Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Granulicatella

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1802 KB  
Article
Longitudinal Profiling of the Human Milk Microbiome from Birth to 12 Months Reveals Overall Stability and Selective Taxa-Level Variation
by Ruomei Xu, Zoya Gridneva, Matthew S. Payne, Mark P. Nicol, Ali S. Cheema, Donna T. Geddes and Lisa F. Stinson
Microorganisms 2025, 13(8), 1830; https://doi.org/10.3390/microorganisms13081830 - 5 Aug 2025
Viewed by 624
Abstract
Human milk bacteria contribute to gut microbiome establishment in breastfed infants. Although breastfeeding is recommended throughout infancy, temporal variation in the milk microbiome—particularly beyond solid food introduction—remains understudied. We analyzed 539 milk samples from 83 mother–infant dyads between 1 week and 12 months [...] Read more.
Human milk bacteria contribute to gut microbiome establishment in breastfed infants. Although breastfeeding is recommended throughout infancy, temporal variation in the milk microbiome—particularly beyond solid food introduction—remains understudied. We analyzed 539 milk samples from 83 mother–infant dyads between 1 week and 12 months postpartum using full-length 16S rRNA gene sequencing. The microbiota was dominated by Streptococcus (34%), Cutibacterium (12%), and Staphylococcus (9%), with marked inter-individual variation. Microbiome profiles remained largely stable across lactation, with only six taxa showing temporal fluctuations, including increases in typical oral bacteria such as Streptococcus salivarius, Streptococcus lactarius, Rothia mucilaginosa, and Granulicatella adiacens. Richness and evenness were higher at 1 week compared to 1 month postpartum (p = 0.00003 and p = 0.007, respectively), then stabilized. Beta diversity also remained stable over time. Maternal pre-pregnancy BMI was positively associated with Gemella haemolysans (p = 0.016), while Haemophilus parainfluenzae was more abundant in milk from mothers with allergies (p = 0.003) and those who gave birth in autumn or winter (p = 0.006). The introduction of solid food was linked to minor taxonomic shifts. Overall, the milk microbiome remained robustly stable over the first year of lactation, with limited but notable fluctuations in specific taxa. This study supports the role of human milk as a consistent microbial source for infants and identifies maternal BMI, allergy status, and birth season as key variables warranting further investigation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 3217 KB  
Article
Microbiome of the Proximal Small Intestine in Patients with Acute Pancreatitis
by Vladimir V. Kiselev, Stanislav I. Koshechkin, Alexey V. Kurenkov, Vera E. Odintsova, Maria S. Zhigalova, Alekxandr V. Tyakht, Sergey S. Petrikov, Petr A. Yartsev and Ilya V. Dmitriev
Diagnostics 2025, 15(15), 1911; https://doi.org/10.3390/diagnostics15151911 - 30 Jul 2025
Viewed by 576
Abstract
Currently, due to the complexity of obtaining samples, specific features of laboratory processing and analysis of the results, there is a lack of data on the microbial signature of the small intestine in healthy and diseased states of the upper gastrointestinal tract. Objective: [...] Read more.
Currently, due to the complexity of obtaining samples, specific features of laboratory processing and analysis of the results, there is a lack of data on the microbial signature of the small intestine in healthy and diseased states of the upper gastrointestinal tract. Objective: To investigate the characteristics of the small intestinal microbiome in acute pancreatitis of varying severity and to identify correlations with clinical factors. Methods: This study included 30 patients with acute pancreatitis of varying severity treated between 1 January 2019 and 31 December 2021. The composition of the microbiota was analyzed by metagenomic sequencing of the 16S rRNA gene from jejunal samples. Results: The mortality rate in the study group was 23.3%. The small intestinal microbiome was dominated by Streptococcus (median relative abundance 19.2%, interquartile range 6.4–35.1%), Veillonella (3.4%; 0.6–7%), Granulicatella (2.7%; 0.6–5%), Fusobacterium (2.2%; 0.3–5.9%), Prevotella (1.5%; 0.3–8%), Haemophilus (0.9%; 0.2–10%), Gemella (0.8%; 0.2–4.3%), and Lactobacillus (0.2%; 0.1–0.9%). More severe disease was associated with decreased abundance of Neisseria mucosa, Parvimonas micra, and Megasphaera micronuciformis. In contrast, the relative abundance of the genera Streptococcus (species S. rubneri/parasanguinis/australis), Actinomyces, and several genera within the family Enterobacteriaceae was higher in these patients. Conclusions: The state of the microbiota has important prognostic value and correlates with the duration from the onset of the pain syndrome to the time of receiving qualified care in the hospital. Full article
Show Figures

Figure 1

17 pages, 4044 KB  
Article
Impact of Chemotherapy Alone and in Combination with Immunotherapy on Oral Microbiota in Cancer Patients—A Pilot Study
by Adriana Padure, Ioana Cristina Talpos-Niculescu, Paula Diana Ciordas, Mirabela Romanescu, Aimee Rodica Chis, Laura-Cristina Rusu and Ioan Ovidiu Sirbu
Microorganisms 2025, 13(7), 1565; https://doi.org/10.3390/microorganisms13071565 - 3 Jul 2025
Viewed by 553
Abstract
The oral cavity harbors a highly intricate and dynamic microbial ecosystem of multiple microhabitats supporting diverse microbial populations. As the second most complex microbiome in the human body, surpassed only by the gut, the oral microbiome comprises over 1000 species. Disruptions in the [...] Read more.
The oral cavity harbors a highly intricate and dynamic microbial ecosystem of multiple microhabitats supporting diverse microbial populations. As the second most complex microbiome in the human body, surpassed only by the gut, the oral microbiome comprises over 1000 species. Disruptions in the microbial balance have been associated with an increased risk of both oral diseases (dental caries and periodontitis) and systemic conditions, including inflammatory diseases and certain types of cancers. In our pilot study, we purified bacterial DNA from pre-treated, saponin-based, host-depleted saliva samples and performed 16S amplicon sequencing, using Oxford Nanopore Technologies, to identify bacterial composition and investigate changes in the oral microbiota of patients with solid tumors in response to chemotherapy, either alone or in combination with immunotherapy. We found significant reductions in microbial diversity of the oral microbiota following cancer treatment, which may contribute to post-therapeutic complications such as oral mucositis. Moreover, our findings indicate that on the one hand, following chemotherapy treatment the microbial profile is characterized by an increased abundance of Streptococcus, Gemella, and Granulicatella and a decrease in the abundance of Neisseria and Veillonella. On the other hand, post combined treatment, only Streptococcus relative abundance increased, Veillonella exhibited a slight decline, and Haemophilus and Neisseria displayed a marked decrease, whilst Granulicatella and Gemella remained relatively stable. Our findings underline the impact of cancer therapy on the oral microbiome, highlighting the potential for precision-based strategies to restore microbial balance and minimize treatment-related complications. Full article
(This article belongs to the Special Issue Oral Microbiota: Diseases, Health, and Beyond)
Show Figures

Figure 1

12 pages, 257 KB  
Case Report
Abiotrophia defectiva and Granulicatella: A Literature Review on Prosthetic Joint Infection and a Case Report on A. defectiva PJI and Concurrent Native Valve Endocarditis
by Cristina Seguiti, Edda Piacentini, Angelica Fraghì, Mattia Zappa, Elia Croce, Angelo Meloni, Marco Cirillo, Clarissa Ferrari, Chiara Zani, David Belli, Tony Sabatini and Paolo Colombini
Microorganisms 2025, 13(5), 1113; https://doi.org/10.3390/microorganisms13051113 - 12 May 2025
Viewed by 624
Abstract
Together with Granulicatella spp., A. defectiva was formerly classified within the group of nutritionally variant streptococci (NVS). NVS-related endocarditis has been associated with higher rates of complications, bacteriological failure, and mortality compared to other streptococci, partially due to challenges related to timely and [...] Read more.
Together with Granulicatella spp., A. defectiva was formerly classified within the group of nutritionally variant streptococci (NVS). NVS-related endocarditis has been associated with higher rates of complications, bacteriological failure, and mortality compared to other streptococci, partially due to challenges related to timely and accurate identification. PJI caused by A. defectiva are rarely reported, and standardized management strategies have not yet been established. We describe a case of a 68-year-old man with concomitant A. defectiva PJI and native mitral valve endocarditis. The patient was managed conservatively for endocarditis and subsequently underwent a two-stage arthroplasty of the infected prosthetic knee. A. defectiva was identified using MALDI-TOF mass spectrometry on both synovial fluid and blood cultures. As penicillin susceptibility data were not available, the patient was treated with vancomycin at a dose of 2 g/day, resulting in a favorable clinical response. In addition, we performed a literature review on A. defectiva and Granulicatella PJI. Despite the limited number of reported cases in the literature, the findings suggest a potential correlation between clinical outcomes and antimicrobial treatment duration. Further comprehensive studies are needed to establish standardized management strategies for A. defectiva and Granulicatella PJI. Full article
(This article belongs to the Special Issue Bacterial Infections in Clinical Settings)
16 pages, 1004 KB  
Review
Comparison of Respiratory Microbiomes in Influenza Versus Other Respiratory Infections: Systematic Review and Analysis
by Yunrui Hao, Ying-Jou Lee, Kihan Yap, Miny Samuel and Vincent T. Chow
Int. J. Mol. Sci. 2025, 26(2), 778; https://doi.org/10.3390/ijms26020778 - 17 Jan 2025
Viewed by 1615
Abstract
Studies have indicated the potential importance of the human nasal and respiratory microbiomes in health and disease. However, the roles of these microbiomes in the pathogenesis of influenza and its complications are not fully understood. Therefore, the objective of this systematic review and [...] Read more.
Studies have indicated the potential importance of the human nasal and respiratory microbiomes in health and disease. However, the roles of these microbiomes in the pathogenesis of influenza and its complications are not fully understood. Therefore, the objective of this systematic review and analysis is to identify the patterns of nasal and respiratory microbiome dysbiosis and to define the unique signature bacteria associated with influenza compared with other respiratory tract infections. We compared the respiratory microbiome composition between influenza patients and healthy controls; across different influenza severities; in adult versus pediatric influenza patients; as well as influenza versus other respiratory infections. The desired outcomes include the signature bacteria in each cohort and the Shannon index to reflect the alpha diversity. Of the 2269 articles identified, 31 studies fulfilled the inclusion criteria. These studies investigated the respiratory tract microbiomes of patients with influenza, COVID-19, pneumonia, other respiratory infections, and chronic rhinosinusitis (CRS). Our review revealed that the phylum Firmicutes and Actinobacteria, genus Actinomyces, Streptococcus and Granulicatella, and species Neisseria are more prominent in severe influenza than mild to moderate influenza. Reduced microbiome alpha diversity is noted in influenza patients compared to healthy controls. There are some similarities and differences between the signature bacteria in pediatric and adult influenza patients, e.g., Streptococcus is common in both age groups, whereas Pseudomonas is associated with adults. Intriguingly, there is a common predominance of Streptococcus and Firmicutes among influenza and pneumonia patients. COVID-19 patients exhibit an increased abundance of Firmicutes as well as Pseudomonas. In CRS patients, Proteobacteria and Haemophilus are found in high abundance. This review highlights some similarities and differences in the respiratory microbiomes and their signature organisms in influenza of varying severity and in different age groups compared with other respiratory infections. The dysbiosis of the respiratory microbiomes in these respiratory infections enhances our understanding of their underlying pathogenic mechanisms. Full article
Show Figures

Figure 1

14 pages, 3425 KB  
Article
Association of Corticosteroid Inhaler Type with Saliva Microbiome in Moderate-to-Severe Pediatric Asthma
by Amir Hossein Alizadeh Bahmani, Mahmoud I. Abdel-Aziz, Simone Hashimoto, Corinna Bang, Susanne Brandstetter, Paula Corcuera-Elosegui, Andre Franke, Mario Gorenjak, Susanne Harner, Parastoo Kheiroddin, Leyre López-Fernández, Anne H. Neerincx, Maria Pino-Yanes, Uroš Potočnik, Olaia Sardón-Prado, Antoaneta A. Toncheva, Christine Wolff, Michael Kabesch, Aletta D. Kraneveld, Susanne J. H. Vijverberg, Anke H. Maitland-van der Zee and on behalf of the SysPharmPediA consortiumadd Show full author list remove Hide full author list
Biomedicines 2025, 13(1), 89; https://doi.org/10.3390/biomedicines13010089 - 2 Jan 2025
Viewed by 1646
Abstract
Background/Objectives: Metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with [...] Read more.
Background/Objectives: Metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with moderate-to-severe asthma using ICS via MDIs versus DPIs. Methods: Saliva samples collected from 143 children (6–17 yrs) with moderate-to-severe asthma across four European countries (The Netherlands, Germany, Spain, and Slovenia) as part of the SysPharmPediA cohort were subjected to 16S rRNA sequencing. The microbiome was compared using global diversity (α and β) between two groups of participants based on inhaler devices (MDI (n = 77) and DPI (n = 65)), and differential abundance was compared using the Analysis of Compositions of Microbiomes with the Bias Correction (ANCOM-BC) method. Results: No significant difference was observed in α-diversity between the two groups. However, β-diversity analysis revealed significant differences between groups using both Bray–Curtis and weighted UniFrac methods (adjusted p-value = 0.015 and 0.044, respectively). Significant differential abundance between groups, with higher relative abundance in the MDI group compared to the DPI group, was detected at the family level [Carnobacteriaceae (adjusted p = 0.033)] and at the genus level [Granulicatella (adjusted p = 0.021) and Aggregatibacter (adjusted p = 0.011)]. Conclusions: Types of ICS devices are associated with different saliva microbiome compositions in moderate-to-severe pediatric asthma. The causal relation between inhaler types and changes in saliva microbiota composition needs to be further evaluated, as well as whether this leads to different potential adverse effects in terms of occurrence and level of severity. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

22 pages, 6439 KB  
Article
Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity
by Fatima Maqoud, Francesco Maria Calabrese, Giuseppe Celano, Domenica Mallardi, Francesco Goscilo, Benedetta D’Attoma, Antonia Ignazzi, Michele Linsalata, Gabriele Bitetto, Martina Di Chito, Pasqua Letizia Pesole, Arianna Diciolla, Carmen Aurora Apa, Giovanni De Pergola, Gianluigi Giannelli, Maria De Angelis and Francesco Russo
Nutrients 2025, 17(1), 72; https://doi.org/10.3390/nu17010072 - 28 Dec 2024
Cited by 3 | Viewed by 2170
Abstract
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass. Methods: A cohort of 58 [...] Read more.
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass. Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25–29.9), Group II (30–39.9), and Group III (>40). Anthropometric and clinical parameters were assessed, including plasma C-reactive protein and cytokine profiles as inflammation markers. Intestinal permeability was measured using a multisaccharide assay, with fecal/serum zonulin and serum claudin-5 and claudin-15 levels. Fecal microbiota composition and metabolomic profiles were analyzed using a phylogenetic microarray and GC-MS techniques. Results: The statistical analyses of the clinical parameters were based on the full sample set, whereas a subset composed of 37 randomized patients was inspected for the GC/MS metabolite profiling of fecal specimens. An increase in potentially pro-inflammatory bacterial genera (e.g., Slackia, Dorea, Granulicatella) and a reduction in beneficial genera (e.g., Adlercreutzia, Clostridia UCG-014, Roseburia) were measured. The gas chromatography/mass spectrometry analysis of urine samples evidenced a statistically significant increase in m-cymen-8-ol, 1,3,5-Undecatriene, (E, Z) and a decreased concentration of p-cresol, carvone, p-cresol, and nonane. Conclusions: Together, these data demonstrated how an increased BMI led to significant changes in inflammatory markers, intestinal barrier metabolites, glucose metabolism, endocrine indicators, and fecal metabolomic profiles that can indicate a different metabolite production from gut microbiota. Our findings suggest that targeting intestinal permeability may offer a therapeutic approach to prevent and manage obesity and related metabolic complications, reinforcing the link between gut barrier function and obesity. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

22 pages, 9683 KB  
Article
Multi-Omics Analysis of Gut Microbiota and Host Transcriptomics Reveal Dysregulated Immune Response and Metabolism in Young Adults with Irritable Bowel Syndrome
by Jie Chen, Tingting Zhao, Hongfei Li, Wanli Xu, Kendra Maas, Vijender Singh, Ming-Hui Chen, Susan G. Dorsey, Angela R. Starkweather and Xiaomei S. Cong
Int. J. Mol. Sci. 2024, 25(6), 3514; https://doi.org/10.3390/ijms25063514 - 20 Mar 2024
Cited by 5 | Viewed by 2955
Abstract
The integrated dysbiosis of gut microbiota and altered host transcriptomics in irritable bowel syndrome (IBS) is yet to be known. This study investigated the associations among gut microbiota and host transcriptomics in young adults with IBS. Stool and peripheral blood samples from 20 [...] Read more.
The integrated dysbiosis of gut microbiota and altered host transcriptomics in irritable bowel syndrome (IBS) is yet to be known. This study investigated the associations among gut microbiota and host transcriptomics in young adults with IBS. Stool and peripheral blood samples from 20 IBS subjects and 21 healthy controls (HCs) collected at the baseline visit of an RCT were sequenced to depict the gut microbiota and transcriptomic profiles, respectively. The diversities, composition, and predicted metabolic pathways of gut microbiota significantly differed between IBS subjects and HCs. Nine genera were significantly abundant in IBS stool samples, including Akkermansia, Blautia, Coprococcus, Granulicatella, Holdemania, Oribacterium, Oscillospira, Parabacteroides, and Sutterella. There were 2264 DEGs found between IBS subjects and HCs; 768 were upregulated, and 1496 were downregulated in IBS participants compared with HCs. The enriched gene ontology included the immune system process and immune response. The pathway of antigen processing and presentation (hsa04612) in gut microbiota was also significantly different in the RNA-seq data. Akkermansia, Blautia, Holdemania, and Sutterella were significantly correlated with ANXA2P2 (upregulated, positive correlations), PCSK1N (downregulated, negative correlations), and GLTPD2 (downregulated, negative correlations). This study identified the dysregulated immune response and metabolism in IBS participants revealed by the altered gut microbiota and transcriptomic profiles. Full article
(This article belongs to the Special Issue Molecular Advances in Gut Microbiota and Intestinal Diseases)
Show Figures

Figure 1

11 pages, 664 KB  
Case Report
An Aminoglycoside-Sparing Regimen with Double Beta-Lactam to Successfully Treat Granulicatella adiacens Prosthetic Aortic Valve Endocarditis—Time to Change Paradigm?
by Alberto Pagotto, Floriana Campanile, Paola Conti, Francesca Prataviera, Paola Della Siega, Sarah Flammini, Simone Giuliano, Luca Martini, Davide Pecori, Assunta Sartor, Maria Screm, Tosca Semenzin and Carlo Tascini
Infect. Dis. Rep. 2024, 16(2), 249-259; https://doi.org/10.3390/idr16020020 - 14 Mar 2024
Cited by 1 | Viewed by 2884
Abstract
(1) Background: Granulicatella adiacens is a former nutritionally variant streptococci (NVS). NVS infective endocarditis (IE) is generally characterized by a higher rate of morbidity and mortality, partially due to difficulties in choosing the most adequate microbiological culture method and the most effective treatment [...] Read more.
(1) Background: Granulicatella adiacens is a former nutritionally variant streptococci (NVS). NVS infective endocarditis (IE) is generally characterized by a higher rate of morbidity and mortality, partially due to difficulties in choosing the most adequate microbiological culture method and the most effective treatment strategy, and partially due to higher rates of complications, such as heart failure, peripheral septic embolism, and peri-valvular abscess, as well as a higher rate of valve replacement. Depending on the affected valve (native valve endocarditisNVE, or prosthetic valve endocarditisPVE), the American Heart Association (AHA) 2015 treatment guidelines (GLs) suggest penicillin G, ampicillin, or ceftriaxone plus gentamicin (2 weeks for NVE and up to 6 weeks for PVE), while vancomycin alone may be a reasonable alternative in patients who are intolerant of β-lactam therapy. The European Society of Cardiology (ESC) 2023 GLs recommend treating NVE with penicillin G, ceftriaxone, or vancomycin for 6 weeks, suggesting combined with an aminoglycoside (AG) for at least the first 2 weeks only for PVE; likewise, the same recommendations for IE due to Enterococcus faecalis. (2) Methods: Starting from the case of a 51-year-old man with G. adiacens aortic bio-prosthesis IE who was successfully treated with aortic valve replacement combined with double beta-lactams, an AG-sparing regimen, we performed microbiology tests in order to validate this potential treatment change. (3) Results: As for E. faecalis IE, we found that the combination of ampicillin plus cephalosporines (like ceftriaxone or ceftobiprole) showed a synergistic effect in vitro, probably due to wider binding to penicillin-binding proteins (PBPs), thus contributing to enhanced bacterial killing and good clinical outcome, as well as avoiding the risk of nephrotoxicity due to AG association therapy. (4) Conclusions: Further studies are required to confirm this hypothesis, but double beta-lactams and an adequate sourcecontrol could be a choice in treating G. adiacens IE. Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

12 pages, 1379 KB  
Article
Bacteremia Prevention during Periodontal Treatment—An In Vivo Feasibility Study
by Patrick Jansen, Georg Conrads, Johannes-Simon Wenzler, Felix Krause and Andreas Braun
Antibiotics 2023, 12(10), 1555; https://doi.org/10.3390/antibiotics12101555 - 20 Oct 2023
Cited by 2 | Viewed by 3205
Abstract
The link between periodontitis and systemic diseases has increasingly become a focus of research in recent years. In this context, it is reasonable—especially in vulnerable patient groups—to minimize bacteremia during periodontal treatment. The aim of the present in vivo feasibility study was to [...] Read more.
The link between periodontitis and systemic diseases has increasingly become a focus of research in recent years. In this context, it is reasonable—especially in vulnerable patient groups—to minimize bacteremia during periodontal treatment. The aim of the present in vivo feasibility study was to investigate the possibility of laser-based bacteremia prevention. Patients with stage III, grade B generalized periodontitis were therefore treated in a split-mouth design either with prior 445 nm laser irradiation before nonsurgical periodontal therapy or without. During the treatments, clinical (periodontal measures, pain sensation, and body temperature), microbiological (sulcus samples and blood cultures before, 25 min after the start, and 10 min after the end of treatment), and immunological parameters (CRP, IL-6, and TNF-α) were obtained. It was shown that periodontal treatment-related bacteremia was detectable in both patients with the study design used. The species isolated were Schaalia georgiae, Granulicatella adiacens, and Parvimonas micra. The immunological parameters increased only slightly and occasionally. In the laser-assisted treatments, all blood cultures remained negative, demonstrating treatment-related bacteremia prevention. Within the limitations of this feasibility study, it can be concluded that prior laser disinfection can reduce bacteremia risk during periodontal therapy. Follow-up studies with larger patient numbers are needed to further investigate this effect, using the study design presented here. Full article
Show Figures

Figure 1

16 pages, 2439 KB  
Article
The Diagnostic Value of Gut Microbiota Analysis for Post-Stroke Sleep Disorders
by Huijia Xie, Jiaxin Chen, Qionglei Chen, Yiting Zhao, Jiaming Liu, Jing Sun and Xuezhen Hu
Diagnostics 2023, 13(18), 2970; https://doi.org/10.3390/diagnostics13182970 - 17 Sep 2023
Cited by 6 | Viewed by 2841
Abstract
Background: Gut microbiota have been associated with many psychiatric disorders. However, the changes in the composition of gut microbiota in patients with post-stroke sleep disorders (PSSDs) remain unclear. Here, we determined the gut microbial signature of PSSD patients. Methods: Fecal samples of 205 [...] Read more.
Background: Gut microbiota have been associated with many psychiatric disorders. However, the changes in the composition of gut microbiota in patients with post-stroke sleep disorders (PSSDs) remain unclear. Here, we determined the gut microbial signature of PSSD patients. Methods: Fecal samples of 205 patients with ischemic stroke were collected within 24 h of admission and were further analyzed using 16 s RNA gene sequencing followed by bioinformatic analysis. The diversity, community composition, and differential microbes of gut microbiota were assessed. The outcome of sleep disorders was determined by the Pittsburgh Sleep Quality Index (PSQI) at 3 months after admission. The diagnostic performance of microbial characteristics in predicting PSSDs was assessed by receiver operating characteristic (ROC) curves. Results: Our results showed that the composition and structure of microbiota in patients with PSSDs were different from those without sleep disorders (PSNSDs). Moreover, the linear discriminant analysis effect size (LEfSe) showed significant differences in gut-associated bacteria, such as species of Streptococcus, Granulicatella, Dielma, Blautia, Paeniclostridium, and Sutterella. We further managed to identify the optimal microbiota signature and revealed that the predictive model with eight operational-taxonomic-unit-based biomarkers achieved a high accuracy in PSSD prediction (AUC = 0.768). Blautia and Streptococcus were considered to be the key microbiome signatures for patients with PSSD. Conclusions: These findings indicated that a specific gut microbial signature was an important predictor of PSSDs, which highlighted the potential of microbiota as a promising biomarker for detecting PSSD patients. Full article
(This article belongs to the Special Issue Risk Factors for Acute Ischemic Stroke)
Show Figures

Figure 1

15 pages, 2736 KB  
Article
In Vitro Impact of Fluconazole on Oral Microbial Communities, Bacterial Growth, and Biofilm Formation
by Louise Morais Dornelas-Figueira, Antônio Pedro Ricomini Filho, Roger Junges, Heidi Aarø Åmdal, Altair Antoninha Del Bel Cury and Fernanda Cristina Petersen
Antibiotics 2023, 12(9), 1433; https://doi.org/10.3390/antibiotics12091433 - 11 Sep 2023
Cited by 5 | Viewed by 3165
Abstract
Antifungal agents are widely used to specifically eliminate infections by fungal pathogens. However, the specificity of antifungal agents has been challenged by a few studies demonstrating antibacterial inhibitory effects against Mycobacteria and Streptomyces species. Here, we evaluated for the first time the potential [...] Read more.
Antifungal agents are widely used to specifically eliminate infections by fungal pathogens. However, the specificity of antifungal agents has been challenged by a few studies demonstrating antibacterial inhibitory effects against Mycobacteria and Streptomyces species. Here, we evaluated for the first time the potential effect of fluconazole, the most clinically used antifungal agent, on a human oral microbiota biofilm model. The results showed that biofilm viability on blood and mitis salivarius agar media was increased over time in the presence of fluconazole at clinically relevant concentrations, despite a reduction in biomass. Targeted PCR revealed a higher abundance of Veillonella atypica, Veillonella dispar, and Lactobacillus spp. in the fluconazole-treated samples compared to the control, while Fusobacterium nucleatum was reduced and Streptococcus spp were not significantly affected. Further, we tested the potential impact of fluconazole using single-species models. Our results, using Streptococcus mutans and Streptococcus mitis luciferase reporters, showed that S. mutans planktonic growth was not significantly affected by fluconazole, whereas for S. mitis, planktonic growth, but not biofilm viability, was inhibited at the highest concentration. Fluconazole’s effects on S. mitis biofilm biomass were concentration and time dependent. Exposure for 48 h to the highest concentration of fluconazole was associated with S. mitis biofilms with the most increased biomass. Potential growth inhibitory effects were further tested using four non-streptococcal species. Among these, the planktonic growth of both Escherichia coli and Granulicatella adiacens was inhibited by fluconazole. The data indicate bacterial responses to fluconazole that extend to a broader range of bacterial species than previously anticipated from the literature, with the potential to disturb biofilm communities. Full article
Show Figures

Figure 1

14 pages, 4205 KB  
Article
Microbial Community Dynamics and the Correlation between Specific Bacterial Strains and Higher Alcohols Production in Tartary Buckwheat Huangjiu Fermentation
by Sheng Yin, Mingquan Huang, Jiaxuan Wang, Bo Liu and Qing Ren
Foods 2023, 12(14), 2664; https://doi.org/10.3390/foods12142664 - 11 Jul 2023
Cited by 6 | Viewed by 1948
Abstract
Tartary buckwheat is a healthy grain rich in nutrients and medicinal ingredients and consequently is commonly used for Huangjiu brewing. In order to reveal the correlation between microbial succession and higher alcohols production, in this study, Huangjiu fermentation was conducted using Tartary buckwheat [...] Read more.
Tartary buckwheat is a healthy grain rich in nutrients and medicinal ingredients and consequently is commonly used for Huangjiu brewing. In order to reveal the correlation between microbial succession and higher alcohols production, in this study, Huangjiu fermentation was conducted using Tartary buckwheat as the raw material and wheat Qu as the starter culture. Microbial community dynamics analysis indicated that the bacterial diversity initially decreased rapidly to a lower level and then increased and maintained at a higher level during fermentation. Lactococcus was the dominant bacteria and Ralstonia, Acinetobacter, Cyanobacteria, and Oxalobacteraceae were the bacterial genera with higher abundances. In sharp contrast, only 13 fungal genera were detected during fermentation, and Saccharomyces showed the dominant abundance. Moreover, 18 higher alcohol compounds were detected by GC-MS during fermentation. Four compounds (2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol) were stably detected with high concentrations during fermentation. The compound 2-ethyl-2-methyl-tridecanol was detected to be of the highest concentration in the later period of fermentation. Correlation analysis revealed that the generation of 2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol were positively correlated with Granulicatella and Pelomonas, Bacteroides, Pseudonocardia and Pedomicrobium, and Corynebacterium, respectively. The verification fermentation experiments indicated that the improved wheat Qu QT3 and QT4 inoculated with Granulicatella T3 and Acidothermus T4 led to significant increases in the contents of 2-phenylethanol and pentanol, as well as isobutanol and isopentanol, respectively, in the Tartary buckwheat Huangjiu. The findings benefit understanding of higher alcohols production and flavor formation mechanisms in Huangjiu fermentation. Full article
(This article belongs to the Special Issue Food Quality Control: Microbial Diversity and Metabolic Regulation)
Show Figures

Figure 1

15 pages, 2835 KB  
Article
Gut Microbiome and Associated Metabolites Following Bariatric Surgery and Comparison to Healthy Controls
by Adilah F. Ahmad, Jose A. Caparrós-Martín, Silvia Lee, Fergal O’Gara, Bu B. Yeap, Daniel J. Green, Mohammed Ballal, Natalie C. Ward and Girish Dwivedi
Microorganisms 2023, 11(5), 1126; https://doi.org/10.3390/microorganisms11051126 - 26 Apr 2023
Cited by 7 | Viewed by 2897
Abstract
The gut microbiome plays a significant role in regulating the host’s ability to store fat, which impacts the development of obesity. This observational cohort study recruited obese adult men and women scheduled to undergo sleeve gastrectomy and followed up with them 6 months [...] Read more.
The gut microbiome plays a significant role in regulating the host’s ability to store fat, which impacts the development of obesity. This observational cohort study recruited obese adult men and women scheduled to undergo sleeve gastrectomy and followed up with them 6 months post-surgery to analyse their microbial taxonomic profiles and associated metabolites in comparison to a healthy control group. There were no significant differences in the gut bacterial diversity between the bariatric patients at baseline and at follow-up or between the bariatric patients and the cohort of healthy controls. However, there were differential abundances in specific bacterial groups between the two cohorts. The bariatric patients were observed to have significant enrichment in Granulicatella at baseline and Streptococcus and Actinomyces at follow-up compared to the healthy controls. Several operational taxonomic units assigned to commensal Clostridia were significantly reduced in the stool of bariatric patients both at baseline and follow-up. When compared to a healthy cohort, the plasma levels of the short chain fatty acid acetate were significantly higher in the bariatric surgery group at baseline. This remained significant when adjusted for age and sex (p = 0.013). The levels of soluble CD14 and CD163 were significantly higher (p = 0.0432 and p = 0.0067, respectively) in the bariatric surgery patients compared to the healthy controls at baseline. The present study demonstrated that there are alterations in the abundance of certain bacterial groups in the gut microbiome of obese patients prior to bariatric surgery compared to healthy individuals, which persist post-sleeve gastrectomy. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease)
Show Figures

Figure 1

9 pages, 261 KB  
Communication
Clinical Utility of the FilmArray® Blood Culture Identification (BCID) Panel for the Diagnosis of Neonatal Sepsis
by María Caunedo-Jiménez, Belén Fernández-Colomer, Jonathan Fernández-Suárez, Rosa Patricia Arias-Llorente, Sonia Lareu-Vidal, Laura Mantecón-Fernández, Gonzalo Solís-Sánchez and Marta Suárez-Rodríguez
Microorganisms 2023, 11(3), 732; https://doi.org/10.3390/microorganisms11030732 - 12 Mar 2023
Cited by 5 | Viewed by 2409
Abstract
This prospective single-center study was designed to assess the clinical utility of the FilmArray® blood culture identification (BCID) panel for improving the diagnostic accuracy in neonatal sepsis. Results obtained using the FilmArray® BCID panel were correlated with results of blood culture [...] Read more.
This prospective single-center study was designed to assess the clinical utility of the FilmArray® blood culture identification (BCID) panel for improving the diagnostic accuracy in neonatal sepsis. Results obtained using the FilmArray® BCID panel were correlated with results of blood culture in all consecutive neonates with suspicion of early-onset (EOS) and late-onset sepsis (LOS) attended in our service over a two-year period. A total of 102 blood cultures from 92 neonates were included, 69 (67.5%) in cases of EOS and 33 (32.3%) in LOS. The FilmArray® BCID panel was performed in negative culture bottles at a median of 10 h of blood culture incubation (IQR 8–20), without differences by the type of sepsis. The FilmArray® BCID panel showed a 66.7% sensitivity, 100% specificity, 100% positive predictive value, and 95.7% negative predictive value. There were four false-negative cases, three of which were Streptococcus epidermidis in neonates with LOS, and there was one case of Granulicatella adiacens in one neonate with EOS. We conclude that the use of the FilmArray® BCID panel in negative blood cultures from neonates with clinical suspicion of sepsis is useful in decision-making of starting or early withdrawal of empirical antimicrobials because of the high specificity and negative predictive values of this assay. Full article
(This article belongs to the Special Issue Advances in Bacterial Sepsis)
Back to TopTop