Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = GhERF2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4398 KB  
Article
Genome-Driven Functional Validation of Bacillus amyloliquefaciens Strain MEPW12: A Multifunctional Endophyte for Sustainable Sweet Potato Cultivation
by Yiming Wang, Jingwen Hao, Jingsheng Gu, Jiaying Wu, Yongjing Zhang, Ting Liang, Haimeng Bai, Qinghe Cao, Jihong Jiang, Ludan Li and Xiaoying Cao
Microorganisms 2025, 13(6), 1322; https://doi.org/10.3390/microorganisms13061322 - 6 Jun 2025
Viewed by 654
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.), as an important crop, is rich in polyphenols, vitamins, minerals, and other nutrients in its roots and leaves and is gradually gaining popularity. The use of endophytic bacteria to improve the quality of sweet potato can [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.), as an important crop, is rich in polyphenols, vitamins, minerals, and other nutrients in its roots and leaves and is gradually gaining popularity. The use of endophytic bacteria to improve the quality of sweet potato can protect the environment and effectively promote the sustainable development of the sweet potato industry. In this study, 12 strains of endophytic bacteria were isolated from sweet potato. Through nitrogen fixation, phosphorus solubilization, indoleacetic acid production, siderophore production, ACC deaminase production, and carboxymethyl cellulose production, three strains with multiple biological activities were screened out. Among them, MEPW12 had the most plant growth-promoting functions. In addition, MEPW12 promoted host chlorophyll accumulation and inhibited pathogen growth and colonization in sweet potato roots and can utilize various carbon sources and salts for growth. It can also grow in extreme environments of high salt and weak acid. MEPW12 was identified as Bacillus amyloliquefaciens with a genome size of 3,928,046 bp and a GC content of 46.59%. After the annotation of multiple databases, it was found that MEPW12 had multiple enzymatic activities and metabolic potential. Comparative genomics and pan-genomics analyses revealed that other Bacillus sp. strains of MEPW12 have similar functions. However, due to adaptation to different growth environments, there are still genomic differences and changes. Inoculation with MEPW12 induced the high expression of IbGH3.10, IbERF1, and other genes, thereby promoting the growth of sweet potatoes. Bacillus amyloliquefaciens strain MEPW12 is a sweet potato endophyte with multiple growth-promoting functions, which can promote the growth of sweet potato seedlings. This study provides new microbial resources for developing microbial agents and improving the quality of sweet potatoes. Full article
Show Figures

Figure 1

22 pages, 4449 KB  
Article
Tissue-Specific RNA-Seq Analysis of Cotton Roots’ Response to Compound Saline-Alkali Stress and the Functional Validation of the Key Gene GhERF2
by Aiming Zhang, Qiankun Liu, Xue Du, Baoguang Xing, Shaoliang Zhang, Yanfang Li, Liuan Hao, Yangyang Wei, Yuling Liu, Pengtao Li, Shoulin Hu and Renhai Peng
Plants 2025, 14(5), 756; https://doi.org/10.3390/plants14050756 - 1 Mar 2025
Viewed by 853
Abstract
Saline-alkali stress is one of the major abiotic stresses threatening crop growth. Cotton, as a “pioneer crop” that can grow in saline and alkali lands, is of great significance for understanding the regulatory mechanisms of plant response to stresses. Upland cotton has thus [...] Read more.
Saline-alkali stress is one of the major abiotic stresses threatening crop growth. Cotton, as a “pioneer crop” that can grow in saline and alkali lands, is of great significance for understanding the regulatory mechanisms of plant response to stresses. Upland cotton has thus become a model plant for researchers to explore plant responses to saline-alkali stresses. In this study, RNA sequencing was employed to analyze tissue-specific expression of root tissues of TM-1 seedlings 20 min after exposure to compound saline-alkali stress. The RNA-Seq results revealed significant molecular differences in the responses of different root regions to the stress treatment. A total of 3939 differentially expressed genes (DEGs) were identified from pairwise comparisons between the non-root tip and root tip samples, which were primarily enriched in pathways including plant hormone signal transduction, MAPK signaling, and cysteine and methionine metabolism. Combined with the expression pattern investigation by quantitative real-time PCR (qRT-PCR) experiments, a key gene, GhERF2 (GH_A08G1918, ethylene-responsive transcription factor 2-like), was identified to be associated with saline-alkali tolerance. Through virus-induced gene silencing (VIGS), the GhERF2-silenced plants exhibited a more severe wilting phenotype under combined salt-alkali stress, along with a significant reduction in leaf chlorophyll content and fresh weights of plants and roots. Additionally, these plants showed greater cellular damage and a lower ability to scavenge reactive oxygen species (ROS) when exposed to the stress. These findings suggest that the GhERF2 gene may play a positive regulatory role in cotton responses to salt-alkali stress. These findings not only enhance our understanding of the molecular mechanisms underlying cotton response to compound saline-alkali stress, but also provide a foundation for future molecular breeding efforts aimed at improving cotton saline-alkali tolerance. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

19 pages, 4279 KB  
Article
Transcriptome Analysis Provides Insights into the Safe Overwintering of Local Peach Flower Buds
by Ruxuan Niu, Yongjuan Cheng, Falin Wang, Yiwen Zhang and Chenbing Wang
Curr. Issues Mol. Biol. 2024, 46(12), 13903-13921; https://doi.org/10.3390/cimb46120831 - 9 Dec 2024
Cited by 2 | Viewed by 1039
Abstract
During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring [...] Read more.
During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring normal flowering, fruiting, and yield. In this study, the experimental materials included the conventional cultivar ‘Xia cui’ (XC) and the cold-resistant local resources ‘Ding jiaba’ (DJB) peach buds. The antioxidant enzyme activity, levels of malondialdehyde (MDA), proline (Pro), and hydrogen peroxide content (H2O2) were determined in peach buds at different dormancy periods. Transcriptome sequencing was performed at three dormancy stages: the dormancy entry stage (FD), deep dormancy release stage (MD), and dormancy release stage (RD). Additionally, transcriptome sequencing was conducted to analyze gene expression profiles during these stages. Our findings revealed that compared with XC cultivars, DJB peach buds exhibited decreased MDA and H2O2 contents but increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities as well as Pro content during the dormancy period. These findings suggest that cold-resistant cultivars possess significantly stronger antioxidant capacity than conventional cultivars under low-temperature stress. A total of 10,168 differential genes were annotated through transcriptome sequencing. Among them, 4975 were up-regulated while 5193 were down-regulated. The differentially expressed genes associated with low-temperature response in peach buds are primarily enriched in plant hormone signal transduction pathway and phenylpropane synthesis pathway. Key differentially expressed genes related to cold resistance include ARF2, GH3, and SAPK2, and differentially expressed transcription factors mainly belong to the AP2/ERF-ERF, bHLH, and C2H2 families. This study provides a theoretical foundation for understanding the key genes involved. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 8708 KB  
Article
Genome-Wide Analysis of GLK Gene Family in Four Cotton Species Provides Insights into Their Involvement in Cotton Abiotic Stress Response
by Rui Tang, Xin Zhou, Shuangshuang Weng, Fei Wang, Rong Li, Quanliang Xie, Zihan Li, Shuangquan Xie, Aiping Cao, Lu Zhuo, Manhong Wang and Hongbin Li
Agriculture 2024, 14(11), 2086; https://doi.org/10.3390/agriculture14112086 - 19 Nov 2024
Cited by 1 | Viewed by 1374
Abstract
Cotton is a crucial economic crop that supplies natural fibers for the textile industry, with fiber quality being greatly impacted by abiotic stress throughout its growth stages. The Golden2-Like (GLK) gene family plays a key role in plant development and adaptation [...] Read more.
Cotton is a crucial economic crop that supplies natural fibers for the textile industry, with fiber quality being greatly impacted by abiotic stress throughout its growth stages. The Golden2-Like (GLK) gene family plays a key role in plant development and adaptation to abiotic stress. However, the specific functions and regulatory mechanisms of GLK members in cotton remain largely unexplored. In this study, a thorough analysis of GLK in four cotton species (Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense) was conducted. A total of 198 GLK genes were identified in cotton. Conserved sequence analysis revealed that most GLK proteins contain two highly conserved domains: a MYB DNA-binding domain and a C-terminal (GCT) box. Promoter element analysis results show that the GLK gene family contains many stress response-related elements. Expression analysis demonstrated that GhGLK2, GhGLK11, GhGLK16, and GhGLK30 responded significantly to drought, salt, and temperature stresses. And GhGLK2, GhGLK13, GhGLK38, GhGLK42, and GhGLK46 responded significantly to cotton development. Yeast one-hybrid, yeast two-hybrid, and dual-luciferase assay results indicate that GhGLK2 interacts with GhGUN5, GhPIL6, GhNAC6, GhTPX2, and GhERF10. These findings suggest that these GhGLKs may play crucial roles in regulating the response to abiotic stress. Overall, this study provides a solid theoretical foundation for understanding the role of the GLK gene family in cotton’s response to abiotic stress. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

14 pages, 3422 KB  
Article
Sphingosine Promotes Fiber Early Elongation in Upland Cotton
by Li Wang, Changyin Jin, Wenqing Zhang, Xueting Mei, Hang Yu, Man Wu, Wenfeng Pei, Jianjiang Ma, Bingbing Zhang, Ming Luo and Jiwen Yu
Plants 2024, 13(14), 1993; https://doi.org/10.3390/plants13141993 - 21 Jul 2024
Viewed by 1320
Abstract
Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic [...] Read more.
Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose–effect manner. Using liquid chromatography–tandem mass spectrometry (LC–MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation. Full article
(This article belongs to the Special Issue Molecular Insights into Cotton Fiber Gene Regulation)
Show Figures

Figure 1

20 pages, 13858 KB  
Article
Genome-Wide Identification of the Alfin-like Gene Family in Cotton (Gossypium hirsutum) and the GhAL19 Gene Negatively Regulated Drought and Salt Tolerance
by Jie Liu, Zhicheng Wang, Bin Chen, Guoning Wang, Huifeng Ke, Jin Zhang, Mengjia Jiao, Yan Wang, Meixia Xie, Qishen Gu, Zhengwen Sun, Liqiang Wu, Xingfen Wang, Zhiying Ma and Yan Zhang
Plants 2024, 13(13), 1831; https://doi.org/10.3390/plants13131831 - 3 Jul 2024
Viewed by 1876
Abstract
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted [...] Read more.
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway. Full article
(This article belongs to the Special Issue Mechanism of Drought and Salinity Tolerance in Crops)
Show Figures

Figure 1

19 pages, 3063 KB  
Article
Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress
by Ziyu Wang, Wanwan Fu, Xin Zhang, Yunhao Liusui, Gulisitan Saimi, Huixin Zhao, Jingbo Zhang and Yanjun Guo
Plants 2024, 13(9), 1257; https://doi.org/10.3390/plants13091257 - 30 Apr 2024
Viewed by 2017
Abstract
SET-domain group histone methyltransferases (SDGs) are known to play crucial roles in plant responses to abiotic stress. However, their specific function in cotton’s response to drought stress has not been well understood. This study conducted a comprehensive analysis of the SDG gene family [...] Read more.
SET-domain group histone methyltransferases (SDGs) are known to play crucial roles in plant responses to abiotic stress. However, their specific function in cotton’s response to drought stress has not been well understood. This study conducted a comprehensive analysis of the SDG gene family in Gossypium hirsutum, identifying a total of 82 SDG genes. An evolutionary analysis revealed that the SDG gene family can be divided into eight subgroups. The expression analysis shows that some GhSDG genes are preferentially expressed in specific tissues, indicating their involvement in cotton growth and development. The transcription level of some GhSDG genes is induced by PEG, with GhSDG59 showing significant upregulation upon polyethylene glycol (PEG) treatment. Quantitative polymerase chain reaction (qPCR) analysis showed that the accumulation of transcripts of the GhSDG59 gene was significantly upregulated under drought stress. Further functional studies using virus-induced gene silencing (VIGS) revealed that silencing GhSDG59 reduced cotton tolerance to drought stress. Under drought conditions, the proline content, superoxide dismutase (SOD) and peroxidase (POD) enzyme activities in the GhSDG59-silenced plants were significantly lower than in the control plants, while the malondialdehyde (MDA) content was significantly higher. Transcriptome sequencing showed that silencing the GhSDG59 gene led to significant changes in the expression levels of 1156 genes. The KEGG enrichment analysis revealed that these differentially expressed genes (DEGs) were mainly enriched in the carbon metabolism and the starch and sucrose metabolism pathways. The functional annotation analysis identified known drought-responsive genes, such as ERF, CIPK, and WRKY, among these DEGs. This indicates that GhSDG59 is involved in the drought-stress response in cotton by affecting the expression of genes related to the carbon metabolism and the starch and sucrose metabolism pathways, as well as known drought-responsive genes. This analysis provides valuable information for the functional genomic study of SDGs and highlights potential beneficial genes for genetic improvement and breeding in cotton. Full article
Show Figures

Figure 1

17 pages, 4661 KB  
Article
Integrative Metabolomic and Transcriptomic Analysis Elucidates That the Mechanism of Phytohormones Regulates Floral Bud Development in Alfalfa
by Xiuzheng Huang, Lei Liu, Xiaojing Qiang, Yuanfa Meng, Zhiyong Li and Fan Huang
Plants 2024, 13(8), 1078; https://doi.org/10.3390/plants13081078 - 11 Apr 2024
Cited by 4 | Viewed by 2173
Abstract
Floral bud growth influences seed yield and quality; however, the molecular mechanism underlying the development of floral buds in alfalfa (Medicago sativa) is still unclear. Here, we comprehensively analyzed the transcriptome and targeted metabolome across the early, mid, and late bud [...] Read more.
Floral bud growth influences seed yield and quality; however, the molecular mechanism underlying the development of floral buds in alfalfa (Medicago sativa) is still unclear. Here, we comprehensively analyzed the transcriptome and targeted metabolome across the early, mid, and late bud developmental stages (D1, D2, and D3) in alfalfa. The metabolomic results revealed that gibberellin (GA), auxin (IAA), cytokinin (CK), and jasmonic acid (JA) might play an essential role in the developmental stages of floral bud in alfalfa. Moreover, we identified some key genes associated with GA, IAA, CK, and JA biosynthesis, including CPS, KS, GA20ox, GA3ox, GA2ox, YUCCA6, amid, ALDH, IPT, CYP735A, LOX, AOC, OPR, MFP2, and JMT. Additionally, many candidate genes were detected in the GA, IAA, CK, and JA signaling pathways, including GID1, DELLA, TF, AUX1, AUX/IAA, ARF, GH3, SAUR, AHP, B-ARR, A-ARR, JAR1, JAZ, and MYC2. Furthermore, some TFs related to flower growth were screened in three groups, such as AP2/ERF-ERF, MYB, MADS-M-type, bHLH, NAC, WRKY, HSF, and LFY. The findings of this study revealed the potential mechanism of floral bud differentiation and development in alfalfa and established a theoretical foundation for improving the seed yield of alfalfa. Full article
Show Figures

Figure 1

22 pages, 9157 KB  
Article
PtrABR1 Increases Tolerance to Drought Stress by Enhancing Lateral Root Formation in Populus trichocarpa
by Lijiao Sun, Xinxin Dong and Xingshun Song
Int. J. Mol. Sci. 2023, 24(18), 13748; https://doi.org/10.3390/ijms241813748 - 6 Sep 2023
Cited by 6 | Viewed by 2117
Abstract
Roots are the main organ for water uptake and the earliest part of a plant’s response to drought, making them of great importance to our understanding of the root system’s response to drought. However, little is known about the underlying molecular mechanisms that [...] Read more.
Roots are the main organ for water uptake and the earliest part of a plant’s response to drought, making them of great importance to our understanding of the root system’s response to drought. However, little is known about the underlying molecular mechanisms that control root responses to drought stress. Here, we identified and functionally characterized the AP2/ERF family transcription factor (TF) PtrABR1 and the upstream target gene zinc-finger protein TF PtrYY1, which respond to drought stress by promoting the growth and development of lateral roots in Populus trichocarpa. A root-specific induction of PtrABR1 under drought stress was explored. The overexpression of PtrABR1 (PtrABR1-OE) promoted root growth and development, thereby increasing tolerance to drought stress. In addition, PtrYY1 is directly bound to the promoter of PtrABR1 under drought stress, and the overexpression of PtrYY1 (PtrYY1-OE) promoted lateral root growth and development and increased tolerance to drought stress. An RNA-seq analysis of PtrABR1-OE with wild-type (WT) poplar identified PtrGH3.6 and PtrPP2C44, which share the same pattern of expression changes as PtrABR1. A qRT-PCR and cis-element analysis further suggested that PtrGH3.6 and PtrPP2C44 may act as potential downstream targets of PtrABR1 genes in the root response pathway to drought stress. In conclusion, these results reveal a novel drought regulatory pathway in which PtrABR1 regulates the network through the upstream target gene PtrYY1 and the potential downstream target genes PtrGH3.6 and PtrPP2C44, thereby promoting root growth and development and improving tolerance to drought stress. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 15650 KB  
Article
GhERF.B4-15D: A Member of ERF Subfamily B4 Group Positively Regulates the Resistance against Verticillium dahliae in Upland Cotton
by Panpan Wang, Yanpeng Zhao, Na Wu, Muhammad Tehseen Azhar, Yuxia Hou and Haihong Shang
Biomolecules 2023, 13(9), 1348; https://doi.org/10.3390/biom13091348 - 5 Sep 2023
Cited by 3 | Viewed by 1799
Abstract
Verticillium wilt is a fungal disease in upland cotton and exerts a significant effect on growth and potential productivity. This disease is mainly caused by V. dahliae Kleb. Ethylene response factor (ERF) is one of the superfamilies of transcription factors that is involved [...] Read more.
Verticillium wilt is a fungal disease in upland cotton and exerts a significant effect on growth and potential productivity. This disease is mainly caused by V. dahliae Kleb. Ethylene response factor (ERF) is one of the superfamilies of transcription factors that is involved in the development and environmental adaption of crops. A total of 30 ERF.B4 group members were detected in upland cotton and divided into 6 subgroups. Gene structures, conserved motifs, and domain analysis revealed that members in each subgroup are highly conserved. Further, the 30 GhERF.B4 group members were distributed on 18 chromosomes, and 36 gene synteny relationships were found among them. GhERF.B4 genes were ubiquitously expressed in various tissues and developmental stages of cotton. Amongst them, GhERF.B4-15D was predominantly expressed in roots, and its expression was induced by V. dahliae infection. In addition, GhERF.B4-15D responded to methyl jasmonate (MeJA), methyl salicylate (MeSA), and ethylene (ET) phytohormones. It was also found that the V. dahliae resistance was enhanced due to overexpression of GhERF.B4-15D in Arabidopsis thaliana. On the contrary, interference of GhERF.B4-15D by virus-induced gene silencing (VIGS) technology decreased the V. dahliae resistance level in upland cotton. The subcellular localization experiment showed that GhERF.B4-15D was located in the nucleus. Yeast two-hybrid (Y2H) and luciferase complementation (LUC) approaches demonstrated that GhERF.B4-15D interacted with GhDREB1B. Additionally, the V. dahliae resistance was significantly decreased in GhDREB1B knockdowns. Our results showed that GhERF.B4-15D plays a role during V. dahliae infection in cotton. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 5206 KB  
Article
Genome-Wide Analysis of WRKY Gene Family and Negative Regulation of GhWRKY25 and GhWRKY33 Reveal Their Role in Whitefly and Drought Stress Tolerance in Cotton
by Aiman Ehsan, Rubab Zahra Naqvi, Maryam Azhar, Muhammad Jawad Akbar Awan, Imran Amin, Shahid Mansoor and Muhammad Asif
Genes 2023, 14(1), 171; https://doi.org/10.3390/genes14010171 - 7 Jan 2023
Cited by 13 | Viewed by 4075
Abstract
The WRKY transcription factor family is marked by its significant responsiveness to both biotic and abiotic plant stresses. In the present study, the WRKY family of Gossypium hirsutum has been identified and classified into three groups based on the number of conserved WRKY [...] Read more.
The WRKY transcription factor family is marked by its significant responsiveness to both biotic and abiotic plant stresses. In the present study, the WRKY family of Gossypium hirsutum has been identified and classified into three groups based on the number of conserved WRKY domains and the type of zinc finger motif. This classification is further validated by conserved domain and phylogenetic analysis. Two members of the WRKY family, WRKY25 and WRKY33, have been targeted through VIGS in G. hirsutum. VIGS-infiltrated plants were evaluated under drought stress and whitefly infestation. It was observed that GhWRKY33-downregulated plants showed a decrease in whitefly egg and nymph population, and GhWRKY33 was found to be a strong negative regulator of whitefly and drought stress, while GhWRKY25 was found to be a moderate negative regulator of whitefly and drought stress. As the targeted genes are transcription factors influencing the expression of other genes, the relative expression of other stress-responsive genes, namely MPK6, WRKY40, HSP, ERF1, and JAZ1, was also analyzed through qRT-PCR. It was found elevated in GhWRKY33-downregulated plants, while GhWRKY25-downregulated plants through VIGS showed the elevated expression of ERF1 and WRKY40, a slightly increased expression of HSP, and a lower expression level of MPK6. Overall, this study provides an important insight into the WRKY TF family and the role of two WRKY TFs in G. hirsutum under drought stress and whitefly infestation. The findings will help to develop crops resilient to drought and whitefly stress. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 4390 KB  
Article
Comparative Physiological and Transcriptomic Analyses Reveal Mechanisms of Exogenous Spermidine-Induced Tolerance to Low-Iron Stress in Solanum lycopersicum L
by Yu Shi, Yihong Zhao, Qi Yao, Feng Liu, Xiumin Li, Xiu Jin, Yi Zhang and Golam Jalal Ahammed
Antioxidants 2022, 11(7), 1260; https://doi.org/10.3390/antiox11071260 - 27 Jun 2022
Cited by 8 | Viewed by 2939
Abstract
Iron (Fe) deficiency in plants is a major problem in agriculture. Therefore, we investigated both the physiological features and molecular mechanisms of plants’ response to low-Fe (LF) stress along with the mitigation of LF with exogenous spermidine (Spd) in tomato plants. The results [...] Read more.
Iron (Fe) deficiency in plants is a major problem in agriculture. Therefore, we investigated both the physiological features and molecular mechanisms of plants’ response to low-Fe (LF) stress along with the mitigation of LF with exogenous spermidine (Spd) in tomato plants. The results showed that exogenous Spd foliar application relieved the suppressing effect of LF stress on tomato plants by regulating the photosynthetic efficiency, chlorophyll metabolism, antioxidant levels, organic acid secretion, polyamine metabolism and osmoregulatory systems. Analysis of transcriptomic sequencing results revealed that the differentially expressed genes of iron-deficiency stress were mainly enriched in the pathways of phytohormone signaling, starch and sucrose metabolism and phenyl propane biosynthesis in both leaves and roots. Moreover, Spd-induced promotion of growth under LF stress was associated with upregulation in the expression of some transcription factors that are related to growth hormone response in leaves (GH3, SAUR, ARF) and ethylene-related signaling factors in roots (ERF1, ERF2). We propose that traits associated with changes in low-iron-tolerance genes can potentially be used to improve tomato production. The study provides a theoretical basis for dealing with the iron deficiency issue to develop efficient nutrient management strategies in protected tomato cultivation. Full article
Show Figures

Figure 1

16 pages, 4237 KB  
Article
Changes of Fruit Abscission and Carbohydrates, Hormones, Related Gene Expression in the Fruit and Pedicel of Macadamia under Starvation Stress
by Weihai Yang and Peijin Xiang
Horticulturae 2022, 8(5), 398; https://doi.org/10.3390/horticulturae8050398 - 1 May 2022
Cited by 6 | Viewed by 3081
Abstract
In order toexplore the regulation mechanism of macadamia fruitlet abscission induced by ‘starvation stress’, a treatment of girdling and defoliation was applied to the bearing shoots of macadamia cultivar ‘H2’ at the early stage of fruit development, simulating the starvation stress induced by [...] Read more.
In order toexplore the regulation mechanism of macadamia fruitlet abscission induced by ‘starvation stress’, a treatment of girdling and defoliation was applied to the bearing shoots of macadamia cultivar ‘H2’ at the early stage of fruit development, simulating the starvation stress induced by interrupting carbon supply to fruit. The levels of carbohydrates, hormones, and related gene expression in the different tissues (husk, seed, and pedicel) were investigated after treatment. The results showed that a severe fruit drop occurred 3~5 d after starvation stress treatment. The contents of glucose, fructose, and sucrose in both the husk and the seed were significantly decreased, as well as the fructose and sucrose in the pedicel; this large reduction occurred prior to the massive fruit shedding. Starvation stress significantly reduced the GA3 and ZR contents and enhanced the ABA level in the pedicel and the seed, whereas it did not obviously change these hormones in the husk. After treatment, IAA content decreased considerably in both the husk and seed but increased remarkably in the pedicel. In the husk, the expression of genes related to sugar metabolism and signaling (NI, HXK2, TPS, and TPP), as well as the biosynthesis of ethylene (ACO2 and ACS) and ABA (NCED1.1 and AAO3), was significantly upregulated by starvation stress, as well as the stress-responsive transcription factors (AP2/ERF, HD-ZIP12, bZIP124, and ABI5), whereas the BG gene associated with ABA accumulation and the early auxin-responsive genes (Aux/IAA22 and GH3.9) were considerably suppressed during the period of massive fruit abscission. Similar changes in the expression of all genes occurred in the pedicel, except for NI and AP2/ERF, the expression of which was significantly upregulated during the early stage of fruit shedding and downregulated during the period of severe fruit drop. These results suggest that complicated crosstalk among the sugar, IAA, and ABA signaling may be related to macadamia fruitlet abscission induced by carbohydrate starvation. Full article
(This article belongs to the Collection Advances in Tropical Fruit Cultivation and Breeding)
Show Figures

Figure 1

13 pages, 2842 KB  
Article
GmLecRlk, a Lectin Receptor-like Protein Kinase, Contributes to Salt Stress Tolerance by Regulating Salt-Responsive Genes in Soybean
by Yanzheng Zhang, Qingwei Fang, Jiqiang Zheng, Zeyang Li, Yue Li, Yuan Feng, Yingpeng Han and Yongguang Li
Int. J. Mol. Sci. 2022, 23(3), 1030; https://doi.org/10.3390/ijms23031030 - 18 Jan 2022
Cited by 23 | Viewed by 3534
Abstract
Soybean [Glycine max (L.) Merr.] is an important oil crop that provides valuable resources for human consumption, animal feed, and biofuel. Through the transcriptome analysis in our previous study, GmLecRlk (Glyma.07G005700) was identified as a salt-responsive candidate gene [...] Read more.
Soybean [Glycine max (L.) Merr.] is an important oil crop that provides valuable resources for human consumption, animal feed, and biofuel. Through the transcriptome analysis in our previous study, GmLecRlk (Glyma.07G005700) was identified as a salt-responsive candidate gene in soybean. In this study, qRT-PCR analysis showed that the GmLecRlk gene expression level was significantly induced by salt stress and highly expressed in soybean roots. The pCAMBIA3300-GmLecRlk construct was generated and introduced into the soybean genome by Agrobacterium rhizogenes. Compared with the wild type (WT), GmLecRlk overexpressing (GmLecRlk-ox) soybean lines had significantly enhanced fresh weight, proline (Pro) content, and catalase (CAT) activity, and reduced malondialdehyde (MDA) and H2O2 content under salt stress. These results show that GmLecRlk gene enhanced ROS scavenging ability in response to salt stress in soybean. Meanwhile, we demonstrated that GmLecRlk gene also conferred soybean salt tolerance when it was overexpressed alone in soybean hairy root. Furthermore, the combination of RNA-seq and qRT-PCR analysis was used to determine that GmLecRlk improves the salt tolerance of soybean by upregulating GmERF3, GmbHLH30, and GmDREB2 and downregulating GmGH3.6, GmPUB8, and GmLAMP1. Our research reveals a new mechanism of salt resistance in soybean, which exposes a novel avenue for the cultivation of salt-resistant varieties. Full article
(This article belongs to the Special Issue Soybean Molecular Breeding and Genetics)
Show Figures

Figure 1

16 pages, 2433 KB  
Article
GhKWL1 Upregulates GhERF105 but Its Function Is Impaired by Binding with VdISC1, a Pathogenic Effector of Verticillium dahliae
by Yang Chen, Mi Zhang, Lei Wang, Xiaohan Yu, Xianbi Li, Dan Jin, Jianyan Zeng, Hui Ren, Fanlong Wang, Shuiqing Song, Xingying Yan, Juan Zhao and Yan Pei
Int. J. Mol. Sci. 2021, 22(14), 7328; https://doi.org/10.3390/ijms22147328 - 8 Jul 2021
Cited by 4 | Viewed by 3831
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for [...] Read more.
Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1. Full article
(This article belongs to the Special Issue Plant Defense against Pathogens and Herbivores)
Show Figures

Figure 1

Back to TopTop