Figures

Figure 1

24 pages, 13675 KB  
Article
Low-Waste Technology for High-Precision Connecting Rod Forging Manufacturing
by Łukasz Dudkiewicz and Marek Hawryluk
Materials 2025, 18(2), 443; https://doi.org/10.3390/ma18020443 - 18 Jan 2025
Cited by 2 | Viewed by 1455
Abstract
This study refers to the application of an advanced tool in the form of numerical modelling in order to develop a low-waste hot die forging technology to produce a connecting rod forging. The technology aims at ensuring a limited amount of the charge [...] Read more.
This study refers to the application of an advanced tool in the form of numerical modelling in order to develop a low-waste hot die forging technology to produce a connecting rod forging. The technology aims at ensuring a limited amount of the charge material is necessary to produce one forging, as well as minimizing forging forces, and thus the electric energy consumption. The study includes a verification of the current production technology, which constituted the basis for the construction and development of a numerical model. A new construction of the forging tools was developed, with an additional pre-roughing pass (0X). The new process consists of die forging in the pre-roughing pass (0X), the roughing pass (1X) and the finishing impression (2X). Numerical modelling was subsequently conducted with the use of the Forge 3.0 NxT software. A detailed analysis was conducted on the accuracy of the tool impression filling (including the pre-roughing pass) by the deformed material, the distribution of temperatures for the forgings and the plastic deformations, as well as the courses of forging forces and energy. The results were verified under industrial conditions and compared with the forgings obtained in the previous technology (a roughing pass and a finishing impression). As a result of introducing the pre-roughing pass 0X, the forces were distributed between three impressions, including the especially developed pre-roughing pass. It was confirmed that the abovementioned changes in terms of forging tool construction had a positive effect on relieving the roughing pass and the finishing impression as well as limiting the charge material, and they also lowered the process energy consumption by 10%. This study also validated the relevance of using FE modelling to verify processes under virtual conditions before being implemented under industrial conditions. Therefore, the proposed approach based on multi-variant numerical simulations can be successfully used to improve other manufacturing processes in terms of reducing energy and material consumption and increasing tool service life. Full article
(This article belongs to the Special Issue Non-conventional Machining: Materials and Processes)
Show Figures

Figure 1

14 pages, 6001 KB  
Article
Analysis of Copper Welding Parameters during the Manufacture of Tubular Profiles Using Unconventional Extrusion Processes
by Marcin Knapiński, Teresa Bajor, Anna Kawałek and Grzegorz Banaszek
Materials 2024, 17(19), 4737; https://doi.org/10.3390/ma17194737 - 27 Sep 2024
Cited by 1 | Viewed by 1082
Abstract
In recent years, there has been a lack of information in the literature regarding the extrusion and connection of closed profiles from oxygen-free copper in bridge dies. Available studies contain information on the processes of extrusion and connection of profiles from aluminium alloys [...] Read more.
In recent years, there has been a lack of information in the literature regarding the extrusion and connection of closed profiles from oxygen-free copper in bridge dies. Available studies contain information on the processes of extrusion and connection of profiles from aluminium alloys and various types of steel. However, there is a lack of detailed data on the values of technological parameters for which copper is joined in the extrusion process. Therefore, one of the goals of this work is to fill the gap in the literature regarding the extrusion of oxygen-free copper in bridge dies. In this work, the authors determined the thermo-mechanical conditions at which oxygen-free copper will be joined. This paper describes the effects of charge temperature and hydrostatic pressure in the weld zone of a bridge die on copper bonding in the fabrication of tubular profiles. Physical tests of the welding process under the conditions of upsetting a material consisting of two parts were carried out using the Gleeble 3800 metallurgical process simulator with the PocketJaw module in the standard configuration for SICO (strain-induced crack opening) tests. For the numerical simulations, the commercial computer programme FORGE®NxT 2.1. using the finite element method (FEM) was used. Based on the analysis of the test results obtained, it was found that complete material bonding during the extrusion process could be achieved for a charge temperature higher than 600 °C and a hydrostatic pressure of 45–65 MPa. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 7594 KB  
Article
Development and Implementation of Die Forging Technology Eliminating Flange Welding Operations in Conveyor Driver Forging
by Marek Hawryluk, Sławomir Polak, Marcin Rychlik, Artur Barełkowski, Jakub Jakuć and Jan Marzec
Materials 2024, 17(13), 3281; https://doi.org/10.3390/ma17133281 - 3 Jul 2024
Cited by 3 | Viewed by 1698
Abstract
This article presents research results regarding the development of a new manufacturing technology for an element assigned to belt conveyor flights in the extractive industry through hot die forging (of a forging with a double-sided flange) instead of the currently realized process of [...] Read more.
This article presents research results regarding the development of a new manufacturing technology for an element assigned to belt conveyor flights in the extractive industry through hot die forging (of a forging with a double-sided flange) instead of the currently realized process of producing such an element by welding two flanges onto a sleeve or one flange onto a flange forging. The studies were conducted to design an innovative and low-waste technology, mainly with the use of numerical modelling and simulations, partially based on the current technology of producing a flange forging. Additionally, during the development of the forging process, the aspect of robotization was considered, both in respect of the forging tools and the process of transportation and relocation of forging between the impressions and the forging aggregates. A thermo-mechanical model of the process of producing a belt conveyor flight forging with deformable tools was elaborated by means of the Forge 3NxT program. The results of the conducted numerical modelling made it possible, among other things, to develop models of forging tools ensuring the proper manner of material flow and filling of the impressions, as well as temperature and plastic deformation distributions in the forging and also the detection of possible forging defects. For the technology elaborated this way, the tools were built together with a special instrument for flanging in the metal, and technological tests were performed under industrial conditions. The produced forgings were verified through a measurement of the geometry, by way of 3D scanning, as well as the hardness, which definitively confirmed the properness of the developed technology. The obtained technological test results made it possible to confirm that the elaborated construction, as well as the tool impressions, ensure the possibility of implementing the designed technology with the use of robotization and automatization of the forging process. Full article
Show Figures

Figure 1

16 pages, 10059 KB  
Article
Increasing the Working Time of Forging Tools Used in the Industrial Process of Producing a Disk-Type Forging Assigned for a Gearbox through the Application of Hybrid Layers
by Marek Hawryluk, Łukasz Dudkiewicz, Jacek Borowski, Jan Marzec and Roger Tkocz
Materials 2024, 17(12), 3005; https://doi.org/10.3390/ma17123005 - 19 Jun 2024
Cited by 1 | Viewed by 1319
Abstract
The article discusses the phenomena and destructive mechanisms occurring on the surface of 1.2344 steel dies used during the hot forging of disc-type forgings. Preliminary research has shown that gas nitriding alone, used so far, is insufficient due to the occurrence of destructive [...] Read more.
The article discusses the phenomena and destructive mechanisms occurring on the surface of 1.2344 steel dies used during the hot forging of disc-type forgings. Preliminary research has shown that gas nitriding alone, used so far, is insufficient due to the occurrence of destructive mechanisms other than abrasive wear, such as thermal and thermomechanical fatigue, which cause the average durability of such tools to be approximately 5000 forgings. Analyses were also carried out to assess the load on forging tools using numerical modeling (Forge 3.0NxT), which confirmed the occurrence of large and cyclically changing thermal and mechanical loads during the forging process. Therefore, in order to increase operational durability, it was decided to use two types of hybrid layers, differing in the PVD coating used: TiCrAlN and CrN, and then subjected to gas nitriding (GN). The obtained results showed that, depending on the area of the tool and the current working conditions, the applied PVD coatings protect the surface layer of the tool against the dominant destructive mechanisms. In both cases, the strength increased to the level of 7000 forgings, the tools could continue to work, and globally, slightly better results were obtained for the GN+TiCrAlN layer. The CrN-type layer protects the tool more against thermal fatigue, while the TiCrAlN layer is more resistant to abrasive wear. In areas where the hybrid layer was worn, a decrease in hardness was observed from 1300 HV to 600–700 HV, and in places of intense material flow (front—point 2 and tool bridge—point 9) the hardness dropped to below 400 HV, which may indicate local tempering of the material. Moreover, the research has shown that each process and tool should be analyzed individually, and the areas in the tool where particular destructive mechanisms dominate should be identified, so as to further protect the forging tool by using appropriate protective coatings in these areas. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

18 pages, 3353 KB  
Article
Improvement of the Technology of Precision Forging of Connecting Rod-Type Forgings in a Multiple System, in the Aspect of the Possibilities of Process Robotization by Means of Numerical Modeling
by Marek Hawryluk, Łukasz Dudkiewicz, Sławomir Polak, Artur Barełkowski, Adrian Miżejewski and Tatiana Szymańska
Materials 2024, 17(5), 1087; https://doi.org/10.3390/ma17051087 - 27 Feb 2024
Cited by 7 | Viewed by 2052
Abstract
The study refers to the application of numerical modeling for the improvement of the currently realized precision forging technology performed on a hammer to produce connecting rod forgings in a triple system through the development of an additional rolling pass to be used [...] Read more.
The study refers to the application of numerical modeling for the improvement of the currently realized precision forging technology performed on a hammer to produce connecting rod forgings in a triple system through the development of an additional rolling pass to be used before the roughing operation as well as preparation of the charge to be held by the robot’s grippers in order to implement future process robotization. The studies included an analysis of the present forging technology together with the dimension–shape requirements for the forgings, which constituted the basis for the construction and development of a thermo-mechanical numerical model as well as the design of the tool construction with the consideration of the additional rolling pass with the use of the calculation package Forge 3.0 NxT. The following stage of research was the realization of multi-variant numerical simulations of the newly developed forging process with the consideration of robotization, as a result of which the following were obtained: proper filling of the tool impressions (including the roller’s impression) by the deformed material, the temperature distributions for the forging and the tools as well as plastic deformations (considering the thermally activated phenomena), changes in the grain size as well as the forging force and energy courses. The obtained results were verified under industrial conditions and correlated with respect to the forgings obtained in the technology applied so far. The achieved results of technological tests confirmed that the changes introduced into the tool construction and the preform geometry reduced the diameter, and thus also the volume, of the charge as well as provided a possibility of implementing robotization and automatization of the forging process in the future. The obtained results showed that the introduction of an additional rolling blank resulted in a reduction in forging forces and energy by 30% while reducing the hammer blow by one. Attempts to implement robotization into the process were successful and did not adversely affect the geometry or quality of forgings, increasing production efficiency. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing: Design, Performance, and Applications)
Show Figures

Figure 1

20 pages, 14266 KB  
Article
Analysis of the Effect of the Elongation Operation on the Welding of Internal Metallurgical Discontinuities
by Grzegorz Banaszek, Teresa Bajor, Anna Kawałek and Marcin Knapiński
Materials 2023, 16(20), 6738; https://doi.org/10.3390/ma16206738 - 18 Oct 2023
Viewed by 1117
Abstract
This article discusses the results of our research into the effect of elongation on the welding of internal metallurgical discontinuities for two different geometrical shapes of a model feedstock of a selected magnesium alloy. Model discontinuities, specifically those of the metallurgical void type, [...] Read more.
This article discusses the results of our research into the effect of elongation on the welding of internal metallurgical discontinuities for two different geometrical shapes of a model feedstock of a selected magnesium alloy. Model discontinuities, specifically those of the metallurgical void type, were placed in various local zones of the modelled feedstock to check the influence of their location on their welding. The numerical modelling was carried out using the Forge®NxT2.1 application based on the finite element method. The results of the numerical tests were verified in laboratory conditions using the Gleeble simulator of metallurgical processes. Based on this research, it was found that the geometric shape of the feedstock material and the location of internal metallurgical discontinuities have a significant impact on the welding of discontinuities. The optimal values of the main process parameters of the elongation operation in flat dies were also determined for use in individual forging stages in order to eliminate internal metallurgical discontinuities. On the basis of the numerical studies carried out and their verification under laboratory conditions, it was concluded that a relative draft equal to 35% should be applied to weld the metallurgical discontinuities, which would result in a favorable hydrostatic pressure distribution within the discontinuities. Full article
Show Figures

Figure 1

16 pages, 8447 KB  
Article
Determination of the Friction Coefficient in the Ring Test for Selected Lubricants Dedicated to the Hot Forging Process of Precision Steel Products
by Łukasz Dudkiewicz, Marek Hawryluk, Jacek Ziemba, Adrian Miżejewski, Sławomir Polak, Jan Marzec and Tatiana Szymańska
Lubricants 2023, 11(9), 399; https://doi.org/10.3390/lubricants11090399 - 13 Sep 2023
Cited by 2 | Viewed by 3001
Abstract
This paper concerns an analysis of the tribological conditions and the effect of the use of seven lubricating agents dedicated to a process of precision forging on a hammer in multiple systems. In particular, it performs a review of the most popular methods [...] Read more.
This paper concerns an analysis of the tribological conditions and the effect of the use of seven lubricating agents dedicated to a process of precision forging on a hammer in multiple systems. In particular, it performs a review of the most popular methods of determining the friction coefficient in the aspect of the obtained results. On this basis, the selected method of friction coefficient determination was a hot ring upsetting test for two forging materials: carbon steel (16MnCrS5) and stainless steel (316Ti). The test samples were prepared in the shape of a ring with precisely defined dimensions, and, next, they were subjected to an upsetting process on a hydraulic hammer under conditions similar to those present in an industrial forging process, and the characteristic geometrical features and friction coefficients were determined. Additionally, measurements of the geometrical changes were made with the use of 3D scanning for the extreme friction coefficient values in order to perform their comparison. The obtained results showed that for carbon steel the lowest achieved value was in the case of Lubrodal F185 (µ = 0.24) A and the highest for Lubr_hot_press 123HD (µ = 0.32); in turn, for stainless steel the lowest value µ = 0.19 was achieved for Graphitex CR 7 and the highest for Graphitex CR720K (µ = 0.29). Moreover, for these conditions, numerical modeling was conducted in the Forge 3.0 NxT program, in order to analyze the obtained results and verify the correctness and agreement of the friction coefficients determined in the ring test, on the basis of the geometrical changes. The data obtained in the computer simulation confirmed the possibility of obtaining a good agreement between the FEM (Finite Elements Method) and experimental trials, as the modeling provides reliable information on the plastic deformations and can be used as an alternative method of examining the friction conditions in industrial forging processes. Full article
Show Figures

Figure 1

14 pages, 3039 KB  
Article
Continuous Extrusion Forming Technology of Magnesium Alloy Thin-Walled Tubules
by Xi Yang, Shihan Sun, Zheng Zhou, Xuewen Chen and Guoqing Chen
Materials 2023, 16(17), 5803; https://doi.org/10.3390/ma16175803 - 24 Aug 2023
Cited by 1 | Viewed by 2002
Abstract
This paper proposes a new technology of superimposed billet extrusion-forming for thin-walled magnesium alloy tubes. This process represents an improvement over the current technology, which suffers from low production efficiency, poor forming accuracy, and low material utilization. We developed a detailed forming process [...] Read more.
This paper proposes a new technology of superimposed billet extrusion-forming for thin-walled magnesium alloy tubes. This process represents an improvement over the current technology, which suffers from low production efficiency, poor forming accuracy, and low material utilization. We developed a detailed forming process and mold structure, in which the excess material of the front billet is extruded out of the mold as the rear billet pushes on the front one. Through continuous extrusion, online direct water cooling, and cutting, the automated continuous production of thin-walled tubules is achieved. The optimization of the mandrel structure and its hovering action is also included, with the aim of improving the lifespan of the mandrel and the accuracy of tube size. The numerical simulation method evaluates the effect of the die angle (α) on the tube, formed using FORGE NXT 1.1. The results show that for an angle of less than 70°, the defect length of the tube decreases as the die angle decreases, forming an ordered flow of superimposed billets. If the angle is less than 50°, the two adjacently formed tubes separate automatically, with no need for the subsequent cutting process. The best choice of die angle is about 50°, which takes into account the effect of the change in extrusion force. Full article
Show Figures

Figure 1

29 pages, 13633 KB  
Article
Modeling of Closure of Metallurgical Discontinuities in the Process of Forging Zirconium Alloy
by Grzegorz Banaszek, Kirill Ozhmegov, Anna Kawałek, Sylwester Sawicki, Alexandr Arbuz and Abdrakhman Naizabekov
Materials 2023, 16(15), 5431; https://doi.org/10.3390/ma16155431 - 2 Aug 2023
Cited by 4 | Viewed by 1344
Abstract
This article presents the results of testing the conditions of closing foundry voids during the hot forging operation of an ingot made of zirconium with 1% Nb alloy and use of physical and numerical modeling, continuing research presented in a previous thematically related [...] Read more.
This article presents the results of testing the conditions of closing foundry voids during the hot forging operation of an ingot made of zirconium with 1% Nb alloy and use of physical and numerical modeling, continuing research presented in a previous thematically related article published in the journal Materials. The study of the impact of forging operation parameters on the rheology of zirconium with 1% Nb alloy was carried out on a Gleeble 3800 device. Using the commercial FORGE®NxT 2.1 program, a numerical analysis was performed of the influence of thermo-mechanical parameters of the hot elongation operation in trapezoidal flat and rhombic trapezoidal anvils on the closure of foundry voids. The analysis of the obtained test results was used to formulate recommendations on the technology of hot forging and the anvilgeometry, ensuring closure of foundry voids. Based on their research, the authors conclude that the shape of the deformation basin and the value and hydrostatic pressure have the greatest influences on the closure of foundry voids. Full article
(This article belongs to the Special Issue Metalworking Processes: Theoretical and Experimental Study)
Show Figures

Figure 1

18 pages, 5933 KB  
Article
An Inverse Optimization Method for the Parameter Determination of the High-Temperature Damage Model and High-Temperature Damage Graph of Ti6Al4V Alloy
by Xuewen Chen, Zhen Yang, Bo Zhang, Jiawei Sun, Zhiyi Su and Yiran Mao
Materials 2023, 16(13), 4770; https://doi.org/10.3390/ma16134770 - 1 Jul 2023
Cited by 2 | Viewed by 1742
Abstract
Ti6AL4V alloy is widely used in the biomedical and energy vehicle industries, among others. Ti6Al4V alloy cannot be fabricated at ambient temperatures; hence, it requires hot forming. However, this method is susceptible to crack defects. The crack defect problem of Ti6AL4V alloy in [...] Read more.
Ti6AL4V alloy is widely used in the biomedical and energy vehicle industries, among others. Ti6Al4V alloy cannot be fabricated at ambient temperatures; hence, it requires hot forming. However, this method is susceptible to crack defects. The crack defect problem of Ti6AL4V alloy in the hot-forming process cannot be ignored, so we must develop a precise hot-forming damage prediction model. In this study, three high-temperature damage models of Ti6Al4V alloy were developed, considering the temperature and strain rate. These models were derived from the normalized Cockcroft and Latham (NCL), Oyane, and Rice and Tracey (RT) damage models. The damage parameters of the models were identified using a genetic algorithm combined with finite element simulation. The force accumulation error of the Ti6AL4V alloy specimen, which was obtained from a simulated thermal tensile test and an actual test, was used as an optimization target function. Then, the damage parameters were optimized using the genetic algorithm until the target function reached the minimum value. Finally, the optimal damage model parameter was obtained. Through program development, the three high-temperature damage models established in this paper were embedded into Forge® NxT 2.1 finite element software. The simulated thermal tensile test of Ti6AL4V alloy was performed at a temperature of 800–1000 °C and a strain rate of 0.01–5 s−1. The simulated and actual fracture displacements of the tensile specimens were compared. The correlation coefficients (R) were calculated, which were 0.997, 0.951, and 0.912. Of the high-temperature damage models, the normalized Cockcroft and Latham high-temperature damage model had higher accuracy in predicting crack defects of Ti6Al4V alloy during the hot-forming process. Finally, a fracture strain graph and a high-temperature damage graph of Ti6Al4V alloy were constructed. The Ti6Al4V alloy damage evolution and thermal formability were analyzed in relation to the temperature and strain rate. Full article
Show Figures

Figure 1

Back to TopTop