Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = NKG2DL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1536 KB  
Review
A Concise Review of the Role of the NKG2D Receptor and Its Ligands in Cancer
by Elitsa Boneva, Velizar Shivarov and Milena Ivanova
Immuno 2025, 5(1), 9; https://doi.org/10.3390/immuno5010009 - 2 Mar 2025
Cited by 6 | Viewed by 4445
Abstract
The immune system’s ability to detect and eliminate transformed cells is a critical factor in suppressing cancer development. However, immune surveillance in tumors is often disrupted by various immune escape mechanisms, many of which remain poorly understood. The Natural Killer Group 2D (NKG2D) [...] Read more.
The immune system’s ability to detect and eliminate transformed cells is a critical factor in suppressing cancer development. However, immune surveillance in tumors is often disrupted by various immune escape mechanisms, many of which remain poorly understood. The Natural Killer Group 2D (NKG2D) receptor is an activating receptor expressed on natural killer (NK) cells and cytotoxic T lymphocytes. It can recognize and bind with varying affinities to a wide range of structurally diverse ligands, including MHC class I chain-related proteins A and B (MICA and MICB) and members of the ULBP family (ULBP1-6). The expression of these ligands plays a crucial role in immune antitumor responses and cancer immunoevasion mechanisms. Some evidence suggests that functional polymorphisms in the NKG2D receptor and the genes encoding its ligands significantly influence HLA-independent cancer immunosurveillance. Consequently, the NKG2D-NKG2D ligands (NKG2DLs) axis represents a promising target for developing novel therapeutic strategies. This review aims to provide a general overview of the role of NKG2D and its ligands in various malignancies and explore their potential in advancing personalized cancer treatment protocols. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 3097 KB  
Article
Differential Role of NKG2A/HLA-E Interaction in the Outcomes of Bladder Cancer Patients Treated with M. bovis BCG or Other Therapies
by Inmaculada Ruiz-Lorente, Lourdes Gimeno, Alicia López-Abad, Pedro López Cubillana, Tomás Fernández Aparicio, Lucas Jesús Asensio Egea, Juan Moreno Avilés, Gloria Doñate Iñiguez, Pablo Luis Guzmán Martínez-Valls, Gerardo Server, Belén Ferri, José Antonio Campillo, María Victoria Martínez-Sánchez and Alfredo Minguela
Biomedicines 2025, 13(1), 156; https://doi.org/10.3390/biomedicines13010156 - 10 Jan 2025
Cited by 1 | Viewed by 1786
Abstract
Background: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette–Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use [...] Read more.
Background: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette–Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use of these therapies. Methods: We evaluated killer-cell immunoglobulin-like receptors (KIRs) and HLA-I genotyping and the expression of NK cell receptors in circulating T and NK lymphocytes at diagnosis in 325 consecutive BC patients (151 treated with BCG and 174 treated with other therapies), as well as in 648 patients with other cancers and 973 healthy donors as controls. The proliferation and production of cytokines and cytotoxicity were evaluated in peripheral blood mononuclear cells, stimulated in vitro with anti-CD3/CD28 or BCG, from selected patients based on HLA-B −21M/T dimorphism (NKG2A ligands). Results: The HLA-B −21M/T genotype showed opposing results in BC patients treated with BCG or other therapies. The MM genotype, compared to MT and TT, was associated with a longer 75th-percentile overall survival (not reached vs. 68.0 ± 13.7 and 52.0 ± 8.3 months, p = 0.034) in BCG, but a shorter (8.0 ± 2.4 vs. 21.0 ± 3.4 and 19.0 ± 4.9 months, p = 0.131) survival in other treatments. The HLA-B −21M/T genotype was an independent predictive parameter of the progression-free survival (HR = 2.08, p = 0.01) and the OS (HR = 2.059, p = 0.039) of BC patients treated with BCG, together with age and tumor histopathologic characteristics. The MM genotype was associated with higher counts of circulating CD56bright, fewer KIR2DL1/L2+ NK cells, and lower NKG2A expression, but not with differential in vitro NK cell functionality. Conclusions: The HLA-B −21M/T is independently associated with BC patient outcomes and can help to optimize the use of new immunotherapies in these patients. Full article
(This article belongs to the Special Issue The Role of NK Cells in Health and Diseases)
Show Figures

Figure 1

21 pages, 2792 KB  
Article
Three-Dimensional Model Analysis Revealed Differential Cytotoxic Effects of the NK-92 Cell Line and Primary NK Cells on Breast and Ovarian Carcinoma Cell Lines Mediated by Variations in Receptor–Ligand Interactions and Soluble Factor Profiles
by Nadezhda A. Alekseeva, Anna A. Boyko, Marina A. Shevchenko, Maria V. Grechikhina, Maria A. Streltsova, Ludmila G. Alekseeva, Alexander M. Sapozhnikov, Sergey M. Deyev and Elena I. Kovalenko
Biomedicines 2024, 12(10), 2398; https://doi.org/10.3390/biomedicines12102398 - 20 Oct 2024
Cited by 4 | Viewed by 2368
Abstract
Background/objectives: The functional activity of a certain tumor determines the effectiveness of primary NK cells and NK-92 cell line-based cancer therapy; their therapeutic effectiveness against different tumors can vary. This work provides a direct simultaneous comparison of the cytotoxic effects of in vitro-activated [...] Read more.
Background/objectives: The functional activity of a certain tumor determines the effectiveness of primary NK cells and NK-92 cell line-based cancer therapy; their therapeutic effectiveness against different tumors can vary. This work provides a direct simultaneous comparison of the cytotoxic effects of in vitro-activated peripheral NK (pNK) cells and NK-92 cells in spheroid models of BT-474, MCF7 and SKOV-3 carcinomas and uncovers the reasons for the differential effectiveness of NK cells against tumors. Methods: Tumor spheroids of similar size and shape, obtained from agarose molds, were incubated with NK-92 or pNK cells for 24 h. Tumor cell death was detected using flow cytometry or confocal microscopy. Cytokine production, granzyme B levels and NK cell degranulation analyses were performed, along with pNK and target-cell phenotypic characterization. Results: While NK-92 and pNK cells lysed BT-474 spheroids with comparably low efficiency, pNK cells were more capable of eliminating MCF7 and SKOV-3 spheroids than NK-92 cells were. The results of the functional and phenotypic analyses strongly support the participation of the NKG2D-NKG2DL pathway in pNK cell activation induced by the most sensitive cytotoxic attack on SKOV-3 spheroids, whereas the CX3CR1-CX3CL1 axis appears to be involved in the pNK reaction against MCF-7 spheroids. Conclusions: We provide a new approach for the preliminary identification of the most promising NK cell receptors that can alter the effectiveness of cancer therapy depending on the specific tumor type. Using this approach, NK-92 cells or pNK subsets can be selected for further accumulation and/or genetic modification to improve specificity and reactivity. Full article
(This article belongs to the Special Issue The Role of NK Cells in Health and Diseases)
Show Figures

Figure 1

9 pages, 681 KB  
Review
State of the Art on CAR T-Cell Therapies for Onco-Haematological Disorders and Other Conditions
by Jose Alejandro Madrigal and José C. Crispín
Onco 2024, 4(3), 232-240; https://doi.org/10.3390/onco4030017 - 8 Sep 2024
Cited by 2 | Viewed by 2662
Abstract
The use of chimeric antigen receptors (CAR T-cells) for the treatment of patients with malignant haematological diseases has become a well-established application for conditions such as refractory or relapsed B-cell acute lymphoblastic leukaemia (B-ALL), B-cell lymphomas (BCL), and multiple myeloma (MM). Nearly 35,000 [...] Read more.
The use of chimeric antigen receptors (CAR T-cells) for the treatment of patients with malignant haematological diseases has become a well-established application for conditions such as refractory or relapsed B-cell acute lymphoblastic leukaemia (B-ALL), B-cell lymphomas (BCL), and multiple myeloma (MM). Nearly 35,000 patients have received autologous CAR T-cells for the treatment of these conditions only in the USA. Since their approval by the Food and Drug Administration (FDA) in 2017, over 1200 clinical trials have been initiated globally and there are at least 10 different CAR T-cells with approval by different regulatory agencies around the globe. In the USA, the FDA has approved six commercial CAR T-cells that are widely distributed worldwide. At the time of writing, several clinical trials have been performed in patients with solid tumours such as glioblastoma, renal and pancreatic cancer, as well as in patients with autoimmune conditions such as systemic lupus erythematosus (SLE), idiopathic inflammatory myositis (IIM), and systemic sclerosis (SS). There are also several studies showing the potential benefit of CAR T-cells for other non-malignant diseases such as asthma and even fungal infections. In this review, without pretending to cover all current areas of treatments with CAR T-cells, we offer a brief summary of some of the most relevant aspects of the use of CAR T-cells for some of these conditions. Full article
Show Figures

Figure 1

13 pages, 6624 KB  
Article
Temozolomide and the PARP Inhibitor Niraparib Enhance Expression of Natural Killer Group 2D Ligand ULBP1 and Gamma-Delta T Cell Cytotoxicity in Glioblastoma
by Amber B. Jones, Kaysaw Tuy, Cyntanna C. Hawkins, Colin H. Quinn, Joelle Saad, Sam E. Gary, Elizabeth A. Beierle, Lei Ding, Kate M. Rochlin, Lawrence S. Lamb and Anita B. Hjelmeland
Cancers 2024, 16(16), 2852; https://doi.org/10.3390/cancers16162852 - 15 Aug 2024
Cited by 6 | Viewed by 2739
Abstract
Glioblastoma (GBM) is an immunologically cold tumor, but several immunotherapy-based strategies show promise, including the administration of ex vivo expanded and activated cytotoxic gamma delta T cells. Cytotoxicity is partially mediated through interactions with natural killer group 2D ligands (NKG2DL) on tumor cells. [...] Read more.
Glioblastoma (GBM) is an immunologically cold tumor, but several immunotherapy-based strategies show promise, including the administration of ex vivo expanded and activated cytotoxic gamma delta T cells. Cytotoxicity is partially mediated through interactions with natural killer group 2D ligands (NKG2DL) on tumor cells. We sought to determine whether the addition of the blood–brain barrier penetrant PARP inhibitor niraparib to the standard of care DNA alkylator temozolomide (TMZ) could upregulate NKG2DL, thereby improving immune cell recognition. Changes in viability were consistent with prior publications as there was a growth inhibitory effect of the combination of TMZ and niraparib. However, decreases in viability did not always correlate with changes in NKG2DL mRNA. ULBP1/Mult-1 mRNA was increased with the combination therapy in comparison to either drug alone in two of the three cell types tested, even though viability was consistently decreased. mRNA expression correlated with protein levels and ULBP1/MULT-1 cell surface protein was significantly increased with TMZ and niraparib treatment in four of the five cell types tested. Gamma delta T cell-mediated cytotoxicity at a 10:1 effector-to-target ratio was significantly increased upon pretreatment of cells derived from a GBM PDX with TMZ and niraparib in comparison to the control or either drug alone. Together, these data demonstrate that the combination of PARP inhibition, DNA alkylation, and gamma delta T cell therapy has the potential for the treatment of GBM. Full article
Show Figures

Figure 1

12 pages, 9284 KB  
Article
Effects of Biomaterials Derived from Germinated Hemp Seeds on Stressed Hair Stem Cells and Immune Cells
by Donghyun Kim, Namsoo Peter Kim and Boyong Kim
Int. J. Mol. Sci. 2024, 25(14), 7823; https://doi.org/10.3390/ijms25147823 - 17 Jul 2024
Cited by 2 | Viewed by 2673
Abstract
Androgenetic alopecia is a genetic disorder that commonly causes progressive hair loss in men, leading to diminished self-esteem. Although cannabinoids extracted from Cannabis sativa are used in hair loss treatments, no study has evaluated the effects of germinated hemp seed extract (GHSE) and [...] Read more.
Androgenetic alopecia is a genetic disorder that commonly causes progressive hair loss in men, leading to diminished self-esteem. Although cannabinoids extracted from Cannabis sativa are used in hair loss treatments, no study has evaluated the effects of germinated hemp seed extract (GHSE) and exosomes derived from the calli of germinated hemp seeds on alopecia. Therefore, this study aimed to demonstrate their preventive effects against alopecia using various methodologies, including quantitative PCR, flow cytometry, ELISA, and immunocytochemistry. Our research highlights the preventive functions of GHSE (GE2000: 2000 µg/mL) and exosomes from the calli of germinated hemp seeds (E40: 40 μg/mL) in three biochemical categories: genetic modulation in hair follicle dermal papilla stem cells (HFDPSCs), cellular differentiation, and immune system modulation. Upon exposure to dihydrotestosterone (DT), both biomaterials upregulated genes preventing alopecia (Wnt, β-catenin, and TCF) in HFDPSCs and suppressed genes activating alopecia (STAT1, 5α-reductase type 1, IL-15R). Additionally, they suppressed alopecia-related genes (NKG2DL, IL2-Rβ, JAK1, STAT1) in CD8+ T cells. Notably, E40 exhibited more pronounced effects compared to GE2000. Consequently, both E40 and GE2000 effectively mitigated DT-induced stress, activating mechanisms promoting hair formation. Given the limited research on alopecia using these materials, their pharmaceutical development promises significant economic and health benefits. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 2965 KB  
Article
Soluble NKG2DLs Are Elevated in Breast Cancer Patients and Associate with Disease Outcome
by Anna Seller, Christian M. Tegeler, Jonas Mauermann, Tatjana Schreiber, Ilona Hagelstein, Kai Liebel, André Koch, Jonas S. Heitmann, Sarah M. Greiner, Clara Hayn, Dominik Dannehl, Tobias Engler, Andreas D. Hartkopf, Markus Hahn, Sara Y. Brucker, Helmut R. Salih and Melanie Märklin
Int. J. Mol. Sci. 2024, 25(7), 4126; https://doi.org/10.3390/ijms25074126 - 8 Apr 2024
Cited by 6 | Viewed by 2954
Abstract
Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor [...] Read more.
Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor immunity in breast cancer. Upregulation of membrane-bound NKG2DLs in breast cancer has been demonstrated by immunohistochemistry. Tumor cells release NKG2DLs via proteolytic cleavage as soluble (s)NKG2DLs, which allows for effective immune escape and is associated with poor prognosis. In this study, we collected serum from 140 breast cancer (BC) and 20 ductal carcinoma in situ (DCIS) patients at the time of initial diagnosis and 20 healthy volunteers (HVs). Serum levels of sNKG2DLs were quantified through the use of ELISA and correlated with clinical data. The analyzed sNKG2DLs were low to absent in HVs and significantly higher in BC patients. For some of the ligands analyzed, higher sNKG2DLs serum levels were associated with the classification of malignant tumor (TNM) stage and grading. Low sMICA serum levels were associated with significantly longer progression-free (PFS) and overall survival (OS). In conclusion, we provide the first insights into sNKG2DLs in BC patients and suggest their potential role in tumor immune escape in breast cancer. Furthermore, our observations suggest that serum sMICA levels may serve as a prognostic parameter in the patients analyzed in this study. Full article
(This article belongs to the Special Issue Molecular Research in Breast Cancer: Pathophysiology and Treatment)
Show Figures

Figure 1

18 pages, 2866 KB  
Article
Dual Targeting of Glioblastoma Cells with Bispecific Killer Cell Engagers Directed to EGFR and ErbB2 (HER2) Facilitates Effective Elimination by NKG2D-CAR-Engineered NK Cells
by Anne Kiefer, Maren Prüfer, Jasmin Röder, Jordi Pfeifer Serrahima, Malena Bodden, Ines Kühnel, Pranav Oberoi and Winfried S. Wels
Cells 2024, 13(3), 246; https://doi.org/10.3390/cells13030246 - 28 Jan 2024
Cited by 11 | Viewed by 3939
Abstract
NKG2D is an activating receptor of natural killer cells that recognizes stress-induced ligands (NKG2DL) expressed by many tumor cells. Nevertheless, NKG2DL downregulation or shedding can still allow cancer cells to evade immune surveillance. Here, we used lentiviral gene transfer to engineer clinically usable [...] Read more.
NKG2D is an activating receptor of natural killer cells that recognizes stress-induced ligands (NKG2DL) expressed by many tumor cells. Nevertheless, NKG2DL downregulation or shedding can still allow cancer cells to evade immune surveillance. Here, we used lentiviral gene transfer to engineer clinically usable NK-92 cells with a chimeric antigen receptor (NKAR) which contains the extracellular domain of NKG2D for target recognition, or an NKAR, together with the IL-15 superagonist RD-IL15, and combined these effector cells with recombinant NKG2D-interacting bispecific engagers that simultaneously recognize the tumor-associated antigens epidermal growth factor receptor (EGFR) or ErbB2 (HER2). Applied individually, in in vitro cell-killing assays, these NKAB-EGFR and NKAB-ErbB2 antibodies specifically redirected NKAR-NK-92 and NKAR_RD-IL15-NK-92 cells to glioblastoma and other cancer cells with elevated EGFR or ErbB2 levels. However, in mixed glioblastoma cell cultures, used as a model for heterogeneous target antigen expression, NKAR-NK cells only lysed the EGFR- or ErbB2-expressing subpopulations in the presence of one of the NKAB molecules. This was circumvented by applying NKAB-EGFR and NKAB-ErbB2 together, resulting in effective antitumor activity similar to that against glioblastoma cells expressing both target antigens. Our results demonstrate that combining NK cells carrying an activating NKAR receptor with bispecific NKAB antibodies allows for flexible targeting, which can enhance tumor-antigen-specific cytotoxicity and prevent immune escape. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

20 pages, 4937 KB  
Article
Obtaining Gene-Modified HLA-E-Expressing Feeder Cells for Stimulation of Natural Killer Cells
by Nadezhda A. Alekseeva, Maria A. Streltsova, Julia D. Vavilova, Maria O. Ustiuzhanina, Anastasia I. Palamarchuk, Anna A. Boyko, Nikita D. Timofeev, Alexey I. Popodko and Elena I. Kovalenko
Pharmaceutics 2024, 16(1), 133; https://doi.org/10.3390/pharmaceutics16010133 - 19 Jan 2024
Cited by 2 | Viewed by 2330
Abstract
Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously [...] Read more.
Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57 NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57 NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57KIR2DL2/3+NKG2C+NKG2A cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation. Full article
Show Figures

Figure 1

20 pages, 2436 KB  
Review
The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy
by Leiyan Wei, Zhiqing Xiang and Yizhou Zou
Int. J. Mol. Sci. 2023, 24(24), 17545; https://doi.org/10.3390/ijms242417545 - 16 Dec 2023
Cited by 15 | Viewed by 5102
Abstract
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK [...] Read more.
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK cells, CD8+ T cells, γδ T cells, and a very small percentage of CD4+ T cells. In contrast, the NKG2D ligand (NKG2D-L) is generally not expressed on normal cells but is overexpressed under stress. Thus, the inappropriate expression of NKG2D-L leads to the activation of self-reactive effector cells, which can trigger or exacerbate autoimmunity. In this review, we discuss the role of NKG2D and NKG2D-L in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type I diabetes (T1DM), inflammatory bowel disease (IBD), and celiac disease (CeD). The data suggest that NKG2D and NKG2D-L play a pathogenic role in some autoimmune diseases. Therefore, the development of strategies to block the interaction of NKG2D and NKG2D-L may have therapeutic effects in some autoimmune diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 2466 KB  
Article
Targeting NKG2DL with Bispecific NKG2D–CD16 and NKG2D–CD3 Fusion Proteins on Triple–Negative Breast Cancer
by Polina Kaidun, Samuel J. Holzmayer, Sarah M. Greiner, Anna Seller, Christian M. Tegeler, Ilona Hagelstein, Jonas Mauermann, Tobias Engler, André Koch, Andreas D. Hartkopf, Helmut R. Salih and Melanie Märklin
Int. J. Mol. Sci. 2023, 24(17), 13156; https://doi.org/10.3390/ijms241713156 - 24 Aug 2023
Cited by 6 | Viewed by 3440
Abstract
Triple–negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically [...] Read more.
Triple–negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically absent from healthy tissues; thus, they are promising tumor antigens for novel immunotherapeutic approaches. We developed bispecific fusion proteins (BFPs) consisting of the NKG2D receptor domain targeting multiple NKG2DLs, fused to either anti–CD3 (NKG2D–CD3) or anti–CD16 (NKG2D–CD16) Fab fragments. First, we characterized the expression of the NKG2DLs (MICA, MICB, ULBP1–4) on TNBC cell lines and observed the highest surface expression for MICA and ULBP2. Targeting TNBC cells with NKG2D–CD3/CD16 efficiently activated both NK and T cells, leading to their degranulation and cytokine release and lysis of TNBC cells. Furthermore, PBMCs from TNBC patients currently undergoing chemotherapy showed significantly higher NK and T cell activation and tumor cell lysis when stimulated with NKG2D–CD3/CD16. In conclusions, BFPs activate and direct the NK and T cells of healthy and TNBC patients against TNBC cells, leading to efficient eradication of tumor cells. Therefore, NKG2D–based NK and T cell engagers could be a valuable addition to the treatment options for TNBC patients. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer 2.0)
Show Figures

Figure 1

22 pages, 1186 KB  
Review
The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer
by Ge Tan, Katelyn M. Spillane and John Maher
Biology 2023, 12(8), 1079; https://doi.org/10.3390/biology12081079 - 2 Aug 2023
Cited by 29 | Viewed by 8648
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this [...] Read more.
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

22 pages, 4753 KB  
Article
Adaptive and Innate Cytotoxic Effectors in Chronic Lymphocytic Leukaemia (CLL) Subjects with Stable Disease
by Valentina Rubino, Flavia Carriero, Anna Teresa Palatucci, Angela Giovazzino, Stefania Leone, Valerio Nicolella, Martina Calabrò, Rosangela Montanaro, Vincenzo Brancaleone, Fabrizio Pane, Federico Chiurazzi, Giuseppina Ruggiero and Giuseppe Terrazzano
Int. J. Mol. Sci. 2023, 24(11), 9596; https://doi.org/10.3390/ijms24119596 - 31 May 2023
Cited by 4 | Viewed by 2119
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL [...] Read more.
Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL progression and prognosis. The involvement of immune-mediated mechanisms in CLL control needs to be investigated. We analyse the activation profile of innate and adaptive cytotoxic immune effectors in a cohort of 26 CLL patients with stable disease, as key elements for immune-mediated control of cancer progression. We observed an increase in CD54 expression and interferon (IFN)-γ production by cytotoxic T cells (CTL). CTL ability to recognise tumour-targets depends on human leukocyte antigens (HLA)-class I expression. We observed a decreased expression of HLA-A and HLA-BC on B cells of CLL subjects, associated with a significant reduction in intracellular calnexin that is relevant for HLA surface expression. Natural killer (NK) cells and CTL from CLL subjects show an increased expression of the activating receptor KIR2DS2 and a reduction of 3DL1 and NKG2A inhibiting molecules. Therefore, an activation profile characterises CTL and NK cells of CLL subjects with stable disease. This profile is conceivable with the functional involvement of cytotoxic effectors in CLL control. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 2549 KB  
Brief Report
Cross-Dressing of Multiple Myeloma Cells Mediated by Extracellular Vesicles Conveying MIC and ULBP Ligands Promotes NK Cell Killing
by Elisabetta Vulpis, Luisa Loconte, Chiara Cassone, Fabrizio Antonangeli, Giulio Caracciolo, Laura Masuelli, Francesca Fazio, Maria Teresa Petrucci, Cinzia Fionda, Alessandra Soriani, Cristina Cerboni, Marco Cippitelli, Angela Santoni and Alessandra Zingoni
Int. J. Mol. Sci. 2023, 24(11), 9467; https://doi.org/10.3390/ijms24119467 - 30 May 2023
Cited by 6 | Viewed by 2577
Abstract
Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) [...] Read more.
Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance. EVs are emerging as important players in mediating cell-to-cell communication due to their ability to transfer biological material to acceptor cells. Herein, we investigated the spreading of NKG2DLs of both MIC and ULBP molecules through the EV-mediated cross-dressing on multiple myeloma (MM) cells. We focused our attention on two MICA allelic variants, namely MICA*008 and MICA*019, representing the prototype of short and long MICA alleles, respectively, and on ULBP-1, ULBP-2, and ULBP-3. Our findings demonstrate that both ULBP and MICA ligands can be acquired from tumor cells through EVs enhancing NK cell recognition and killing. Moreover, besides MICA, EVs expressing ULBP-1 but not ULBP-2 and 3 were detected in bone marrow aspirates derived from a cohort of MM patients. Our findings shed light on the role of EV-associated MICA allelic variants and ULBP molecules in the modulation of NKG2D-mediated NK cell immunosurveillance in the tumor microenvironment. Moreover, the EV-mediated transfer of NKG2DLs could suggest novel therapeutic approaches based on the usage of engineered nanoparticles aimed at increasing cancer cell immunogenicity. Full article
(This article belongs to the Special Issue Advance in Exosomes in Tumors)
Show Figures

Figure 1

20 pages, 3729 KB  
Article
Alterations in the CD56 and CD56+ T Cell Subsets during COVID-19
by Julia D. Vavilova, Maria O. Ustiuzhanina, Anna A. Boyko, Maria A. Streltsova, Sofya A. Kust, Leonid M. Kanevskiy, Rustam N. Iskhakov, Alexander M. Sapozhnikov, Ekaterina O. Gubernatorova, Marina S. Drutskaya, Mikhail V. Bychinin, Oksana N. Novikova, Anna G. Sotnikova, Gaukhar M. Yusubalieva, Vladimir P. Baklaushev and Elena I. Kovalenko
Int. J. Mol. Sci. 2023, 24(10), 9047; https://doi.org/10.3390/ijms24109047 - 20 May 2023
Cited by 4 | Viewed by 3278
Abstract
The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied [...] Read more.
The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56 T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56 cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56 and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56 T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19. Full article
Show Figures

Graphical abstract

Back to TopTop