Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = NaI(Tl) scintillators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2945 KiB  
Article
Photoluminescence of Cesium-Doped Sodium Iodide Films Irradiated by UV LED
by Hsing-Yu Wu, Yu-Hung Kuan, Guoyu Yu, Yung-Shin Sun and Jin-Cherng Hsu
Nanomaterials 2023, 13(20), 2747; https://doi.org/10.3390/nano13202747 - 11 Oct 2023
Cited by 2 | Viewed by 1588
Abstract
Alkali metal halides have long been used as scintillators for applications as sensors and detectors. Usually, a small amount of impurities are added to these inorganic materials to improve their luminescence efficiencies. We investigate the structures and luminescent properties of un-doped sodium iodide [...] Read more.
Alkali metal halides have long been used as scintillators for applications as sensors and detectors. Usually, a small amount of impurities are added to these inorganic materials to improve their luminescence efficiencies. We investigate the structures and luminescent properties of un-doped sodium iodide (NaI) and cesium-doped NaI (NaI:Cs) films deposited by thermal vacuum evaporation. Instead of using the toxic element thallium (Tl), we introduced cesium dopant into NaI. This is the first study for the NaI:Cs film excited by UV LED’s ultraviolet C (273 nm, 4.54 eV). The luminescence spectra show two main peaks at 3.05 and 4.32/3.955 eV (for fused silica/B270 substrate), originating from the intrinsic defects and/or activator excited states and the intrinsic self-trapped excitons (STEs), respectively. In general, both Cs-doping and post-annealing processes enhance the luminescence performance of NaI films. Full article
Show Figures

Figure 1

17 pages, 18899 KiB  
Article
Impact of Bulk and Nano Bismuth Oxide on the Attenuation Parameters of Bentonite Barite Composites
by Mahmoud I. Abbas, Mona M. Gouda, Sarah N. EL-Shimy, Mirvat F. Dib, Hala M. Abdellatif, Raqwana Baharoon, Mohamed Elsafi and Ahmed M. El-Khatib
Coatings 2023, 13(10), 1670; https://doi.org/10.3390/coatings13101670 - 24 Sep 2023
Cited by 2 | Viewed by 1506
Abstract
Since bentonite can absorb neutrons and gamma rays without sacrificing structural integrity, it is frequently used as the main shielding material in many nuclear installations. Recently, there has been a trend toward enhancing the shielding qualities of bentonite by adding various chemicals. However, [...] Read more.
Since bentonite can absorb neutrons and gamma rays without sacrificing structural integrity, it is frequently used as the main shielding material in many nuclear installations. Recently, there has been a trend toward enhancing the shielding qualities of bentonite by adding various chemicals. However, the majority of the added materials either require particular handling procedures or pose health risks. The availability of environmentally friendly additives would be wonderful. The addition of barite to bentonite composites greatly raises the density of the specimens. Additionally, the performance of bentonite–barite composites as radiation shielding materials is improved by adding various amounts of bulk and nano Bi2O3 as a filler (6%, 13%, and 20%). Energy dispersive X-ray analysis (EDX) was used to determine the chemical makeup of the produced specimens. The scanning electron microscopy (SEM) pictures showed the samples’ cross-sections’ porosity and homogeneity. 241Am, 133Ba, 137Cs, and 60Co are radioactive sources that emit energies of 59.53, 80.99, 356.01, 661.66, 1173.23, and 1332.5 keV, respectively, and the NaI (Tl) scintillation detector was used in this investigation. The area under the peak of the observed energy spectra was measured using the Genie 2000 program in both the specimen’s absence and presence. The coefficients for linear and mass attenuation were calculated. To determine the theoretical mass attenuation coefficients, the XCOM program was utilized and then compared to the corresponding experimental values. Various radiation shielding parameters dependent on the linear attenuation coefficient were computed for each studied composite. These parameters include the mean free path (MFP), half value layer (HVL), and tenth value layer (TVL). Also, the Zeff and the EABF were determined for each specimen. According to the findings, bismuth oxide was added to bentonite–barite composites to reduce the transmitted flux through the specimens, which increased the LAC of the bentonite–barite composites. Furthermore, adding nanosized bismuth oxide particles increased the sample’s density and improved the material’s shielding properties. At a photon energy of 0.356 keV, the relative deviation (∆%) between the experimental nano- and micro values for Bi2O3 (20 wt%) was 12.1974, confirming that the nanoparticles increase attenuation efficiency. Full article
Show Figures

Figure 1

18 pages, 2949 KiB  
Article
Study of Prepared Lead-Free Polymer Nanocomposites for X- and Gamma-ray Shielding in Healthcare Applications
by Abdulrhman Hasan Alsaab and Sadek Zeghib
Polymers 2023, 15(9), 2142; https://doi.org/10.3390/polym15092142 - 29 Apr 2023
Cited by 11 | Viewed by 2946
Abstract
Polymer composites were synthesized via melt mixing for radiation shielding in the healthcare sector. A polymethyl-methacrylate (PMMA) matrix was filled with Bi2O3 nanoparticles at 10%, 20%, 30%, and 40% weight percentages. The characterization of nanocomposites included their morphological, structural, and [...] Read more.
Polymer composites were synthesized via melt mixing for radiation shielding in the healthcare sector. A polymethyl-methacrylate (PMMA) matrix was filled with Bi2O3 nanoparticles at 10%, 20%, 30%, and 40% weight percentages. The characterization of nanocomposites included their morphological, structural, and thermal properties, achieved using SEM, XRD, and TGA, respectively. The shielding properties for all synthesized samples including pristine PMMA were measured with gamma spectrometry using a NaI (Tl) scintillator detector spanning a wide range of energies and using different radioisotopes, namely Am-241 (59.6 keV), Co-57 (122.2 keV), Ra-226 (242.0), Ba-133 (80.99 and 356.02 keV), Cs-137 (661.6 keV), and Co-60 (1173.2 and 1332.5 keV). A substantial increase in the mass attenuation coefficients was obtained at low and medium energies as the filler weight percentage increased, with minor variations at higher gamma energies (1173 and 1332 keV). The mass attenuation coefficient decreased with increasing energy except under 122 keV gamma rays due to the K-absorption edge of bismuth (90.5 keV). At 40% loading of Bi2O3, the mass attenuation coefficient for the cesium 137Cs gamma line at 662 keV reached the corresponding value for the toxic heavy element lead. The synthesized PMMA-Bi2O3 nanocomposites proved to be highly effective, lead-free, safe, and lightweight shielding materials for X- and gamma rays within a wide energy range (<59 keV to 1332 keV), making them of interest for healthcare applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

16 pages, 14577 KiB  
Article
Investigation of Gamma-Ray Shielding Properties of Bismuth Oxide Nanoparticles with a Bentonite–Gypsum Matrix
by Mahmoud I. Abbas, Ahmed M. El-Khatib, Mohamed Elsafi, Sarah N. El-Shimy, Mirvat F. Dib, Hala M. Abdellatif, Raqwana Baharoon and Mona M. Gouda
Materials 2023, 16(5), 2056; https://doi.org/10.3390/ma16052056 - 2 Mar 2023
Cited by 13 | Viewed by 3436
Abstract
Due to the present industrial world, the risk of radioactivity is notably increasing. Thus, an appropriate shielding material needs to be designed to protect humans and the environment against radiation. In view of this, the present study aims to design new composites of [...] Read more.
Due to the present industrial world, the risk of radioactivity is notably increasing. Thus, an appropriate shielding material needs to be designed to protect humans and the environment against radiation. In view of this, the present study aims to design new composites of the main matrix of bentonite–gypsum with a low-cost, abundant, and natural matrix. This main matrix was intercalated in various amounts with micro- and nanosized particles of bismuth oxide (Bi2O3) as the filler. Energy dispersive X-ray analysis (EDX) recognized the chemical composition of the prepared specimen. The morphology of the bentonite–gypsum specimen was tested using scanning electron microscopy (SEM). The SEM images showed the uniformity and porosity of a cross-section of samples. The NaI (Tl) scintillation detector was used with four radioactive sources (241Am, 137Cs, 133Ba, and 60Co) of various photon energies. Genie 2000 software was used to determine the area under the peak of the energy spectrum observed in the presence and absence of each specimen. Then, the linear and mass attenuation coefficients were obtained. After comparing the experimental results of the mass attenuation coefficient with the theoretical values from XCOM software, it was found that the experimental results were valid. The radiation shielding parameters were computed, including the mass attenuation coefficients (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), which are dependent on the linear attenuation coefficient. In addition, the effective atomic number and buildup factors were calculated. The results of all of these parameters provided the same conclusion, which confirms the improvement of the properties of γ-ray shielding materials using a mixture of bentonite and gypsum as the main matrix, which is much better than using bentonite alone. Moreover, bentonite mixed with gypsum is a more economical means of production. Therefore, the investigated bentonite–gypsum materials have potential uses in applications such as gamma-ray shielding materials. Full article
Show Figures

Figure 1

15 pages, 2869 KiB  
Article
Radiological Risk Parameters of the Phosphorite Deposits, Gebel Qulu El Sabaya: Natural Radioactivity and Geochemical Characteristics
by El Saeed R. Lasheen, Hesham M. H. Zakaly, B. M. Alotaibi, Diaa A. Saadawi, Antoaneta Ene, Douaa Fathy, Hamdy A. Awad and Raafat M. El Attar
Minerals 2022, 12(11), 1385; https://doi.org/10.3390/min12111385 - 30 Oct 2022
Cited by 17 | Viewed by 2552
Abstract
This study investigates the distribution of natural radioactivity and geological, geochemical, and environmental risk assessments of phosphorite deposits to determine their suitability for international applications (such as phosphoric acid and phosphatic fertilizers). The examined Late Cretaceous phosphorite deposits belong to the Duwi Formation, [...] Read more.
This study investigates the distribution of natural radioactivity and geological, geochemical, and environmental risk assessments of phosphorite deposits to determine their suitability for international applications (such as phosphoric acid and phosphatic fertilizers). The examined Late Cretaceous phosphorite deposits belong to the Duwi Formation, which is well exposed on the southern scarp boundary at the central part of Abu Tartur Plateau, Gebel Qulu El Sabaya, East Dakhla Oasis. This formation is classified into lower phosphorite, middle shale, and upper phosphorite members. The lower phosphorite ranges in thickness from 2 to 3.5 m and mainly comprises apatite (possibly francolite), dolomite, calcite, quartz, hematite, anhydrite, and kaolinite. They contain an average concentration of CaO (38.35 wt.%), P2O5 (24.92 wt.%), SiO2 (7.19 wt.%), Fe2O3 (4.18 wt.%), MgO (3.99 wt.%), F (1.59 wt.%), Al2O3 (1.84 wt.%), Na2O (1.33 wt.%), and K2O (0.22 wt.%). Natural radioactivity and radiological parameters were investigated for fifteen samples of phosphorites using a NaI (Tl) scintillation detector. Absorbed dose rates, outdoor and indoor annual effective dose, radium equivalent activity, external and internal hazard, and excess cancer risk values are higher than the recommended levels, reflecting that exposure to these deposits for a long time may lead to health risks to human organs. Full article
(This article belongs to the Special Issue Natural Radionuclides in the Mineral Processing and Metallurgy)
Show Figures

Figure 1

13 pages, 3319 KiB  
Article
Distribution of Radionuclides and Radiological Health Assessment in Seih-Sidri Area, Southwestern Sinai
by Gharam A. Alharshan, Mohamed S. Kamar, El Saeed R. Lasheen, Antoaneta Ene, Mohamed A. M. Uosif, Hamdy A. Awad, Shams A. M. Issa and Hesham M. H. Zakaly
Int. J. Environ. Res. Public Health 2022, 19(17), 10717; https://doi.org/10.3390/ijerph191710717 - 28 Aug 2022
Cited by 24 | Viewed by 2331
Abstract
The current contribution goal is to measure the distribution of the radionuclide within the exposed rock units of southwestern Sinai, Seih-Sidri area, and assess the radiological risk. Gneisses, older granites, younger gabbro, younger granites, and post granitic dikes (pegmatites) are the main rock [...] Read more.
The current contribution goal is to measure the distribution of the radionuclide within the exposed rock units of southwestern Sinai, Seih-Sidri area, and assess the radiological risk. Gneisses, older granites, younger gabbro, younger granites, and post granitic dikes (pegmatites) are the main rock units copout in the target area. Radioactivity, as well as radiological implications, were investigated for forty-three samples from gneisses (seven hornblende biotite gneiss and seven biotite gneiss), older granites (fourteen samples), and younger granites (fifteen samples of syenogranites) using NaI (Tl) scintillation detector. External and internal hazard index (Hex, Hin), internal and external level indices (Iα, Iγ), absorbed dose rates in the air (D), the annual effective dose equivalent (AED), radium equivalent activity (Raeq), annual gonadal dose (AGDE), excess lifetime cancer risk (ELCR), and the value of Upper Continental Core 232Th/238U mass fractions were determined from the obtained values of 238U, 232Th and 40K for the examined rocks of Seih-Sidri area. The average 238U mg/kg in hornblende biotite gneiss and biotite gneiss, older granites, and syenogranites is 2.3, 2.1, 2.7, and 8.4 mg/kg, respectively, reflecting a relatively higher concentration of uranium content in syenogranites. The results suggest that using these materials may pose risks to one’s radiological health. Full article
(This article belongs to the Special Issue Environmental Pollution and Associated Human Health Effects)
Show Figures

Figure 1

14 pages, 4416 KiB  
Article
The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber
by Mahmoud I. Abbas, Ahmed M. El-Khatib, Mirvat Fawzi Dib, Hoda Ezzelddin Mustafa, M. I. Sayyed and Mohamed Elsafi
Polymers 2022, 14(5), 1048; https://doi.org/10.3390/polym14051048 - 6 Mar 2022
Cited by 27 | Viewed by 2939
Abstract
In this study, synthetic silicone rubber (SR) and Bi2O3 micro- and nanoparticles were purchased. The percentages for both sizes of Bi2O3 were 10, 20 and 30 wt% as fillers. The morphological, mechanical and shielding properties were determined [...] Read more.
In this study, synthetic silicone rubber (SR) and Bi2O3 micro- and nanoparticles were purchased. The percentages for both sizes of Bi2O3 were 10, 20 and 30 wt% as fillers. The morphological, mechanical and shielding properties were determined for all the prepared samples. The Linear Attenuation Coefficient (LAC) values of the silicon rubber (SR) without Bi2O3 and with 5, 10, 30 and 30% Bi2O3 (in micro and nano sizes) were experimentally measured using different radioactive point sources in the energy range varying from 0.06 to 1.333 MeV. Additionally, we theoretically calculated the LAC for SR with micro-Bi2O3 using XCOM software. A good agreement was noticed between the two methods. The NaI (Tl) scintillation detector and four radioactive point sources (Am-241, Ba-133, Cs-137 and Co-60) were used in the measurements. Other shielding parameters were calculated for the prepared samples, such as the Half Value Layer (HVL), Mean Free Path (MFP) and Radiation Protection Efficiency (RPE), all of which proved that adding nano-Bi2O3 ratios of SR produces higher shielding efficiency than its micro counterpart. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials II)
Show Figures

Figure 1

12 pages, 2081 KiB  
Article
Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity
by El Saeed R. Lasheen, Mohammed A. Rashwan, Hamid Osman, Sultan Alamri, Mayeen U. Khandaker and Mohamed Y. Hanfi
Materials 2021, 14(23), 7290; https://doi.org/10.3390/ma14237290 - 28 Nov 2021
Cited by 27 | Viewed by 2236
Abstract
Magmatic rocks represent one of the most significant rocks due to their abundance, durability and appearance; they can be used as ornamental stones in the construction of dwellings. The current study is concerned with the detailed petrography and natural radioactivity of seven magmatic [...] Read more.
Magmatic rocks represent one of the most significant rocks due to their abundance, durability and appearance; they can be used as ornamental stones in the construction of dwellings. The current study is concerned with the detailed petrography and natural radioactivity of seven magmatic rocks. All are commercial granitic rocks and are identified as black Aswan, Nero Aswan, white Halayeb, Karnak, Verdi, red Hurghada and red Aswan. Their respective mineralogical compositions are classified as porpheritic granodiorite, granodiorite, tonalite, monzogranite, syenogranite, monzogranite and syenogranite. A total of nineteen samples were prepared from these seven rock types in order to assess their suitability as ornamental stones. Concentrations of 226Ra, 232Th and 40K radionuclides were measured using NaI (Tl) scintillation gamma-ray spectrometry. Among the studied magmatic rocks, white Halayeb had the lowest average values of 226Ra (15.7 Bq/kg), 232Th (4.71 Bq/kg) and 40K (~292 Bq/kg), all below the UNSCEAR reported average world values or recommended reference limits. In contrast, the other granitic rocks have higher values than the recommended limit. Except for the absorbed dose rate, other radiological hazard parameters including radium equivalent activity, annual effective dose equivalent, external, and internal hazard indices reflect that the White Halyeb rocks are favorable for use as ornamental stone in the construction of luxurious and high-demand residential buildings. Full article
(This article belongs to the Special Issue Future Trends in Advanced Materials and Processes)
Show Figures

Figure 1

12 pages, 4120 KiB  
Article
Experimental Investigation of Radiation Shielding Competence of Bi2O3-CaO-K2O-Na2O-P2O5 Glass Systems
by Dalal Abdullah Aloraini, Aljawhara H. Almuqrin, M. I. Sayyed, Hanan Al-Ghamdi, Ashok Kumar and M. Elsafi
Materials 2021, 14(17), 5061; https://doi.org/10.3390/ma14175061 - 3 Sep 2021
Cited by 40 | Viewed by 2697
Abstract
The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). [...] Read more.
The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields. Full article
(This article belongs to the Special Issue Radiation Shielding Materials)
Show Figures

Figure 1

10 pages, 1600 KiB  
Article
Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability
by Ahmed M. El-Khatib, Mohamed Elsafi, Mohamed N. Almutiri, R. M. M. Mahmoud, Jamila S. Alzahrani, M. I. Sayyed and Mahmoud I. Abbas
Materials 2021, 14(16), 4697; https://doi.org/10.3390/ma14164697 - 20 Aug 2021
Cited by 31 | Viewed by 2883
Abstract
The gamma-ray shielding ability of various Bentonite–Cement mixed materials from northeast Egypt have been examined by determining their theoretical and experimental mass attenuation coefficients, μm (cm2g−1), at photon energies of 59.6, 121.78, 344.28, 661.66, 964.13, 1173.23, 1332.5 and [...] Read more.
The gamma-ray shielding ability of various Bentonite–Cement mixed materials from northeast Egypt have been examined by determining their theoretical and experimental mass attenuation coefficients, μm (cm2g−1), at photon energies of 59.6, 121.78, 344.28, 661.66, 964.13, 1173.23, 1332.5 and 1408.01 keV emitted from 241Am, 137Cs, 152Eu and 60Co point sources. The μm was theoretically calculated using the chemical compositions obtained by Energy Dispersive X-ray Analysis (EDX), while a NaI (Tl) scintillation detector was used to experimentally determine the μm (cm2g−1) of the mixed samples. The theoretical values are in acceptable agreement with the experimental calculations of the XCom software. The linear attenuation coefficient (μ), mean free path (MFP), half-value layer (HVL) and the exposure buildup factor (EBF) were also calculated by knowing the μm values of the examined samples. The gamma-radiation shielding ability of the selected Bentonite–Cement mixed samples have been studied against other puplished shielding materials. Knowledge of various factors such as thermo-chemical stability, availability and water holding capacity of the bentonite–cement mixed samples can be analyzed to determine the effectiveness of the materials to shield gamma rays. Full article
(This article belongs to the Special Issue Radiation Shielding Materials)
Show Figures

Figure 1

Back to TopTop