High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation
Abstract
:1. Introduction
2. Results
2.1. Nutritional Composition
2.2. Mineral Profile
2.3. Vitamin E Profile
2.4. Fatty Acid Profile
2.5. Bioactive Compounds and Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Material and Sample Preparation
4.3. Nutritional Analysis
4.4. Determination of Free Sugars by HPLC
4.5. Macro and Trace Elements Composition
4.6. Lipid Fraction Extraction
4.6.1. Vitamin E Profile by HPLC-DAD-FLD
4.6.2. Fatty Acids Composition Analysis by GC-FID
4.7. Bioactive Contents and Antioxidant Activity
4.7.1. Extracts Preparation
4.7.2. Total Phenolics and Total Flavonoids Contents
4.7.3. Antioxidant Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Análisis del Mercado de las Principales Frutas Tropicales Panorama General de Febrero de 2020; FAO: Rome, Italy, 2020; p. 6. [Google Scholar]
- Mesquita, M.S.; Santos, P.D.F.; Holkem, A.T.; Thomazini, M.; Rodrigues, C.E.C.; Fernandes, A.M.; Favaro-Trindade, C.S. Papaya Seeds (Carica papaya L. var. Formosa) in Different Ripening Stages: Unexplored Agro-Industrial Residues as Potential Sources of Proteins, Fibers and Oil as well as High Antioxidant Capacity. Food Sci. Technol. 2023, 43, e105422. [Google Scholar] [CrossRef]
- Abdel-Hameed, S.M.; Allah, N.A.R.A.; Hamed, M.M.; Soltan, O.I.A. Papaya Fruit By-Products as Novel Food Ingredients in Cupcakes. Ann. Agric. Sci. 2023, 68, 60–74. [Google Scholar] [CrossRef]
- Major Tropical Fruits Market Review February 2020 Snapshot. Available online: https://www.fao.org/3/ca9213en/ca9213en.pdf (accessed on 20 February 2023).
- Kumoro, A.C.; Alhanif, M.; Wardhani, D.H. A Critical Review on Tropical Fruits Seeds as Prospective Sources of Nutritional and Bioactive Compounds for Functional Foods Development: A Case of Indonesian Exotic Fruits. Int. J. Food Sci. 2020, 2020, 4051475. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Prod ucts—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bachheti, A.; Sharma, P.; Bachheti, R.K.; Husen, A. Phytochemistry, Pharmaceutical Activities, Nanoparticle Fabrication, Commercial Products And Waste Utilization of Carica papaya L.: A Comprehensive Review. Curr. Res. Biotechnol. 2020, 2, 145–160. [Google Scholar] [CrossRef]
- Ghaffarilaleh, V.; Fisher, D.; Henkel, R. Carica papaya Seed Extract Slows Human Sperm. J. Ethnopharmacol. 2019, 241, 111972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jinhui, L.; Jing, Y.; Hailin, X.; Ping, C.; Hongxing, C.; Martin, J.; Jeyakumar, J. Antioxidant Analysis of Different Parts of Several Cultivars of Papaya (Carica papaya L.). Int. J. Fruit. Sci. 2022, 22, 438–452. [Google Scholar] [CrossRef]
- He, X.; Ma, Y.; Yi, G.; Wu, J.; Zhou, L.; Guo, H. Chemical Composition and Antifungal Activity of Carica papaya Linn. Seed Essential Oil Against Candida spp. Lett. Appl. Microbiol. 2017, 64, 350–354. [Google Scholar] [CrossRef]
- Dotto, J.M.; Abihudi, S.A. Nutraceutical Value of Carica papaya: A Review. Sci. Afr. 2021, 13, e00933. [Google Scholar] [CrossRef]
- Li, P.; Zhao, Y.M.; Wang, C.; Zhu, H.P. Antibacterial Activity and Main Action Pathway of Benzyl isothiocyanate Extracted from Papaya Seeds. J. Food Sci. 2021, 86, 169–176. [Google Scholar] [CrossRef]
- Pavithra, C.S.; Devi, S.S.; Suneetha, W.J.; Rani, C.V. Nutritional Properties of Papaya Peel. Pharm. Innov. 2017, 6, 170–173. [Google Scholar]
- Pavithra, C.S.; Devi, S.S.; Suneetha, W.J.; Rani, C.V. Nutritional Profiling of Papaya Peel Incorporated Chapathis. Chem. Sci. Rev. Lett. 2018, 7, 686–691. [Google Scholar]
- Santana, L.F.; Inada, A.C.; Espirito Santo, B.L.S.d.; Filiú, W.F.O.; Pott, A.; Alves, F.M.; Guimarães, R.d.C.A.; Freitas, K.d.C.; Hiane, P.A. Nutraceutical Potential of Carica papaya in Metabolic Syndrome. Nutrients 2019, 11, 1608. [Google Scholar] [CrossRef] [PubMed]
- Chukwuka, K.S.; Iwuagwu, M.; Uka, U.N. Evaluation of Nutritional Components of Carica papaya L. at Different Stages of Ripening. J. Pharm. Biol. Sci. 2013, 6, 13–16. [Google Scholar] [CrossRef]
- Santos, C.M.; Abreu, C.M.P.; Freire, J.M.; Queiroz, E.R.; Mendonça, M.M. Chemical Characterization of the Flour of Peel and Seed from Two Papaya Cultivars. Food Sci. Technol. 2014, 34, 353–357. [Google Scholar] [CrossRef]
- Wurochekke, A.U.; Eze, H.T.; Declan, B. Comparative Study on the Nutritional Content of Carica Papaya at Different Rippening Stages. Int. J. Pure Appl. Sci. Technol. 2013, 14, 80–83. [Google Scholar]
- Gade, S.R.; Meghwal, M.; Prabhakar, P.K.; Giuffrè, A.M. A Comparative Study on the Nutritional, Antioxidant, Thermal, Morphological and Diffraction Properties of Selected Cucurbit Seeds. Agronomy 2022, 12, 2242. [Google Scholar] [CrossRef]
- Moses, M.O.; Olanrewaju, M.J. Proximate and Selected Mineral Composition of Ripe Pawpaw (Carica papaya) Seeds and Skin. J. Sci. Innov. Res. 2018, 7, 75–77. [Google Scholar] [CrossRef]
- Alam, M.; Hasan, M.M.; Debnath, M.K.; Alam, A.; Zahid, M.A.; Alim, M.A.; Rahman, M.N.; Molla, M.M.; Khan, M.R.; Biswas, M. Characterization and Evaluation of Flour´s Physico-Chemical, Functional, and Nutritional Quality Attributes from Edible and Non-Edible Parts of Papaya. J. Agric. Food Res. 2024, 15, 100961. [Google Scholar] [CrossRef]
- Maisarah, A.M.; Asmah, R.; Fauziah, O. Proximate Analysis, Antioxidant and Antiproliferative Activities of Different Parts of Carica papaya. J. Nutr. Food Sci. 2014, 4, 267. [Google Scholar] [CrossRef]
- Joymak, W.; Ngamukote, S.; Chantarasinlapin, P.; Adisakwattana, S. Unripe Papaya By-Product: From Food Wastes to Functional Ingredients in Pancakes. Foods 2021, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, A.K.; Bavita, K.; Attri, S.; Ramachandran, P. Preparation of Pumpkin Powder and Pumpkin Seed Kernel Powder for Supplementation in Weaning Mix and Cookies. Int. J. Chem. Stud. 2018, 6, 167–175. [Google Scholar]
- Dúran-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef] [PubMed]
- Julius, B.T.; Leach, K.A.; Tran, T.M.; Mertz, R.A.; Braun, D.M. Sugar Transporters in Plants: New Insights and Discoveries. Plant Cell Physiol. 2017, 58, 1442–1460. [Google Scholar] [CrossRef] [PubMed]
- Lira, E.M.; Simental, S.S.; Juárez, V.M.M.; Lira, A.Q.; Martini, J.P. Proximate Chemical, Functional, and Texture Characterization of Papaya Seed Flour (Carica papaya) for the Preparation of Bread. Int. J. Gastron. Food Sci. 2023, 31, 100675. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Martial-Didier, A.K.; Hubert, K.K.; Parfait, K.E.J.; Kablan, T. Phytochemical Properties and Proximate Composition of Papaya (Carica papaya L., var solo 8) Peels. Turk. J. Agric. 2017, 5, 676–680. [Google Scholar] [CrossRef]
- Pessoa-Lima, C.; Tostes-Figueiredo, J.; Macedo-Ribeiro, N.; Hsiou, A.S.; Muniz, F.P.; Maulin, J.A.; Franceschini-Santos, V.H.; de Sousa, F.B.; Barbosa, F., Jr.; Line, S.R.P. Structure and Chemical Composition of ca. 10-Million-Year-Old (Late Miocene of Western Amazon) and Present-Day Teeth of Related Species. Biology 2022, 11, 1636. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Ż.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, A.; Krośniak, M.; Jurowski, K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients 2023, 15, 1012. [Google Scholar] [CrossRef] [PubMed]
- Charoensiri, R.; Kongkachuichai, R.; Suknicom, S.; Sungpuag, P. Beta-carotene, Lycopene, and Alpha-Tocophelos contents of Selected Thai Fruit. Food Chem. 2009, 113, 202–207. [Google Scholar] [CrossRef]
- Petcu, C.D.; Tăpăloagă, D.; Mihai, O.D.; Gheorghe-Irimia, R.-A.; Negoiță, C.; Georgescu, I.M.; Tăpăloagă, P.R.; Borda, C.; Ghimpețeanu, O.M. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023, 12, 3176. [Google Scholar] [CrossRef] [PubMed]
- Najjar, Z.; Kizhakkayil, J.; Shakoor, H.; Platat, C.; Stathopoulos, C.; Ranasinghe, M. Antioxidant Potential of Cookies Formulated with Date Seed Powder. Foods 2022, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, B. New Insights Into Chemical Compositions and Health Promoting Effects of Edible Oils from New Resources. Food Chem. 2021, 364, 130363. [Google Scholar] [CrossRef] [PubMed]
- Santana, L.F.; do Espirito Santo, B.L.S.; Tatara, M.B.; Negrão, F.J.; Croda, J.; Alves, F.M.; de Oliveira Filiú, W.F.; Cavalheiro, L.F.; Nazário, C.E.D.; Asato, M.A.; et al. Effects of the Seed Oil of Carica papaya Linn on Food Consumption, Adiposity, Metabolic and Inflammatory Profile of Mice Using Hyperlipidic Diet. Molecules 2022, 27, 6705. [Google Scholar] [CrossRef] [PubMed]
- Tukui, R.; Wenya, W.; Rashid, F.; Qing, L. Fatty acids composition of apple and pear seed oils. Int. J. Food Prop. 2009, 12, 774–779. [Google Scholar] [CrossRef]
- Pieczykolan, A.; Pietrzak, W.; Gawlik-Dziki, U.; Nowak, R. Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss. Molecules 2021, 26, 3486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cao, Y.; Li, J.; Agar, O.T.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Screening and Characterization of Phenolic Compounds by LC-ESI-QTOF-MS/MS and Their Antioxidant Potentials in Papaya Fruit and Their By-products Activities. Food Biosci. 2023, 52, 102480. [Google Scholar] [CrossRef]
- Gaye, A.A.; Cisse, O.I.K.; Ndiaye, B.; Ayessou, N.C.; Cisse, M.; Diop, C.M. Evaluation of Phenolic Content and Antioxidant Activity of Aqueous Extracts of Three Carica papaya Varieties Cultivated in Senegal. Food Nutr. Sci. 2019, 10, 276–289. [Google Scholar] [CrossRef]
- Utami, P.W.; Brotosudarmo, T.H.P. The Activity of Flavonoid Isolates from Papaya (Carica papaya L.) Seed as Pancreatic Lipase Inhibitor. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 062031. [Google Scholar] [CrossRef]
- Kadiri, O.; Olawoye, B.; Fawale, O.S.; Adalumo, O.A. Nutraceutical and Antioxidant Properties of the Seeds, Leaves and Fruits of Carica papaya: Potential Relevance to Humans Diet, the Food Industry and the Pharmaceutical Industry—A Review. Turk. J. Agric.-Food Sci. Technol. 2016, 4, 1039–1052. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists International; Official Methods; ACOC: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Montesano, D.; Cossigmani, L.; Giua, L.; Urbani, E.; Simonetti, M.S.; Blasi, F. A Simple HPLC-ELSD Method for Sugar Analysis in Goji Berry. J. Chem. 2016, 2016, 6271808. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.R.M.; Ferreira, I.M.P.L.V.O. Changes in Macrominerals, Trace Elements and Pigments Content During Lettuce (Lactuca sativa L.) Growth: Influence of Soil Composition. Food Chem. 2014, 152, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.C.; Casal, S.; Oliveira, M.B.P.P. Determination of Vitamin E in Coffee Beans by HPLC Using a Micro-Extraction Method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org (accessed on 20 February 2023).
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive Pomace as a Valuable Source of Bioactive Compounds: A Study Regarding its Lipid- and Water-Soluble Components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of Antioxidants extraction from Coffee Silverskin, a Roasting By-product, Having in View a Sustainable Process. Ind. Crop. Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
Nutrient | AP | FP | AS | FS |
---|---|---|---|---|
Moisture | 5.31 ± 0.35 c | 6.65 ± 0.22 b | 8.18 ± 0.32 a | 8.14 ± 0.40 a |
Ash | 15.82 ± 0.02 a | 13.83 ± 0.06 b | 8.62 ± 0.02 d | 9.50 ± 0.08 c |
Crude Protein | 26.57 ± 0.03 a | 19.86 ± 0.13 d | 25.58 ± 0.21 b | 23.67 ± 0.31 c |
Total Fat | 2.85 ± 0.30 b | 3.47 ± 0.39 b | 25.30 ± 0.23 a | 25.25 ± 0.34 a |
Total Carbohydrates | 54.75 ± 0.33 b | 62.84 ± 0.32 a | 40.51 ± 0.02 c | 41.57 ± 0.62 c |
Total Dietary Fiber | 34.76 ± 0.05 b | 31.69 ± 0.05 d | 33.78 ± 0.05 c | 37.78 ± 0.08 a |
Insoluble Dietary Fiber | 31.71 ± 0.03 a | 30.22 ± 0.04 b | 29.81 ± 0.06 b | 31.40 ± 0.15 a |
Soluble Dietary Fiber | 3.05 ± 0.06 c | 1.47 ± 0.06 d | 3.97 ± 0.08 b | 6.38 ± 0.17 a |
Free Sugars | ||||
Glucose | 10.10 ± 0.16 b | 16.17 ± 0.38 a | 4.58 ± 0.10 c | 3.85 ± 0.23 c |
Frutose | 11.95 ± 0.25 b | 18.39 ± 0.47 a | 4.25 ± 0.11 c | 3.32 ± 0.26 c |
AP | FP | AS | FS | |
---|---|---|---|---|
Essential trace elements | ||||
Fe (µg/g) | 67.73 ± 0.66 b | 57.7 ± 2.3 b | 79.6 ± 4.5 a | 60.2 ± 3.8 b |
Cu (µg/g) | 4.440 ± 0.067 c | 5.095 ± 0.085 b | 6.50 ± 0.14 a | 6.64 ± 0.18 a |
Zn (µg/g) | 28.56 ± 0.53 a | 22.20 ± 0.31 c | 29.63 ± 0.87 a | 24.80 ± 0.58 b |
Mn (µg/g) | 72.0 ± 1.3 a | 31.96 ± 0.16 c | 45.5 ± 1.1 b | 33.17 ± 0.69 c |
Mo (µg/g) | 11.17 ± 0.19 a | 6.0 ± 1.7 b | 3.28 ± 0.69 c | 3.17 ± 0.25 c |
Co (ng/g) | 56.7 ± 2.1 c | 286.8 ± 3.4 a | 26.8 ± 3.1 d | 152.6 ± 5.6 b |
Cr (ng/g) | 203.5 ± 1.7 a | 135.43 ± 0.62 a | 128.1 ± 2.3 a | 124 ± 20 a |
Se (µg/g) | 0.302 ± 0.010 a | 0.228 ± 0.016 b | 0.177 ± 0.011 b,c | 0.182 ± 0.023 c |
Non-essential and toxic trace elements | ||||
Al (µg/g) | 22.8 ± 6.0 b | 38.8 ± 2.3 a | 1.95 ± 0.48 c | <LoD |
As (ng/g) | 30.2 ± 8.3 a | 29.3 ± 5.0 a | 28.7 ± 7.4 a | <LoD |
B (µg/g) | 27.75 ± 0.67 a | 27.62 ± 0.55 a | 11.51 ± 0.42 b | 11.46 ± 0.40 b |
Ba (ng/g) | 1456 ± 17 a | 954.0 ± 8.2c | 1274 ± 60 b | 1506 ± 25 a |
Be (ng/g) | <LoD | <LoD | <LoD | <LoD |
Bi (ng/g) | n.d. | n.d. | n.d. | n.d. |
Cd (ng/g) | 6.85 ± 0.60 a | 2.70 ± 0.10 b | 2.81 ± 0.45 b | <LoD |
Cs (ng/g) | 328.0 ± 1.8 a | 174.9 ± 7.7 b | 140.92 ± 0.34 c | 130.0 ± 5.9 c |
Li (ng/g) | 20.4 ± 5.2 a,b | 26.9 ± 4.7 a | 2.09 ± 0.13 b | <LoD |
Ni (µg/g) | 0.575 ± 0.018 b | 0.980 ± 0.017 a | 0.246 ± 0.018 d | 0.338 ± 0.012 c |
Pb (ng/g) | 30.3 ± 2.8 a | 44 ± 11 a | <LoD | <LoD |
Rb (µg/g) | 34.20 ± 0.29 a | 34.12 ± 0.43 a | 17.76 ± 0.28 c | 23.37 ± 0.48 b |
Sb (µg/g) | 11.6 ± 2.1 a | <LoD | <LoD | <LoD |
Sn (ng/g) | 229 ± 36 a | 16 ± 11 b | 10.9 ± 7.0 b | <LoD |
Sr (µg/g) | 30.84 ± 0.21 b | 12.50 ± 0.36 d | 45.81 ± 0.98 a | 20.89 ± 0.85 c |
Te (µg/g) | <LoD | <LoD | <LoD | <LoD |
Ti (µg/g) | 6.16 ± 0.38 b | 8.39 ± 0.22 a | 6.718 ± 0.094 b | 6.70 ± 0.36 b |
V (µg/g) | <LoD | <LoD | <LoD | <LoD |
W (µg/g) | <LoD | <LoD | <LoD | <LoD |
Zr (ng/g) | 167 ± 18 a | 23.0 ± 2.7 b | 6.2 ± 2.8 b | 5.8 ± 7.0 b |
Macro elements | ||||
Ca (mg/g) | 7.93 ± 0.77 a | 12.7 ± 3.0 a | 8.766 ± 0.062 a | 9.77 ± 0.37 a |
K (mg/g) | 60.4 ± 5.2 a | 53.7 ± 4.0 a,b | 49.95 ± 7.8 a,b | 41.2 ± 5.2 b |
Mg (mg/g) | 2.86 ± 0.13 b | 2.68 ± 0.26 b | 4.40 ± 0.13 a | 4.12 ± 0.31 a |
Na (µg/g) | 499.8 ± 5.0 b | 586 ± 26 a | 398.4 ± 4.7 c | 407.7 ± 6.8 c |
Vitamer | AP | FP | AS | FS |
---|---|---|---|---|
α-tocopherol | 30.91 ± 1.15 b | 36.00 ± 0.55 a | 3.38 ± 0.02 c | 2.90 ± 0.09 c |
β-tocopherol | 0.65 ± 0.04 b | 2.45 ± 0.02 a | n.d. | n.d. |
γ-tocopherol | 24.43 ± 0.86 b | 39.18 ± 0.39 a | 0.69 ± 0.00c | 0.64 ± 0.02 c |
γ-tocotrienol | 6.84 ± 0.28 b | 11.23 ± 0.03 a | n.d. | n.d. |
δ-tocopherol | 2.21 ± 0.12 b | 11.76 ± 0.17 a | n.d. | n.d. |
Total vitamin E | 65.04 ± 1.98 b | 100.62 ± 0.73 a | 4.07 ± 0.02 c | 3.54 ± 0.09 c |
Fatty Acids | AP | FP | AS | FS | |
---|---|---|---|---|---|
Lauric | C12:0 | 1.37 ± 0.11 b | 2.34 ± 0.21 a | n.d. | n.d. |
Myristic | C14:0 | 4.43 ± 0.09 b | 5.03 ± 0.05 a | 0.22 ± 0.03 c | 0.20 ± 0.02 c |
Palmitic | C16:0 | 24.57 ± 0.20 b | 26.66 ± 0.20 a | 16.39 ± 0.10 c | 16.38 ± 0.07 c |
Palmitoleic | C16:1 | 5.43 ± 0.12 b | 7.69 ± 0.09 a | 0.43 ± 0.06 c | 0.36 ± 0.03 c |
Heptadecanoic | C17:0 | 0.80 ± 0.08 a | 0.53 ± 0.09 b | n.d. | n.d. |
Stearic | C18:0 | 3.64 ± 0.27 b | 3.11 ± 0.08 c | 4.52 ± 0.04 a | 4.72 ± 0.02 a |
Oleic | C18:1n9c | 9.92 ± 0.42 c | 8.74 ± 0.25 d | 72.60 ± 0.20 b | 73.60 ± 0.05 a |
Linoleic 1 | C18:2n6c 1 | 14.45 ± 0.41 a | 8.91 ± 0.29 b | 4.81 ± 0.22 c | 3.56 ± 0.05 d |
Arachidic | C20:0 | 1.02 ± 0.10 a | 1.13 ± 0.08 a | 0.40 ± 0.03 b | 0.37 ± 0.04 b |
α-Linolenic 1 | C18:3n3 1 | 28.14 ± 0.48 b | 30.28 ± 0.20 a | 0.16 ± 0.02 c | 0.20 ± 0.04 c |
cis-11-Eicosanoic | C20:1n9 | n.d. | n.d. | 0.28 ± 0.02 b | 0.34 ± 0.02 a |
Behenic | C22:0 | 1.83 ± 0.07 a | 1.79 ± 0.05 a | 0.18 ± 0.03 b | 0.25 ± 0.01 b |
Tricosanoic | C23:0 | 0.83 ± 0.13 a | 0.83 ± 0.03 a | n.d. | n.d. |
Lignoceric | C24:0 | 3.57 ± 0.03 a | 3.46 ± 0.25 a | n.d. | n.d. |
n6/n3 | 0.51 ± 0.02 c | 0.29 ± 0.01 c | 30.06 ± 4.00 a | 17.80 ± 3.56 b | |
n9/n6 | 0.69 ± 0.04 c | 0.98 ± 0.04 c | 15.15 ± 0.69 b | 20.77 ± 0.29 a | |
ΣSFA | 42.06 ± 0.42 b | 44.88 ± 0.42 a | 21.71 ± 0.12 c | 21.92 ± 0.09 c | |
ΣMUFA | 15.35 ± 0.44 d | 16.43 ± 0.27 c | 73.31 ± 0.21 b | 74.30 ± 0.06 a | |
ΣPUFA | 42.59 ± 0.63 a | 39.19 ± 0.35 b | 4.97 ± 0.22 c | 3.76 ± 0.06 d |
Fruit by-Product | TP (mg GAE/g) | TF (mg CE/g) | FRAP (µmol FSE/g) | DPPH• (%) |
---|---|---|---|---|
AP | 8.92 ± 0.37 a | 2.54 ± 0.08 a | 89.39 ± 6.41 a | 26.81 ± 1.7 b,c |
FP | 7.99 ± 0.45 b | 2.27 ± 0.08 b | 74.30 ± 4.40 b | 26.16 ± 1.2 c |
AS | 4.67 ± 0.15 c | 1.27 ± 0.05 c | 79.16 ± 1.79 b | 30.30 ± 1.6 a |
FS | 4.31 ± 0.15 c | 1.11 ± 0.05 d | 67.62 ± 2.27 c | 28.46 ± 1.5 a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinha, A.F.; Costa, A.S.G.; Espírito Santo, L.; Ferreira, D.M.; Sousa, C.; Pinto, E.; Almeida, A.; Oliveira, M.B.P.P. High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation. Plants 2024, 13, 1009. https://doi.org/10.3390/plants13071009
Vinha AF, Costa ASG, Espírito Santo L, Ferreira DM, Sousa C, Pinto E, Almeida A, Oliveira MBPP. High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation. Plants. 2024; 13(7):1009. https://doi.org/10.3390/plants13071009
Chicago/Turabian StyleVinha, Ana F., Anabela S. G. Costa, Liliana Espírito Santo, Diana M. Ferreira, Carla Sousa, Edgar Pinto, Agostinho Almeida, and Maria Beatriz P. P. Oliveira. 2024. "High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation" Plants 13, no. 7: 1009. https://doi.org/10.3390/plants13071009
APA StyleVinha, A. F., Costa, A. S. G., Espírito Santo, L., Ferreira, D. M., Sousa, C., Pinto, E., Almeida, A., & Oliveira, M. B. P. P. (2024). High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation. Plants, 13(7), 1009. https://doi.org/10.3390/plants13071009