Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Ni-Cr dental alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4865 KB  
Article
Surface Treatment, Chemical Characterization, and Debonding Crack Initiation Strength for Veneering Dental Ceramics on Ni-Cr Alloys
by Blanca Irma Flores-Ferreyra, María de los Angeles Moyaho-Bernal, Héctor Nahum Chavarría-Lizárraga, Jorge Castro-Ramos, Guillermo Franco-Romero, Ulises Velázquez-Enríquez, Abigailt Flores-Ledesma, Eric Reyes-Cervantes, Ana Karina Ley-García, Estela del Carmen Velasco-León and Rosendo Gerardo Carrasco-Gutiérrez
Materials 2025, 18(16), 3822; https://doi.org/10.3390/ma18163822 - 14 Aug 2025
Viewed by 425
Abstract
Despite aesthetic trends, metal–ceramic restorations continue to be widely accepted due to their durability, and variations in surface preparation process can significantly influence bond strength outcomes. The purpose of this study was to determine whether there are differences in the bond strength depending [...] Read more.
Despite aesthetic trends, metal–ceramic restorations continue to be widely accepted due to their durability, and variations in surface preparation process can significantly influence bond strength outcomes. The purpose of this study was to determine whether there are differences in the bond strength depending on three surface treatment protocols for veneering ceramics on Ni-Cr alloys. The following surface treatments were used: (1) control (C) (no treatment), (2) airborne-particle abrasion (APA) with 50 µm Al2O3 (G1-APA), (3) APA followed by oxidation (G2-APA-O), and (4) APA-O, with a second APA (G3-APA-O-APA). Subsequently surface roughness (Ra and Rz) was evaluated using profilometry, hardness was measured through Leeb’s hardness dynamic test (HLD), morphology was investigated through scanning electron microscopy (SEM), and the chemical composition of the alloy surface was evaluated using energy-dispersive spectroscopy (EDS). After surface treatments, veneering ceramic was applied, the debonding crack initiation strength (DCIS) was investigated through the three-point bending test, failure mode was classified using a stereoscopic microscope, and chemical characterization of the fractured surfaces was performed using Raman spectroscopy (RS). For DCIS, G2-APA-O demonstrated the highest value 63.97 ± 44.40 (MPa) (p < 0.05). The results of this study indicate that oxidation treatment has a positive effect on the bonding strength between veneering ceramic and Ni-Cr alloys. Full article
Show Figures

Graphical abstract

20 pages, 6738 KB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 370
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

12 pages, 2705 KB  
Article
Electrochemical Behavior of Cobalt–Chromium Alloy Exposed to Effervescent Denture Cleansers
by Glenda Lara Lopes Vasconcelos, Carolina Alves Freiria de Oliveira, Ana Paula Macedo, Viviane de Cássia Oliveira, Patrícia Almeida Curylofo, Carlos Alberto Della Rovere, Rodrigo Galo, Bruna S. H. Tonin and Valéria Oliveira Pagnano
Corros. Mater. Degrad. 2025, 6(2), 23; https://doi.org/10.3390/cmd6020023 - 12 Jun 2025
Viewed by 605
Abstract
This study demonstrates that effervescent denture cleansers can influence the electrochemical behavior of cobalt–chromium (Co-Cr) alloys, with a particular focus on their corrosion resistance. The findings underscore the importance for dental professionals of selecting cleansers compatible with Co-Cr prostheses to minimize material degradation [...] Read more.
This study demonstrates that effervescent denture cleansers can influence the electrochemical behavior of cobalt–chromium (Co-Cr) alloys, with a particular focus on their corrosion resistance. The findings underscore the importance for dental professionals of selecting cleansers compatible with Co-Cr prostheses to minimize material degradation and enhance clinical durability. Corrosion resistance was evaluated using open-circuit potential (OCP), corrosion current density (icorr), and passivation current density (ipass). Surface morphology and elemental composition were analyzed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Forty specimens (n = 5 per group) were individually immersed in one of ten test solutions: distilled water (DW), artificial saliva (AS), and eight commercial denture cleansers—Polident 3 minutes™ (P3M), Steradent™ (St), Polident for Partials™ (PP), Efferdent™ (Ef), Corega Tabs™ (CT), NitrAdine™ (Ni), Fixodent™ (Fi), and Kukident™ (Ku). Each specimen was exposed a single solution to avoid cross-contamination. Results showed St, Ef, and Ku had higher OCP values than DW and Ni (p < 0.05), indicating better corrosion resistance. AS exhibited lower OCP values compared to St (p = 0.034), Ku (p = 0.023), and P3M (p = 0.050). DW had higher icorr than PP (p = 0.030), CT (p = 0.005), and P3M (p = 0.003). For ipass, DW had lower values than Ef (p = 0.025) and Ku (p = 0.016). SEM and EDS revealed no significant surface alterations. Understanding the underlying corrosion mechanisms in different solutions provides valuable insights into optimizing material performance and ensuring durability in clinical applications. The corrosion resistance of Co-Cr depends on the stability of the passive oxide layer, which can be degraded by chloride ions, reinforced by sulfate ions, and influenced by active ingredients in denture cleansers. Overall, the Co-Cr alloy demonstrated acceptable corrosion resistance, underscoring the importance of selecting suitable cleansers for prosthesis longevity. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Graphical abstract

15 pages, 15318 KB  
Article
Breaking the Hardness-Wear Trade-Off: Quantitative Correlation in Nano-Al2O3-Reinforced Al10Cr17Fe20NiV4 High-Entropy Alloys
by Cong Feng, Huan Wang and Yaping Wang
Nanomaterials 2025, 15(10), 775; https://doi.org/10.3390/nano15100775 - 21 May 2025
Viewed by 478
Abstract
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion [...] Read more.
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion behavior of multi-component alloys remains limited. While the hardness of MPEAs generally correlates positively with wear resistance, with higher hardness typically associated with improved wear resistance and reduced wear rates, quantitative relationships between these properties are not well established. In this study, the Al10Cr17Fe20NiV4 alloy was selected as a model system. A homogeneous Al10Cr17Fe20NiV4 alloy was successfully synthesized via mechanical alloying followed by spark plasma sintering (SPS). To further investigate the correlation between hardness and wear rate, varying concentrations of alumina nanoparticles were incorporated into the alloy matrix as a reinforcing phase. The results revealed that the Al10Cr17Fe20NiV4 alloy exhibited a single-phase face-centered cubic (FCC) structure, which was maintained with the addition of alumina nanoparticles. The hardness of the Al10Cr17Fe20NiV4 alloy without nano-alumina was 727 HV, with a corresponding wear rate of 2.9 × 10−4 mm3·N−1·m−1. The incorporation of nano-alumina increased the hardness to 823 HV, and significantly reduced the wear rate to 1.6 × 10−4 mm3·N−1·m−1, representing a 45% reduction. The Al2O3 nanoparticles effectively mitigated alloy wear through crack passivation and matrix strengthening; however, excessive addition reversed this effect due to the agglomeration-induced brittleness and thermal mismatch. The quantitative relationship between hardness (HV) and wear rate (W) was determined as W = 2348 e(−0.006HV). Such carefully bounded empirical relationships, as demonstrated in studies of cold-formed materials and dental enamel, remain valuable tools in applied research when accompanied by explicit scope limitations. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

17 pages, 4416 KB  
Article
Assessing the Genotoxic Impact of Ni-Cr Alloys in Dental Prosthodontics: A Preliminary Comparative Analysis with and Without Beryllium
by Florentina Caministeanu, Viorel Stefan Perieanu, Andrei Sabin Popa, Loredana Sabina Cornelia Manolescu, Andreea Angela Stetiu, Radu Catalin Costea, Mihai Burlibasa, Andrei Vorovenci, Raluca Mariana Costea, Cristina Maria Serbanescu, Andi Ciprian Dragus, Maria Antonia Stetiu, Madalina Adriana Malita and Liliana Burlibasa
Oral 2025, 5(2), 32; https://doi.org/10.3390/oral5020032 - 7 May 2025
Cited by 1 | Viewed by 646
Abstract
Objective: This study aims to evaluate cell proliferation capacity and micronuclei incidence in the presence of nickel–chromium (Ni-Cr)-based dental alloys, with and without the addition of beryllium (Be). The use of these alloys in dental prosthetics is widespread; however, the potential risks [...] Read more.
Objective: This study aims to evaluate cell proliferation capacity and micronuclei incidence in the presence of nickel–chromium (Ni-Cr)-based dental alloys, with and without the addition of beryllium (Be). The use of these alloys in dental prosthetics is widespread; however, the potential risks associated with their genotoxicity and cytotoxicity require further investigation. The study seeks to provide insight into the safety of these materials and their long-term impact on the health of both patients and dental professionals. Methods: The study was conducted through a comparative analysis of genotoxicity and cytotoxicity using human lymphocyte cultures exposed to two types of Ni-Cr-based dental alloys, one containing beryllium and the other without beryllium. The evaluations were performed according to the OECD Test No. 487 guideline, employing the micronucleus assay and cell proliferation assay. Lymphocytes were exposed to three different alloy concentrations (5 mg/mL, 10 mg/mL, and 20 mg/mL), and the effects on genetic material were analyzed microscopically. Descriptive statistics (mean, standard deviation, and variance) were calculated, and one-way ANOVA was used to assess statistical significance between groups, with a significance threshold of p < 0.05. Results: A significant increase in cytotoxicity and micronuclei incidence was observed in the samples containing beryllium compared to those without beryllium. Statistical analysis revealed significant differences (p < 0.001) between the test and control groups and between different concentrations. Additionally, a direct proportional relationship was noted between alloy concentration and the intensity of genotoxic effects. Microscopic analysis confirmed genetic material damage, indicating a potentially increased risk associated with the use of this type of dental material. Conclusions: The data obtained suggest that Ni-Cr-based dental alloys containing beryllium may present a significant risk of genotoxicity and cytotoxicity. Therefore, the selection of materials used in dental prosthetics should be based on solid scientific evidence, and the use of these alloys should be approached with caution. The study highlights the need for further research to better understand the long-term impact of these materials on human health. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Oral Rehabilitation)
Show Figures

Figure 1

13 pages, 2960 KB  
Article
The Influence of Si(C,N) Layer Composition on the Corrosion of NiCr Prosthetic Alloy
by Zofia Kula, Barbara Burnat, Katarzyna Dąbrowska and Leszek Klimek
Ceramics 2025, 8(2), 50; https://doi.org/10.3390/ceramics8020050 - 5 May 2025
Cited by 1 | Viewed by 699
Abstract
For decades, metal alloys have played a crucial role in medicine and dentistry as restorative materials. To enhance corrosion resistance and mitigate undesirable biological reactions, surface modifications of these alloys are widely employed. This study investigates the corrosion resistance and adhesion properties of [...] Read more.
For decades, metal alloys have played a crucial role in medicine and dentistry as restorative materials. To enhance corrosion resistance and mitigate undesirable biological reactions, surface modifications of these alloys are widely employed. This study investigates the corrosion resistance and adhesion properties of a NiCr dental alloy coated with a Si(C,N) layer. The findings suggest that these coatings hold potential as protective layers for prosthetic components in future applications. Si(C,N) coatings were deposited using the reactive magnetron sputtering (RMS) method on the surface of a NiCr dental alloy. Four different carbon-to-nitrogen (C/N) ratio variations were examined. The results indicate that Si(C,N) coatings deposited via magnetron sputtering exhibit relatively low porosity (approximately 3%), enabling them to function effectively as barrier coatings. Among the tested coatings, the Si(39.6C/25.2N) layer demonstrated the highest polarization resistance (Rp) value and the lowest corrosion current density (icor), corrosion rate (CR), and mass loss rate (MR), suggesting that this composition achieves an optimal balance between carbon and nitrogen content. These findings are promising for the potential application of Si(C,N) coatings in dental techniques. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

16 pages, 3936 KB  
Article
Investigation of the Influence of Alloying Elements Ni, Cr, Co and Mo on the Crystallization Process, Phase Composition and Corrosion Resistance of AlSi25Cu4Cr and AlSi25Cu5Cr Alloys
by Boyan Dochev, Desislava Dimova, Karel Trojan, Jiří Čapek, Kalina Kamarska and Bozhana Chuchulska
Materials 2025, 18(4), 907; https://doi.org/10.3390/ma18040907 - 19 Feb 2025
Viewed by 663
Abstract
To increase the mechanical and improve the operational properties of the AlSi25Cu4Cr and AlSi25Cu5Cr alloys, combinations of the alloying elements Ni, Co and Mo were used. The AlSi25Cu4Cr alloy was additionally alloyed with both Ni and Mo and Ni, Co and Mo, and [...] Read more.
To increase the mechanical and improve the operational properties of the AlSi25Cu4Cr and AlSi25Cu5Cr alloys, combinations of the alloying elements Ni, Co and Mo were used. The AlSi25Cu4Cr alloy was additionally alloyed with both Ni and Mo and Ni, Co and Mo, and the AlSi25Cu5Cr alloy was alloyed with Co and Mo in different concentrations. The dental alloys “wiron light” and “wironit” were used to introduce the elements Ni, Co, Mo, as well as additional amounts of Cr into the composition of the base compositions. The thermal analysis recorded a decrease in the liquidus and solidus temperatures of the base alloys, as well as a narrowing of their crystallization temperature range as a result of the added alloying elements. The influence of the used chemical elements on the phase composition of the alloys was established by X-ray diffraction. The elements Cr and Mo do not form secondary strengthening phases but dissolve in the α-solid solution. The results of the corrosion tests conducted in 1 M HCl solution and 1 M H2SO4 solution for 336 h and 504 h show that the elements Ni, Co and Mo improve the corrosion resistance of the alloys. Full article
Show Figures

Figure 1

12 pages, 2864 KB  
Article
Orthodontic Alloy Wires and Their Hypoallergenic Alternatives: Metal Ions Release in pH 6.6 and pH 5.5 Artificial Saliva
by Zana Jusufi Osmani, Petra Tariba Knežević, Davor Vučinić, Jetmire Alimani Jakupi, Arianit A. Reka, Mustafa Can, Koray Kara and Višnja Katić
Materials 2024, 17(21), 5254; https://doi.org/10.3390/ma17215254 - 29 Oct 2024
Cited by 1 | Viewed by 1416
Abstract
Legislative framework addresses the issues of alloy corrosion, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding the development of new biomaterials. The aim of this research was to evaluate and compare the [...] Read more.
Legislative framework addresses the issues of alloy corrosion, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding the development of new biomaterials. The aim of this research was to evaluate and compare the ion release of standard dental alloys and their hypoallergenic equivalents. Six types of orthodontic alloy wires (nickel–titanium (NiTi), coated NiTi, stainless steel (SS), Ni-free SS, and cobalt–chromium (CoCr) and titanium–molybdenum (TMA) were immersed into artificial saliva of pH 5.5 and 6.6. Release of metal ions was measured by inductively coupled plasma–mass spectrometry after 3, 7, 14 and 28 days. The data were analyzed using analysis of variance, and results with p < 0.05 were considered significant. NiTi released more Ti and Ni ions compared to the coated NiTi; SS released more iron, chromium, and nickel compared to the nickel-free SS. CoCr released cobalt in a high concentration and low amounts of chromium, nickel, and molybdenum compared to the molybdenum and titanium released by TMA. Release of metals from dental orthodontic alloys in vitro was overall lower at pH 6.6 and for the hypoallergenic equivalents when compared to standard dental alloys. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 9127 KB  
Article
Characteristics of Si (C,N) Silicon Carbonitride Layers on the Surface of Ni–Cr Alloys Used in Dental Prosthetics
by Leszek Klimek, Marcin Makówka, Anna Sobczyk-Guzenda and Zofia Kula
Materials 2024, 17(10), 2450; https://doi.org/10.3390/ma17102450 - 19 May 2024
Cited by 3 | Viewed by 1429
Abstract
Chromium- and cobalt-based alloys, as well as chrome–nickel steels, are most used in dental prosthetics. Unfortunately, these alloys, especially nickel-based alloys, can cause allergic reactions. A disadvantage of these alloys is also insufficient corrosion resistance. To improve the properties of these alloys, amorphous [...] Read more.
Chromium- and cobalt-based alloys, as well as chrome–nickel steels, are most used in dental prosthetics. Unfortunately, these alloys, especially nickel-based alloys, can cause allergic reactions. A disadvantage of these alloys is also insufficient corrosion resistance. To improve the properties of these alloys, amorphous Si (C,N) coatings were deposited on the surfaces of metal specimens. This paper characterizes coatings of silicon carbide nitrides, deposited by the magnetron sputtering method on the surface of nickel–chromium alloys used in dental prosthetics. Depending on the deposition parameters, coatings with varying carbon to nitrogen ratios were obtained. The study analyzed their structure and chemical and phase composition. In addition, a study of surface wettability and surface roughness was performed. Based on the results obtained, it was found that amorphous coatings of Si (C,N) type with thicknesses of 2 to 4.5 µm were obtained. All obtained coatings increase the value of surface free energy. The study showed that Si (C,N)-type films can be used in dental prosthetics as protective coatings. Full article
Show Figures

Figure 1

13 pages, 3419 KB  
Article
Behavior of Two Dental Alloys as Ingot and Cast Crown in Artificial Saliva
by Anca Porumb, Santiago Brito-Garcia, Julia Claudia Mirza-Rosca and Anca Fratila
Metals 2024, 14(4), 398; https://doi.org/10.3390/met14040398 - 28 Mar 2024
Cited by 1 | Viewed by 2186
Abstract
Dental alloys based on Co or Ni are commonly used in dentistry to fabricate dental prostheses, including crowns, bridges, and partial dentures, but even though both alloys are highly biocompatible, some patients may experience allergic reactions to nickel. This comparative study investigated the [...] Read more.
Dental alloys based on Co or Ni are commonly used in dentistry to fabricate dental prostheses, including crowns, bridges, and partial dentures, but even though both alloys are highly biocompatible, some patients may experience allergic reactions to nickel. This comparative study investigated the behavior of two dental alloys in the oral cavity, analyzing their microstructure, corrosion behavior, elastic modulus, hardness, and tensile strength for ingot and cast crowns. The microstructures of commercial Ni-Cr and Co-Cr samples were analyzed using optical microscopy, scanning electron microscopy (SEM), and X-Ray Diffraction (XRD); elastic modulus and corrosion behavior were determined after immersing the samples in artificial saliva. Ni-Cr alloy has a corrosion potential more negative than Co-Cr alloy; this means that the first alloy is more likely to undergo corrosion than the second alloy. Ni-Cr sample with a higher elastic modulus is generally more rigid and less flexible than Co-Cr sample with a lower elastic modulus. The analyzed Co-Cr alloy has a higher resistance to corrosion, resulting in a more esthetically pleasing and longer-lasting restoration. The Co-Cr alloy also has a lower density than the Ni-Cr alloy, which, combined with its strength-to-weight ratio, makes them ideal for partial dentures where the prosthesis needs to be lightweight. The Co-Cr alloy is more flexible than the Ni-Cr alloy, making it stronger and more durable. This makes them an ideal choice for dental prostheses that need to withstand high stresses and loads. Full article
Show Figures

Figure 1

14 pages, 1975 KB  
Article
Oral Galvanism Side Effects: Comparing Alloy Ions and Galvanic Current Effects on the Mucosa-like Model
by Natalia Chepelova, Artem Antoshin, Sergei Voloshin, Anna Usanova, Yuri Efremov, Maria Makeeva, Stanislav Evlashin, Mikhail Stepanov, Anna Turkina and Peter Timashev
J. Funct. Biomater. 2023, 14(12), 564; https://doi.org/10.3390/jfb14120564 - 11 Dec 2023
Cited by 2 | Viewed by 3207
Abstract
The interaction of different dental alloys with the oral environment may cause severe side effects (e.g., burning sensation, inflammatory reactions, carcinogenesis) as a result of oral galvanism. However, the pathogenesis of side effects associated with oral galvanism is still unclear, and the effects [...] Read more.
The interaction of different dental alloys with the oral environment may cause severe side effects (e.g., burning sensation, inflammatory reactions, carcinogenesis) as a result of oral galvanism. However, the pathogenesis of side effects associated with oral galvanism is still unclear, and the effects of direct current and alloy corrosion ions are considered potentially contributing factors. Therefore, the aim of this study was to systemically compare the damaging effects of (1) galvanism as a synergistic process (direct current + corrosion ions), (2) direct current separately, and (3) corrosion ions separately on an in vitro mucosa-like model based on a cell line of immortalized human keratinocytes (HaCaTs) to reveal the factors playing a pivotal role in dental alloys side effects. For this, we chose and compared the dental alloys with the highest risk of oral galvanism: Ti64–AgPd and NiCr–AgPd. We showed that galvanic current may be the leading damaging factor in the cytotoxic processes associated with galvanic coupling of metallic intraoral appliances in the oral cavity, especially in the short-term period (28 days). However, the contribution of corrosion ions (Ni2+) to the synergistic toxicity was also shown, and quite possibly, in the long term, it could be no less dangerous. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials (2nd Edition))
Show Figures

Figure 1

21 pages, 8716 KB  
Article
Mechanical and Surface Characteristics of Selective Laser Melting-Manufactured Dental Prostheses in Different Processing Stages
by Edgar Moraru, Alina-Maria Stoica, Octavian Donțu, Sorin Cănănău, Nicolae-Alexandru Stoica, Victor Constantin, Daniela-Doina Cioboată and Liliana-Laura Bădiță-Voicu
Materials 2023, 16(18), 6141; https://doi.org/10.3390/ma16186141 - 9 Sep 2023
Cited by 6 | Viewed by 2327
Abstract
Due to the expansion of the use of powder bed fusion metal additive technologies in the medical field, especially for the realization of dental prostheses, in this paper, the authors propose a comparative experimental study of the mechanical characteristics and the state of [...] Read more.
Due to the expansion of the use of powder bed fusion metal additive technologies in the medical field, especially for the realization of dental prostheses, in this paper, the authors propose a comparative experimental study of the mechanical characteristics and the state of their microscale surfaces. The comparison was made from material considerations starting from two dental alloys commonly used to realize dental prostheses: Ni-Cr and Co-Cr, but also technologies for obtaining selective laser melting (SLM) and conventional casting. In addition, to compare the performances with the classical casting technology, for the dental prostheses obtained through SLM, the post-processing stage in which they are in a preliminary finishing and polished state was considered. Therefore, for the determination of important mechanical characteristics and the comparative study of dental prostheses, the indentation test was used, after which the hardness, penetration depths (maximum, permanent, and contact depth), contact stiffness, and contact surface were established, and for the determination of the microtopography of the surfaces, atomic force microscopy (AFM) was used, obtaining the local areal roughness parameters at the miniaturized scale—surface average roughness, root-mean-square roughness (RMS), and peak-to-peak values. Following the research carried out, several interesting conclusions were drawn, and the superiority of the SLM technology over the classic casting method for the production of dental prostheses in terms of some mechanical properties was highlighted. At the same time, the degree of finishing of dental prostheses made by SLM has a significant impact on the mechanical characteristics and especially the local roughness parameters on a miniaturized scale, and if we consider the same degree of finishing, no major differences are observed in the roughness parameters of the surfaces of the prostheses produced by different technologies. Full article
(This article belongs to the Special Issue Recent Advances in Metal Powder Based Additive Manufacturing)
Show Figures

Figure 1

12 pages, 8537 KB  
Article
Quality of the Ceramic and Ni-Cr Alloy Joint after Al2O3 Abrasive Blasting
by Leszek Klimek, Emilia Wołowiec-Korecka, Weronika Czepułkowska-Pawlak and Zofia Kula
Materials 2023, 16(10), 3800; https://doi.org/10.3390/ma16103800 - 17 May 2023
Cited by 1 | Viewed by 1304
Abstract
The purpose of this in vitro study was to determine the effect of airborne-particle abrasion process parameters on the strength of the Ni-Cr alloy–ceramic bond. One hundred and forty-four Ni-Cr disks were airborne-particle abraded with 50, 110 and 250 µm Al2O [...] Read more.
The purpose of this in vitro study was to determine the effect of airborne-particle abrasion process parameters on the strength of the Ni-Cr alloy–ceramic bond. One hundred and forty-four Ni-Cr disks were airborne-particle abraded with 50, 110 and 250 µm Al2O3 at a pressure of 400 and 600 kPa. After treatment, the specimens were bonded to dental ceramics by firing. The strength of the metal–ceramic bond was determined using the shear strength test. The results were analyzed with three-way analysis of variance (ANOVA) and the Tukey honest significant difference (HSD) test (α = 0.05). The examination also considered the thermal loads (5000 cycles, 5–55 °C) to which the metal–ceramic joint is subjected during exploitation. There is a close correlation between the strength of the Ni-Cr alloy–dental ceramic joint and the alloy roughness parameters after abrasive blasting: Rpk (reduced peak height), Rsm (the mean spacing of irregularities), Rsk (skewness of the profile) and RPc (peak density). The highest strength of the Ni-Cr alloy surface bonding with dental ceramics under operating conditions is provided by abrasive blasting under 600 kPa pressure with 110 µm Al2O3 particles (p < 0.05). Both the abrasive blasting pressure and the particle size of the Al2O3 abrasive significantly affect the joint’s strength (p < 0.05). The most optimal blasting parameters are 600 kPa pressure with 110 µm Al2O3 particles (p < 0.05). They allow the highest bond strength between the Ni-Cr alloy and dental ceramics to be achieved. Full article
(This article belongs to the Special Issue Properties of Dental Restorative Materials (Volume II))
Show Figures

Figure 1

13 pages, 54324 KB  
Article
Influence of Precipitation Hardening on the Mechanical Properties of Co-Cr-Mo and Co-Cr-W-Mo Dental Alloys
by Marko Sedlaček, Katja Zupančič, Barbara Šetina Batič, Borut Kosec, Matija Zorc and Aleš Nagode
Metals 2023, 13(3), 637; https://doi.org/10.3390/met13030637 - 22 Mar 2023
Cited by 7 | Viewed by 2828
Abstract
Co-Cr alloys have good mechanical properties such as high hardness, excellent magnetic properties and good corrosion resistance. For this reason, they are most commonly used as dental and orthopaedic implants. Generally, cast Co-Cr-Mo alloys and forged Co-Ni-Cr-Mo alloys are used for the production [...] Read more.
Co-Cr alloys have good mechanical properties such as high hardness, excellent magnetic properties and good corrosion resistance. For this reason, they are most commonly used as dental and orthopaedic implants. Generally, cast Co-Cr-Mo alloys and forged Co-Ni-Cr-Mo alloys are used for the production of implants. In this study, we investigated two dental alloys, namely, Co-Cr-Mo and Co-Cr-W-Mo alloys. The aim of this study was to determine the effect of heat treatment on the development of the microstructure and to evaluate its influence on the alloys’ mechanical and tribological properties. The samples were first solution-annealed at 1200 °C in an argon atmosphere for 2 h, then quenched in water and subsequently aged at 900 °C in an argon atmosphere for 1, 3 and 12 h. A microstructural analysis was performed using SEM, with EDS for microchemical analysis and EBSD for phase identification. In addition, the Vickers hardness and wear resistance of the two alloys were analysed before and after heat treatment. The Co-Cr-Mo alloy showed better wear resistance and also a generally higher hardness than the Co-Cr-W-Mo alloy. Both alloys showed signs of abrasive and adhesive wear, with carbide particles detaching from the Co-Cr-W-Mo alloy due to the lower hardness of the matrix. The Co-Cr-Mo alloy showed the best abrasion resistance after the longest aging time (12 h), while the Co-Cr-W-Mo alloy showed the best as-cast abrasion resistance. With ageing, the wear resistance of both alloys increased. Full article
(This article belongs to the Special Issue Failure and Degradation of Metals)
Show Figures

Figure 1

12 pages, 2615 KB  
Article
Laser Cleaning Improves Stem Cell Adhesion on the Dental Implant Surface during Peri-Implantitis Treatment
by Taras V. Furtsev, Anastasia A. Koshmanova, Galina M. Zeer, Elena D. Nikolaeva, Ivan N. Lapin, Tatiana N. Zamay and Anna S. Kichkailo
Dent. J. 2023, 11(2), 30; https://doi.org/10.3390/dj11020030 - 20 Jan 2023
Cited by 8 | Viewed by 4542
Abstract
Dental implant therapy is a well-accepted treatment modality. Despite good predictability and success in the early stages, the risk of postplacement inflammation in the long-term periods remains an urgent problem. Surgical access and decontamination with chemical and mechanical methods are more effective than [...] Read more.
Dental implant therapy is a well-accepted treatment modality. Despite good predictability and success in the early stages, the risk of postplacement inflammation in the long-term periods remains an urgent problem. Surgical access and decontamination with chemical and mechanical methods are more effective than antibiotic therapy. The search for the optimal and predictable way for peri-implantitis treatment remains relevant. Here, we evaluated four cleaning methods for their ability to preserve the implant’s surface for adequate mesenchymal stem cell adhesion and differentiation. Implants isolated after peri-implantitis were subjected to cleaning with diamond bur; Ti-Ni alloy brush, air-flow, or Er,Cr:YSGG laser and cocultured with mice MSC for five weeks. Dental bur and titanium brushes destroyed the implants’ surfaces and prevented MSC attachment. Air-flow and laser minimally affected the dental implant surface microroughness, which was initially designed for good cell adhesion and bone remodeling and to provide full microbial decontamination. Anodized with titanium dioxide and sandblasted with aluminum oxide, acid-etched implants appeared to be better for laser treatment. In implants sandblasted with aluminum oxide, an acid-etched surface better preserves its topology when treated with the air-flow. These cleaning methods minimally affect the implant’s surface, so it maintains the capability to absorb osteogenic cells for further division and differentiation. Full article
Show Figures

Graphical abstract

Back to TopTop