Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = MTPT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3350 KB  
Article
De Novo Hybrid Assembly of the Tripterygium wilfordii Mitochondrial Genome Provides the Chromosomal Mitochondrial DNA Structure and RNA Editing Events
by Yisha Cai, Suxin Yang, Haimei Chen, Yang Ni, Jingling Li, Jinghong Zhang and Chang Liu
Int. J. Mol. Sci. 2025, 26(15), 7093; https://doi.org/10.3390/ijms26157093 - 23 Jul 2025
Viewed by 315
Abstract
Tripterygium wilfordii has extremely important pharmaceutical value in both traditional and modern medicine. The mitogenome of T. wilfordii was subjected to assembly and annotation with Nanopore long reads and Illumina short reads in this study. The mitogenome is 720,306 bp in length and [...] Read more.
Tripterygium wilfordii has extremely important pharmaceutical value in both traditional and modern medicine. The mitogenome of T. wilfordii was subjected to assembly and annotation with Nanopore long reads and Illumina short reads in this study. The mitogenome is 720,306 bp in length and is responsible for encoding 55 specific genes, including 35 protein-coding genes (PCGs), 17 transfer RNA (tRNA) genes, and 3 ribosomal RNA (rRNA) genes. Upon repetitive sequence analysis, 223 simple sequence repeats (SSRs), 24 long tandem repeats (LTRs), and 47 dispersed repetitive sequences (DRSs) were identified. The 24 common PCGs were used for phylogenetic analysis, which revealed that T. wilfordii is more closely related to Euonymus alatus. Moreover, mitochondrial plastid DNA (MTPT) analysis revealed eight MTPTs in the mitochondrial genome. Furthermore, 600 RNA-editing sites were detected in the protein-coding genes according to RNA-seq results. Among these genes, the ccmB gene contained the greatest number of sites, followed by the nad4 gene. This is the first study to report the T. wilfordii mitogenome and illustrate its linear structure. The findings of this study will help elucidate the evolution of the T. wilfordii mitogenome and facilitate its potential application in genetic breeding. Full article
(This article belongs to the Collection Feature Papers in Molecular Informatics)
Show Figures

Figure 1

17 pages, 4790 KB  
Article
Integration of Illumina and PacBio HiFi Sequencing Reveals a Three-Linear-Molecule Mitogenome with RNA-Editing Sites and Phylogeny in Arrow Bamboo (Fargesia qinlingensis)
by Hao Wu, Xue Li, Ke Qu, Lele Yang, Tao Su, Lijun Yong, Mei Han and Fuliang Cao
Forests 2024, 15(7), 1267; https://doi.org/10.3390/f15071267 - 20 Jul 2024
Cited by 2 | Viewed by 1712
Abstract
Arrow bamboo (Fargesia qinlingensis) is endemic to the Qinling Mountains and has remarkable adaptive resilience to changing climates. However, its complete mitogenome remains unknown. Using the Illumina and PacBio HiFi sequencing platforms, we found that the mitogenome assembly of the F. [...] Read more.
Arrow bamboo (Fargesia qinlingensis) is endemic to the Qinling Mountains and has remarkable adaptive resilience to changing climates. However, its complete mitogenome remains unknown. Using the Illumina and PacBio HiFi sequencing platforms, we found that the mitogenome assembly of the F. qinlingensis has a multi-branched skeleton comprising three linear molecules (M1, M2, and M3), with a length of 442,368 bp and a GC content of 44.05%. Thirty-five unique PCGs were identified in the complete mitogenome, including twenty-four core structural genes, eleven noncore structural genes, three rRNAs, and sixteen tRNAs. The GCU for alanine and CAA for glutamine represented the most significant frequency (RSCU = 1.55) in the codon usage preference. A total of 51, 28, and 14 SSRs were determined on M1, M2, and M3, respectively. The mitogenome contained 149 pairs of dispersed repeats with lengths greater than 30 bp, the most abundant of which were 82 forward and 67 palindromic repeats. A long repeat sequence (14,342 bp) was characterized in mediating mitogenome recombination. DNA transfer analyses suggested that 44 MTPTs (30,943 bp, 6.99%) originated from the plastome. Among the 482 potential C-U/T RNA-editing sites predicted in 35 PCGs, ccmFn (38 times) and ccmC (36 times) shoed the highest frequency. Collinearity and phylogenetic trees revealed the close relationship between F. qinlingensis and Bambusa oldhamii. The primary features of the mitogenome of F. qinlingensis will help decipher the functional mitochondrial traits related to growth performance and climate resilience. Moreover, our findings provide insights into the evolution, environmental adaptation, and sustainable use of subalpine bamboo resources in the Qinling Mountains. Full article
(This article belongs to the Special Issue Genomic Analysis of Growth and Stress Adaptation in Forest Trees)
Show Figures

Figure 1

15 pages, 2734 KB  
Article
The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome
by Pan Tang, Yang Ni, Jingling Li, Qianqi Lu, Chang Liu and Jinlin Guo
Genes 2024, 15(2), 239; https://doi.org/10.3390/genes15020239 - 14 Feb 2024
Cited by 10 | Viewed by 2876
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate [...] Read more.
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome—2nd Edition)
Show Figures

Figure 1

13 pages, 12757 KB  
Article
Effect of Natural Variation and Rootstock on Fruit Quality and Volatile Organic Compounds of ‘Kiyomi tangor’ (Citrus reticulata Blanco) Citrus
by Tie Wang, Zhendong Zheng, Lijun Deng, Weijia Li, Ya Yuan, Mingfei Zhang, Guochao Sun, Siya He, Jun Wang, Zhihui Wang and Bo Xiong
Int. J. Mol. Sci. 2023, 24(23), 16810; https://doi.org/10.3390/ijms242316810 - 27 Nov 2023
Cited by 5 | Viewed by 2014
Abstract
In this study, we compared the fruit quality and color of ‘Kiyomi’ (WT) and its mutant (MT) grafted on Ziyang xiangcheng (Cj) (WT/Cj, MT/Cj), and the MT grafted on Trifoliate orange (Pt) (MT/Pt). The differences in sugar, organic acid, flavonoids, phenols, and volatile [...] Read more.
In this study, we compared the fruit quality and color of ‘Kiyomi’ (WT) and its mutant (MT) grafted on Ziyang xiangcheng (Cj) (WT/Cj, MT/Cj), and the MT grafted on Trifoliate orange (Pt) (MT/Pt). The differences in sugar, organic acid, flavonoids, phenols, and volatile substances of the three materials were also analyzed by high performance liquid chromatography (HPLC) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC–MS). The results showed significant differences in the appearance of WT/Cj, MT/Cj, and MT/Pt. MT/Pt, compared to WT/Cj, MT/Cj, had lower sugar, acid, phenol and flavonoid contents in the pulp. However, MT/Pt pulp was higher in vitamin C (VC), and the peel had significantly higher total phenol and flavonoid contents. In terms of pulp, WT/Cj had the greatest diversity of volatile organic compounds (VOCs). 4-methyl-1-pentanol was significantly higher in MT/Cj pulp, while MT/Pt pulp had a unique octanoic acid, methyl ester. VOCs were more diverse in the peels of the three materials. β-Myrcene and valencen were significantly higher in MT/Cj peels. In contrast, 16 unique VOCs were detected in MT/Pt, and D-limonene content was significantly higher than in WT/Cj and MT/Cj. The results suggest Trifoliate orange is a suitable rootstock for MT. Full article
Show Figures

Figure 1

16 pages, 5874 KB  
Article
De Novo Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Chaenomeles speciosa (Sweet) Nakai Revealed the Existence of Two Structural Isomers
by Pei Cao, Yuan Huang, Mei Zong and Zilong Xu
Genes 2023, 14(2), 526; https://doi.org/10.3390/genes14020526 - 19 Feb 2023
Cited by 10 | Viewed by 2903
Abstract
As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a natural resource with significant economic and ornamental value. However, its genetic information is not well understood. In this study, the complete mitochondrial genome of C. speciosa [...] Read more.
As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a natural resource with significant economic and ornamental value. However, its genetic information is not well understood. In this study, the complete mitochondrial genome of C. speciosa was assembled and characterized to explore the repeat sequences, recombination events, rearrangements, and IGT, to predict RNA editing sites, and to clarify the phylogenetic and evolutionary relationship. The C. speciosa mitochondrial genome was found to have two circular chromosomes as its major conformation, with a total length of 436,464 bp and 45.2% GC content. The mitochondrial genome contained 54 genes, including 33 unique protein-coding genes, 18 tRNAs, and 3 rRNA genes. Seven pairs of repeat sequences involving recombination events were analyzed. Both the repeat pairs, R1 and R2, played significant roles in mediating the major and minor conformations. In total, 18 MTPTs were identified, 6 of which were complete tRNA genes. There were 454 RNA editing sites in the 33 protein-coding sequences predicted by the PREPACT3 program. A phylogenetic analysis based on 22 species of mitochondrial genomes was constructed and indicated highly conserved PCG sequences. Synteny analyses showed extensive genomic rearrangements in the mitochondrial genome of C. speciosa and closely related species. This work is the first to report the C. speciosa mitochondrial genome, which is of great significance for conducting additional genetic studies on this organism. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4860 KB  
Article
De Novo Hybrid Assembly of the Salvia miltiorrhiza Mitochondrial Genome Provides the First Evidence of the Multi-Chromosomal Mitochondrial DNA Structure of Salvia Species
by Heyu Yang, Haimei Chen, Yang Ni, Jingling Li, Yisha Cai, Binxin Ma, Jing Yu, Jiehua Wang and Chang Liu
Int. J. Mol. Sci. 2022, 23(22), 14267; https://doi.org/10.3390/ijms232214267 - 17 Nov 2022
Cited by 33 | Viewed by 2692
Abstract
Salvia miltiorrhiza has been an economically important medicinal plant. Previously, an S. miltiorrhiza mitochondrial genome (mitogenome) assembled from Illumina short reads, appearing to be a single circular molecule, has been published. Based on the recent reports on the plant mitogenome structure, we suspected [...] Read more.
Salvia miltiorrhiza has been an economically important medicinal plant. Previously, an S. miltiorrhiza mitochondrial genome (mitogenome) assembled from Illumina short reads, appearing to be a single circular molecule, has been published. Based on the recent reports on the plant mitogenome structure, we suspected that this conformation does not accurately represent the complexity of the S. miltiorrhiza mitogenome. In the current study, we assembled the mitogenome of S. miltiorrhiza using the PacBio and Illumina sequencing technologies. The primary structure of the mitogenome contained two mitochondrial chromosomes (MC1 and MC2), which corresponded to two major conformations, namely, Mac1 and Mac2, respectively. Using two approaches, including (1) long reads mapping and (2) polymerase chain reaction amplification followed by Sanger sequencing, we observed nine repeats that can mediate recombination. We predicted 55 genes, including 33 mitochondrial protein-coding genes (PCGs), 3 rRNA genes, and 19 tRNA genes. Repeat analysis identified 112 microsatellite repeats and 3 long-tandem repeats. Phylogenetic analysis using the 26 shared PCGs resulted in a tree that was congruent with the phylogeny of Lamiales species in the APG IV system. The analysis of mitochondrial plastid DNA (MTPT) identified 16 MTPTs in the mitogenome. Moreover, the analysis of nucleotide substitution rates in Lamiales showed that the genes atp4, ccmB, ccmFc, and mttB might have been positively selected. The results lay the foundation for future studies on the evolution of the Salvia mitogenome and the molecular breeding of S. miltiorrhiza. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 7323 KB  
Article
The Mitogenome of Sedum plumbizincicola (Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications
by Hengwu Ding, De Bi, Sijia Zhang, Shiyun Han, Yuanxin Ye, Ran Yi, Jianke Yang, Birong Liu, Longhua Wu, Renying Zhuo and Xianzhao Kan
Biology 2022, 11(11), 1661; https://doi.org/10.3390/biology11111661 - 13 Nov 2022
Cited by 8 | Viewed by 3143
Abstract
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been [...] Read more.
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been deposited in a public database. However, no entire mitogenome data have been available for species of Crassulaceae to date. To better understand the evolutionary history of the organelles of Crassulaceae, we sequenced and performed comprehensive analyses on the mitogenome of Sedum plumbizincicola. The master mitogenomic circle is 212,159 bp in length, including 31 protein-coding genes (PCGs), 14 tRNA genes, and 3 rRNA genes. We further identified totally 508 RNA editing sites in PCGs, and demonstrated that the second codon positions of mitochondrial genes are most prone to RNA editing events. Notably, by neutrality plot analyses, we observed that the mitochondrial RNA editing events have large effects on the driving forces of plant evolution. Additionally, 4 MTPTs and 686 NUMTs were detected in the mitochondrial and nuclear genomes of S. plumbizincicola, respectively. Additionally, we conducted further analyses on gene transfer, secondary structures of mitochondrial RNAs, and phylogenetic implications. Therefore, the findings presented here will be helpful for future investigations on plant mitogenomes. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 2423 KB  
Article
Cistanche Species Mitogenomes Suggest Diversity and Complexity in Lamiales-Order Mitogenomes
by Yujing Miao, Haimei Chen, Wanqi Xu, Chang Liu and Linfang Huang
Genes 2022, 13(10), 1791; https://doi.org/10.3390/genes13101791 - 4 Oct 2022
Cited by 12 | Viewed by 2669
Abstract
The extreme diversity and complexity of angiosperms is well known. Despite the fact that parasitic plants are angiosperms, little is known about parasitic plant mitogenomic diversity, complexity, and evolution. In this study, we obtained and characterized the mitogenomes of three Cistanche species (holoparasitic [...] Read more.
The extreme diversity and complexity of angiosperms is well known. Despite the fact that parasitic plants are angiosperms, little is known about parasitic plant mitogenomic diversity, complexity, and evolution. In this study, we obtained and characterized the mitogenomes of three Cistanche species (holoparasitic plants) from China to compare the repeats, segment duplication and multi-copy protein-coding genes (PCGs), to clarify the phylogenetic and evolution relationship within the Lamiales order, and to identify the mitochondrial plastid insertions (MTPT) in Cistanche mitogenomes. The results showed that the mitogenome sizes of the three Cistanche species ranged from 1,708,661 to 3,978,341 bp. The Cistanche species genome encodes 75–126 genes, including 37–65 PCGs, 31–58 tRNA genes and 3–5 rRNA genes. Compared with other Lamiales and parasitic species, the Cistanche species showed extremely high rates of multi-copy PCGs, ranging from 0.13 to 0.58 percent of the total number of PCGs. In addition, 37–133 Simple Sequence Repeat (SSRs) were found in these three mitogenomes, the majority of which were the mononucleotides Adenine/Thymine. The interspersed repeats contained forward and palindromic repeats. Furthermore, the segment-duplication sequence size ranged from 199,584 to 2,142,551 bp, accounting for 24.9%, 11.7% and 53.9% of the Cistanche deserticola, Cistanche salsa and Cistanche tubulosa mitogenome, respectively. Furthermore, the Ka/Ks analysis suggested that the atp4, ccmB, ccmFc and matR were probably positively selected during Lamiales evolution. The Cistanche plastome suggested the presence of MTPT. Moreover, 6–12 tRNA, 9–15 PCGs fragments and 3 rRNA gene fragments in the Cistanche mitogenomes were found in the MTPT regions. This work reports the Cistanche species mitogenome for the first time, which will be invaluable for study the mitogenome evolution of Orobanchaceae family. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1913 KB  
Article
Sequence Analysis of the Complete Mitochondrial Genome of a Medicinal Plant, Vitex rotundifolia Linnaeus f. (Lamiales: Lamiaceae)
by Xiaoli Yu, Zhonggang Duan, Yanjun Wang, Qingxin Zhang and Wei Li
Genes 2022, 13(5), 839; https://doi.org/10.3390/genes13050839 - 8 May 2022
Cited by 21 | Viewed by 3409
Abstract
In the present study, we depicted the complete mitochondrial genome of a valuable medicinal plant, Vitex rotundifolia. The mitochondrial genome of V. rotundifolia, mapped as a circular molecule, spanned 380,980 bp in length and had a GC content of 45.54%. The [...] Read more.
In the present study, we depicted the complete mitochondrial genome of a valuable medicinal plant, Vitex rotundifolia. The mitochondrial genome of V. rotundifolia, mapped as a circular molecule, spanned 380,980 bp in length and had a GC content of 45.54%. The complete genome contained 38 protein-coding genes, 19 transfer RNAs (tRNAs), and 3 ribosomal RNAs (rRNAs). We found that there were only 38.73% (147.54 kb), 36.28% (138.23 kb), and 52.22% (198.96 kb) of the homologous sequences in the mitochondrial genome of V. rotundifolia, as compared with the mitochondrial genomes of Scutellaria tsinyunensis, Boea hygrometrica, and Erythranthe lutea, respectively. A multipartite structure mediated by the homologous recombinations of the three direct repeats was found in the V. rotundifolia mitochondrial genome. The phylogenetic tree was built based on 10 species of Lamiales, using the maximum likelihood method. Moreover, this phylogenetic analysis is the first to present the evolutionary relationship of V. rotundifolia with the other species in Lamiales, based on the complete mitochondrial genome. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2920 KB  
Article
Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Medicago truncatula Root and Deliver Extra Pb to Colonized Root Segment
by Haoqiang Zhang, Wei Ren, Yaru Zheng, Yanpeng Li, Manzhe Zhu and Ming Tang
Microorganisms 2021, 9(6), 1203; https://doi.org/10.3390/microorganisms9061203 - 2 Jun 2021
Cited by 9 | Viewed by 3040
Abstract
Arbuscular mycorrhizal (AM) fungi establish symbiosis and improve the lead (Pb) tolerance of host plants. The AM plants accumulate more Pb in roots than their non-mycorrhizal counterparts. However, the direct and long-term impact of AM fungi on plant Pb uptake has been rarely [...] Read more.
Arbuscular mycorrhizal (AM) fungi establish symbiosis and improve the lead (Pb) tolerance of host plants. The AM plants accumulate more Pb in roots than their non-mycorrhizal counterparts. However, the direct and long-term impact of AM fungi on plant Pb uptake has been rarely reported. In this study, AM fungus (Rhizophagus irregularis) colonized and non-colonized roots of Medicago truncatula were separated by a split-root system, and their differences in responding to Pb application were compared. The shoot biomass accumulation and transpiration were increased after R. irregularis inoculation, whereas the biomass of both colonized and non-colonized roots was decreased. Lead application in the non-colonized root compartment increased the R. irregularis colonization rate and up-regulated the relative expressions of MtPT4 and MtBCP1 in the colonized root compartments. Rhizophagus irregularis inoculation increased Pb uptake in both colonized and non-colonized roots, and R. irregularis transferred Pb to the colonized root segment. The Pb transferred through the colonized root segment had low mobility and might be sequestrated and compartmented in the root by R. irregularis. The Pb uptake of roots might follow water flow, which is facilitated by MtPIP2. The quantification of Pb transfer via the mycorrhizal pathway and the involvement of MtPIP2 deserve further study. Full article
Show Figures

Figure 1

14 pages, 1516 KB  
Article
Complete Mitochondrial Genome and a Set of 10 Novel Kompetitive Allele-Specific PCR Markers in Ginseng (Panax ginseng C. A. Mey.)
by Woojong Jang, Hyun Oh Lee, Jang-Uk Kim, Jung-Woo Lee, Chi-Eun Hong, Kyong-Hwan Bang, Jong-Wook Chung and Ick-Hyun Jo
Agronomy 2020, 10(12), 1868; https://doi.org/10.3390/agronomy10121868 - 26 Nov 2020
Cited by 15 | Viewed by 3124
Abstract
Panax ginseng C. A. Mey., a perennial herb belonging to the family Araliaceae, is a valuable medicinal plant with distinctive biological characteristics. However, comprehensive analyses of the mitochondrial genome (mitogenome) are lacking. In this study, we sequenced the complete mitogenome of ginseng based [...] Read more.
Panax ginseng C. A. Mey., a perennial herb belonging to the family Araliaceae, is a valuable medicinal plant with distinctive biological characteristics. However, comprehensive analyses of the mitochondrial genome (mitogenome) are lacking. In this study, we sequenced the complete mitogenome of ginseng based on long-read data from the Nanopore sequencing platform. The mitogenome was assembled into a “master circle” form of 464,705 bp and contained 72 unique genes. The genome had three large repeat regions, and 10.42% of the sequences were mitogenome sequences of plastid origin (MTPTs). In total, 278 variants (213 SNPs and 65 InDels) were discovered, most of which were identified in intergenic regions. The MTPT regions were mutational hotspots, harboring 74.5% of the variants. The ginseng mitogenome showed a higher mutation rate than that of the chloroplast genome, and this pattern is uncommon in plants. In addition, 10 Kompetitive allele-specific PCR (KASP) markers were developed from 10 SNPs, excluding those in MTPT regions. These markers accurately identified the genotypes of 59 Korean ginseng accessions and elucidated mitogenome diversity. These results provide insight into organellar genomes and genetic diversity in ginseng. Moreover, the complete mitogenome sequence and 10 KASP markers will be useful for ginseng research and breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 4343 KB  
Article
Identification of Long Non-Coding RNAs and the Regulatory Network Responsive to Arbuscular Mycorrhizal Fungi Colonization in Maize Roots
by Guomin Han, Chen Cheng, Yanmei Zheng, Xuewen Wang, Yunjian Xu, Wei Wang, Suwen Zhu and Beijiu Cheng
Int. J. Mol. Sci. 2019, 20(18), 4491; https://doi.org/10.3390/ijms20184491 - 11 Sep 2019
Cited by 28 | Viewed by 4184
Abstract
Recently, long noncoding RNAs (lncRNAs) have emerged as vital regulators of many biological processes in animals and plants. However, to our knowledge no investigations on plant lncRNAs which respond to arbuscular mycorrhizal (AM) fungi have been reported thus far. In this study, maize [...] Read more.
Recently, long noncoding RNAs (lncRNAs) have emerged as vital regulators of many biological processes in animals and plants. However, to our knowledge no investigations on plant lncRNAs which respond to arbuscular mycorrhizal (AM) fungi have been reported thus far. In this study, maize roots colonized with AM fungus were analyzed by strand-specific RNA-Seq to identify AM fungi-responsive lncRNAs and construct an associated regulatory network. A total of 1837 differentially expressed protein coding genes (DEGs) were identified from maize roots with Rhizophagus irregularis inoculation. Many AM fungi-responsive genes were homologs to MtPt4, STR, STR2, MtFatM, and enriched pathways such as fatty acid biosynthesis, response to phosphate starvation, and nitrogen metabolism are consistent with previous studies. In total, 5941 lncRNAs were identified, of which more than 3000 were new. Of those, 63 lncRNAs were differentially expressed. The putative target genes of differentially expressed lncRNAs (DELs) were mainly related to phosphate ion transmembrane transport, cellular response to potassium ion starvation, and lipid catabolic processes. Regulatory network analysis showed that DELs might be involved in the regulation of bidirectional nutrient exchange between plant and AM fungi as mimicry of microRNA targets. The results of this study can broaden our knowledge on the interaction between plant and AM fungi. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2156 KB  
Article
Developing and Field Testing a Tool Designed to Operationalize a Multitreatment Approach in Hardwood-Dominated Stands in Eastern Canada
by Eric R. Labelle, Gaetan Pelletier and Michel Soucy
Forests 2018, 9(8), 485; https://doi.org/10.3390/f9080485 - 9 Aug 2018
Cited by 4 | Viewed by 3795
Abstract
Variations in species composition, diameter and height distributions, and quality make the management of hardwood-dominated stands difficult, particularly when considering mechanized forest operations. This study aimed to develop and field test a tool designed to improve the feasibility of forest operations in heterogeneous [...] Read more.
Variations in species composition, diameter and height distributions, and quality make the management of hardwood-dominated stands difficult, particularly when considering mechanized forest operations. This study aimed to develop and field test a tool designed to improve the feasibility of forest operations in heterogeneous forest stands in Eastern Canada. To address inherent stand variability, a multitreatment approach was selected using conventional forest inventory (one inventory plot per hectare) and a silvicultural treatment decision key as main inputs. The Excel-based spreadsheet in combination with an ArcGIS model, referred to as the Multitreatment Planning Tool (MTPT), allowed to build operational maps identifying the type and spatial extent of silvicultural treatments to be performed. Once uploaded to positioning systems in harvesting machines, the operators were provided guidance on the silvicultural treatment to be performed and the location of the suggested machine trails. Field results obtained from nine harvest blocks (over 300 ha treated in total) showed the potential of using the MTPT until more mature and higher resolution-enhanced inventories become mainstream. Machine operators and operational managers both appreciated the straightforward and flexible method. Additional testing and refinement of the method is necessary, particularly when considering re-entry scheduling. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop