Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = MoS2/h-BN heterostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2483 KiB  
Article
Formation of Highly Conductive Interfaces in Crystalline Ionic Liquid-Gated Unipolar MoTe2/h-BN Field-Effect Transistor
by Kamoladdin Saidov, Jamoliddin Razzokov, Odilkhuja Parpiev, Nur Sena Yüzbasi, Natalia Kovalska, Gurdial Blugan and Olim Ruzimuradov
Nanomaterials 2023, 13(18), 2559; https://doi.org/10.3390/nano13182559 - 15 Sep 2023
Cited by 1 | Viewed by 2451
Abstract
2H MoTe2 (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal [...] Read more.
2H MoTe2 (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal boron nitride (h-BN) in lateral heterostructures offers a unique platform for designing and engineering novel electronic devices. We report the fabrication of highly conductive interfaces in crystalline ionic liquid-gated (ILG) field-effect transistors (FETs) consisting of a few layers of MoTe2/h-BN heterojunctions. In our initial exploration of tellurium-based semiconducting TMDs, we directed our attention to MoTe2 crystals with thicknesses exceeding 12 nm. Our primary focus centered on investigating the transport characteristics and quantitatively assessing the surface interface heterostructure. Our transconductance (gm) measurements indicate that the very efficient carrier modulation with an ILG FET is two times larger than standard back gating, and it demonstrates unipolarity of the device. The ILG FET exhibited highly unipolar p-type behavior with a high on/off ratio, and it significantly increased the mobility in MoTe2/h-BN heterochannels, achieving improvement as one of the highest recorded mobility increments. Specifically, we observed hole and electron mobility values ranging from 345 cm2 V−1 s−1 to 285 cm2 V−1 s−1 at 80 K. We predict that our ability to observe the intrinsic, heterointerface conduction in the channels was due to a drastic reduction of the Schottky barriers, and electrostatic gating is suggested as a method for controlling the phase transitions in the few layers of TMDC FETs. Moreover, the simultaneous structural phase transitions throughout the sample, achieved through electrostatic doping control, presents new opportunities for developing phase change devices using atomically thin membranes. Full article
Show Figures

Figure 1

13 pages, 3130 KiB  
Article
Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications
by M. Saravanan, Rajkumar Palanisamy, V. Sethuraman, K. Diwakar, P. Senthil Kumar, P. Sundara Venkatesh, N. Kannan, R. Joel Kingston, K. Aravinth and Jinho Kim
Energies 2023, 16(7), 3286; https://doi.org/10.3390/en16073286 - 6 Apr 2023
Cited by 2 | Viewed by 2439
Abstract
Increasing concerns about the vulnerability of the world’s energy supply and the necessity to implement sustainable technologies have prompted researchers to develop high-performance electrocatalysts that are affordable and efficient for converting and storing renewable energy. This article reports a facile approach to fabricating [...] Read more.
Increasing concerns about the vulnerability of the world’s energy supply and the necessity to implement sustainable technologies have prompted researchers to develop high-performance electrocatalysts that are affordable and efficient for converting and storing renewable energy. This article reports a facile approach to fabricating two-dimensional (2D) Ge-decorated h-BN/MoS2 heterostructure nanosheets by self-assembly for multiple electrochemical applications such as supercapacitor and hydrogen evolution reactions. The organization of the physical and chemical links between the germanium modulations on the heterostructure of boron nitride/molybdenum sulphide (Ge/h-BN/MoS2) were facilitated to generate more active sites. Furthermore, the asymmetric supercapacitor of Ge-decorated h-BN/MoS2 amplified the capacitance to 558.53 F g−1 at 1 A g−1 current density and 159.19 F g−1 at 10 A g−1, in addition to a retention rate of 85.69% after 2000 cycles. Moreover, the Ge-decorated h-BN/MoS2 catalyst realized a low over-potential value, with an RHE of 0.57 (HER) at 5 mA/cm2, a Tafel value of ∼204 mV/dec, and long-term electrolysis stability of 10 h. This work may open the door for further investigations on metal-decorated heterostructures, which have a significant potential for both supercapacitor and water-splitting applications. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

13 pages, 6565 KiB  
Article
Interface Engineering Modulated Valley Polarization in MoS2/hBN Heterostructure
by Fang Li, Hui Zhang, You Li, Yibin Zhao, Mingyan Liu, Yunwei Yang, Jiamin Yao, Shaolong Min, Erjun Kan and Yi Wan
Nanomaterials 2023, 13(5), 861; https://doi.org/10.3390/nano13050861 - 25 Feb 2023
Cited by 3 | Viewed by 2752
Abstract
Layered transition metal dichalcogenides (TMDs) provide a favorable research platform for the advancement of spintronics and valleytronics because of their unique spin-valley coupling effect, which is attributed to the absence of inversion symmetry coupled with the presence of time-reversal symmetry. To maneuver the [...] Read more.
Layered transition metal dichalcogenides (TMDs) provide a favorable research platform for the advancement of spintronics and valleytronics because of their unique spin-valley coupling effect, which is attributed to the absence of inversion symmetry coupled with the presence of time-reversal symmetry. To maneuver the valley pseudospin efficiently is of great importance for the fabrication of conceptual devices in microelectronics. Here, we propose a straightforward way to modulate valley pseudospin with interface engineering. An underlying negative correlation between the quantum yield of photoluminescence and the degree of valley polarization was discovered. Enhanced luminous intensities were observed in the MoS2/hBN heterostructure but with a low value of valley polarization, which was in stark contrast to those observed in the MoS2/SiO2 heterostructure. Based on the steady-state and time-resolved optical measurements, we reveal the correlation between exciton lifetime, luminous efficiency, and valley polarization. Our results emphasize the significance of interface engineering for tailoring valley pseudospin in two-dimensional systems and probably advance the progression of the conceptual devices based on TMDs in spintronics and valleytronics. Full article
(This article belongs to the Special Issue Advances in Nanostructured Semiconductors and Heterojunctions)
Show Figures

Figure 1

14 pages, 4944 KiB  
Article
Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures
by Marwa A. El-Sayed, Andrey P. Tselin, Georgy A. Ermolaev, Mikhail K. Tatmyshevskiy, Aleksandr S. Slavich, Dmitry I. Yakubovsky, Sergey M. Novikov, Andrey A. Vyshnevyy, Aleksey V. Arsenin and Valentyn S. Volkov
Nanomaterials 2022, 12(24), 4436; https://doi.org/10.3390/nano12244436 - 13 Dec 2022
Cited by 5 | Viewed by 2080
Abstract
Van der Waals (vdW) heterostructures pave the way to achieve the desired material properties for a variety of applications. In this way, new scientific and industrial challenges and fundamental questions arise. One of them is whether vdW materials preserve their original optical response [...] Read more.
Van der Waals (vdW) heterostructures pave the way to achieve the desired material properties for a variety of applications. In this way, new scientific and industrial challenges and fundamental questions arise. One of them is whether vdW materials preserve their original optical response when assembled in a heterostructure. Here, we resolve this issue for four exemplary monolayer heterostructures: MoS2/Gr, MoS2/hBN, WS2/Gr, and WS2/hBN. Through joint Raman, ellipsometry, and reflectance spectroscopies, we discovered that heterostructures alter MoS2 and WS2 optical constants. Furthermore, despite the similarity of MoS2 and WS2 monolayers, their behavior in heterostructures is markedly different. While MoS2 has large changes, particularly above 3 eV, WS2 experiences modest changes in optical constants. We also detected a transformation from dark into bright exciton for MoS2/Gr heterostructure. In summary, our findings provide clear evidence that the optical response of heterostructures is not the sum of optical properties of its constituents. Full article
(This article belongs to the Special Issue Recent Advances in Optical Spectroscopy of Layered Materials)
Show Figures

Figure 1

9 pages, 3864 KiB  
Article
Piezoresistive Memories Based on Two-Dimensional Nano-Scale Electromechanical Systems
by Miquel López-Suárez, Francesco Cottone and Igor Neri
Crystals 2022, 12(7), 968; https://doi.org/10.3390/cryst12070968 - 11 Jul 2022
Viewed by 1562
Abstract
In this work we present piezoresistive memory-bits based on two-dimensional nano-scale electro-mechanical systems. We demonstrate it is possible to achieve different electrical responses by fine control of micro-structural asymmetries and that information can be encoded in the geometrical configuration of the device and [...] Read more.
In this work we present piezoresistive memory-bits based on two-dimensional nano-scale electro-mechanical systems. We demonstrate it is possible to achieve different electrical responses by fine control of micro-structural asymmetries and that information can be encoded in the geometrical configuration of the device and read as in classical ReRAM memories by measuring the current flowing across it. Based on the potential energy landscape of the device, we estimate the energy cost to operate the proposed memories. The estimated energy requirements for a single bit compete with existing technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

34 pages, 68534 KiB  
Review
MoS2/h-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review
by Umahwathy Sundararaju, Muhammad Aniq Shazni Mohammad Haniff, Pin Jern Ker and P. Susthitha Menon
Materials 2021, 14(7), 1672; https://doi.org/10.3390/ma14071672 - 29 Mar 2021
Cited by 29 | Viewed by 8012
Abstract
A photodetector converts optical signals to detectable electrical signals. Lately, self-powered photodetectors have been widely studied because of their advantages in device miniaturization and low power consumption, which make them preferable in various applications, especially those related to green technology and flexible electronics. [...] Read more.
A photodetector converts optical signals to detectable electrical signals. Lately, self-powered photodetectors have been widely studied because of their advantages in device miniaturization and low power consumption, which make them preferable in various applications, especially those related to green technology and flexible electronics. Since self-powered photodetectors do not have an external power supply at zero bias, it is important to ensure that the built-in potential in the device produces a sufficiently thick depletion region that efficiently sweeps the carriers across the junction, resulting in detectable electrical signals even at very low-optical power signals. Therefore, two-dimensional (2D) materials are explored as an alternative to silicon-based active regions in the photodetector. In addition, plasmonic effects coupled with self-powered photodetectors will further enhance light absorption and scattering, which contribute to the improvement of the device’s photocurrent generation. Hence, this review focuses on the employment of 2D materials such as graphene and molybdenum disulfide (MoS2) with the insertion of hexagonal boron nitride (h-BN) and plasmonic nanoparticles. All these approaches have shown performance improvement of photodetectors for self-powering applications. A comprehensive analysis encompassing 2D material characterization, theoretical and numerical modelling, device physics, fabrication and characterization of photodetectors with graphene/MoS2 and graphene/h-BN/MoS2 heterostructures with plasmonic effect is presented with potential leads to new research opportunities. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Devices)
Show Figures

Figure 1

15 pages, 7081 KiB  
Article
Synthesis and Spectral Characteristics Investigation of the 2D-2D vdWs Heterostructure Materials
by Tao Han, Hongxia Liu, Shulong Wang, Shupeng Chen, Kun Yang and Zhandong Li
Int. J. Mol. Sci. 2021, 22(3), 1246; https://doi.org/10.3390/ijms22031246 - 27 Jan 2021
Cited by 2 | Viewed by 2466
Abstract
Due to the attractive optical and electrical properties, van der Waals (vdWs) heterostructures constructed from the different two-dimensional materials have received widespread attention. Here, MoS2/h-BN, MoS2/graphene, WS2/h-BN, and WS2/graphene vdWs heterostructures are successfully prepared by [...] Read more.
Due to the attractive optical and electrical properties, van der Waals (vdWs) heterostructures constructed from the different two-dimensional materials have received widespread attention. Here, MoS2/h-BN, MoS2/graphene, WS2/h-BN, and WS2/graphene vdWs heterostructures are successfully prepared by the CVD and wet transfer methods. The distribution, Raman and photoluminescence (PL) spectra of the above prepared heterostructure samples can be respectively observed and tested by optical microscopy and Raman spectrometry, which can be used to study their growth mechanisms and optical properties. Meanwhile, the uniformity and composition distribution of heterostructure films can also be analyzed by the Raman and PL spectra. The internal mechanism of Raman and PL spectral changes can be explained by comparing and analyzing the PL and Raman spectra of the junction and non-junction regions between 2D-2D vdWs heterostructure materials, and the effect of laser power on the optical properties of heterostructure materials can also be analyzed. These heterostructure materials exhibit novel and unique optical characteristics at the stacking or junction, which can provide a reliable experimental basis for the preparation of suitable TMDs heterostructure materials with excellent performance. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

16 pages, 5947 KiB  
Article
Fabrication and Characterization of MoS2/h-BN and WS2/h-BN Heterostructures
by Tao Han, Hongxia Liu, Shupeng Chen, Yanning Chen, Shulong Wang and Zhandong Li
Micromachines 2020, 11(12), 1114; https://doi.org/10.3390/mi11121114 - 16 Dec 2020
Cited by 17 | Viewed by 5644
Abstract
The general preparation method of large-area, continuous, uniform, and controllable vdW heterostructure materials is provided in this paper. To obtain the preparation of MoS2/h-BN and WS2/h-BN heterostructures, MoS2 and WS2 material are directly grown on the insulating [...] Read more.
The general preparation method of large-area, continuous, uniform, and controllable vdW heterostructure materials is provided in this paper. To obtain the preparation of MoS2/h-BN and WS2/h-BN heterostructures, MoS2 and WS2 material are directly grown on the insulating h-BN substrate by atmospheric pressure chemical vapor deposition (APCVD) method, which does not require any intermediate transfer steps. The test characterization of MoS2/h-BN and WS2/h-BN vdW heterostructure materials can be accomplished by optical microscope, AFM, Raman and PL spectroscopy. The Raman peak signal of h-BN material is stronger when the h-BN film is thicker. Compared to the spectrum of MoS2 or WS2 material on SiO2/Si substrate, the Raman and PL spectrum peak positions of MoS2/h-BN heterostructure are blue-shifted, which is due to the presence of local strain, charged impurities and the vdW heterostructure interaction. Additionally, the PL spectrum of WS2 material shows the strong emission peak at 1.96 eV, while the full width half maximum (FWHM) is only 56 meV. The sharp emission peak indicates that WS2/h-BN heterostructure material has the high crystallinity and clean interface. In addition, the peak position and shape of IPM mode characteristic peak are not obvious, which can be explained by the Van der Waals interaction of WS2/h-BN heterostructure. From the above experimental results, the preparation method of heterostructure material is efficient and scalable, which can provide the important support for the subsequent application of TMDs/h-BN heterostructure in nanoelectronics and optoelectronics. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

12 pages, 415 KiB  
Article
Transition Metal Dichalcogenides as Strategy for High Temperature Electron-Hole Superfluidity
by Sara Conti, David Neilson, François M. Peeters and Andrea Perali
Condens. Matter 2020, 5(1), 22; https://doi.org/10.3390/condmat5010022 - 22 Mar 2020
Cited by 20 | Viewed by 4236
Abstract
Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole [...] Read more.
Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole double layer systems that have been proposed as candidates for this interesting phenomenon. We investigate the double TMD system WSe 2 /hBN/MoSe 2 , using a mean-field approach that includes multiband effects due to the spin-orbit coupling and self-consistent screening of the electron-hole Coulomb interaction. We demonstrate that the transition temperature observed in the double TMD monolayers, which is remarkably high relative to the other systems, is the result of (i) the large electron and hole effective masses in TMDs, (ii) the large TMD band gaps, and (iii) the presence of multiple superfluid condensates in the TMD system. The net effect is that the superfluidity is strong across a wide range of densities, which leads to high transition temperatures that extend as high as TBKT=150 K. Full article
Show Figures

Figure 1

14 pages, 5821 KiB  
Review
Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates
by Han Huang, Yingbao Huang, Shitan Wang, Menglong Zhu, Haipeng Xie, Lei Zhang, Xiaoming Zheng, Qiliang Xie, Dongmei Niu and Yongli Gao
Crystals 2016, 6(9), 113; https://doi.org/10.3390/cryst6090113 - 9 Sep 2016
Cited by 26 | Viewed by 11481
Abstract
Two dimensional atomic crystals, like grapheme (G) and molybdenum disulfide (MoS2), exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress [...] Read more.
Two dimensional atomic crystals, like grapheme (G) and molybdenum disulfide (MoS2), exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW) heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc), perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and dioctylbenzothienobenzothiophene (C8-BTBT)) and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN)). The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed. Full article
Show Figures

Graphical abstract

Back to TopTop