Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Petiveria alliacea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 14804 KB  
Article
Exploring the Therapeutic Potential of Petiveria alliacea L. Phytochemicals: A Computational Study on Inhibiting SARS-CoV-2’s Main Protease (Mpro)
by Md. Ahad Ali, Humaira Sheikh, Muhammad Yaseen, Md Omar Faruqe, Ihsan Ullah, Neeraj Kumar, Mashooq Ahmad Bhat and Md. Nurul Haque Mollah
Molecules 2024, 29(11), 2524; https://doi.org/10.3390/molecules29112524 - 27 May 2024
Cited by 4 | Viewed by 3879
Abstract
The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs [...] Read more.
The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of −8.9, −8.7 and −8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Design and Development)
Show Figures

Figure 1

14 pages, 2596 KB  
Article
Effect of Petiveria alliacea Extracts on Metabolism of K562 Myeloid Leukemia Cells
by Laura Rojas, Daniel Pardo-Rodriguez, Claudia Urueña, Paola Lasso, Cindy Arévalo, Mónica P. Cala and Susana Fiorentino
Int. J. Mol. Sci. 2023, 24(24), 17418; https://doi.org/10.3390/ijms242417418 - 13 Dec 2023
Cited by 2 | Viewed by 2109
Abstract
Previously, studies have shown that leukemic cells exhibit elevated glycolytic metabolism and oxidative phosphorylation in comparison to hematopoietic stem cells. These metabolic processes play a crucial role in the growth and survival of leukemic cells. Due to the metabolic plasticity of tumor cells, [...] Read more.
Previously, studies have shown that leukemic cells exhibit elevated glycolytic metabolism and oxidative phosphorylation in comparison to hematopoietic stem cells. These metabolic processes play a crucial role in the growth and survival of leukemic cells. Due to the metabolic plasticity of tumor cells, the use of natural products has been proposed as a therapeutic alternative due to their ability to attack several targets in tumor cells, including those that could modulate metabolism. In this study, the potential of Petiveria alliacea to modulate the metabolism of K562 cell lysates was evaluated by non-targeted metabolomics. Initially, in vitro findings showed that P. alliacea reduces K562 cell proliferation; subsequently, alterations were observed in the endometabolome of cell lysates treated with the extract, mainly in glycolytic, phosphorylative, lipid, and amino acid metabolism. Finally, in vitro assays were performed, confirming that P. Alliacea extract decreased the oxygen consumption rate and intracellular ATP. These results suggest that the anti-tumor activity of the aqueous extract on the K562 cell line is attributed to the decrease in metabolites related to cell proliferation and/or growth, such as nucleotides and nucleosides, leading to cell cycle arrest. Our results provide a preliminary part of the mechanism for the anti-tumor and antiproliferative effects of P. alliacea on cancer. Full article
(This article belongs to the Special Issue Novel Biological Molecules for Cancer Treatments 2.0)
Show Figures

Graphical abstract

15 pages, 3143 KB  
Article
Natural Products Induce Different Anti-Tumor Immune Responses in Murine Models of 4T1 Mammary Carcinoma and B16-F10 Melanoma
by Paola Lasso, Laura Rojas, Cindy Arévalo, Claudia Urueña, Natalia Murillo and Susana Fiorentino
Int. J. Mol. Sci. 2023, 24(23), 16698; https://doi.org/10.3390/ijms242316698 - 24 Nov 2023
Cited by 3 | Viewed by 2161
Abstract
Natural products obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been used for cancer treatment, but the mechanisms by which they exert their antitumor activity appear to be different. In the present work, we show that the Anamu-SC extract reduces tumor growth in [...] Read more.
Natural products obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been used for cancer treatment, but the mechanisms by which they exert their antitumor activity appear to be different. In the present work, we show that the Anamu-SC extract reduces tumor growth in the 4T1 murine mammary carcinoma model but not in the B16-F10 melanoma model, unlike the standardized P2Et extract. Both extracts decreased the levels of interleukin-10 (IL-10) in the B16-F10 model, but only P2Et increased the levels of tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). Likewise, co-treatment of P2Et and doxorubicin (Dox) significantly reduced tumor size by 70% compared to the control group, but co-treatment of Anamu-SC with Dox had no additive effect. Analysis of intratumoral immune infiltrates showed that Anamu-SC decreased CD4+ T cell frequency more than P2Et but increased CD8+ T cell frequency more significantly. Both extracts reduced intratumoral monocytic myeloid-derived suppressor-like cell (M-MDSC-LC) migration, but the effect was lost when co-treated with doxorubicin. The use of P2Et alone or in co-treatment with Anamu-SC reduced the frequency of regulatory T cells and increased the CD8+/Treg ratio. In addition, Anamu-SC reduced glucose consumption in tumor cells, but this apparently has no effect on IFNγ- and TNFα-producing T cells, although it did reduce the frequency of IL-2-producing T cells. The efficacy of these herbal preparations is increasingly clear, as is the specificity conditioned by tumor heterogeneity as well as the different chemical complexity of each preparation. Although these results contribute to the understanding of specificity and its future benefits, they also underline the fact that the development of each of these standardized extracts called polymolecular drugs must follow a rigorous path to elucidate their biological activity. Full article
(This article belongs to the Special Issue Novel Biological Molecules for Cancer Treatments 2.0)
Show Figures

Figure 1

14 pages, 21383 KB  
Article
Comparative Analysis of Bacteria, Fungi, and Arbuscular Mycorrhizal Fungi in Medicinal Plants Lippia alba and Petiveria alliacea in Colombia
by Glever Alexander Vélez-Martínez, Juan Diego Duque-Zapata, Wendy Lorena Reyes-Ardila, Jaime Eduardo Muñoz Flórez, Sergio Alberto Díaz Gallo, Lucia Ana Díaz Ariza and Diana López-Álvarez
Diversity 2023, 15(12), 1167; https://doi.org/10.3390/d15121167 - 23 Nov 2023
Cited by 2 | Viewed by 1996
Abstract
Medicinal plants maintain structures and diversities of bacteria, fungi, and arbuscular mycorrhizal fungi (AMF) that can interact to promote growth and therapeutic properties. Therefore, the purpose of this research was to evaluate the microbiome of Lippia alba and Petiveria alliacea, species known [...] Read more.
Medicinal plants maintain structures and diversities of bacteria, fungi, and arbuscular mycorrhizal fungi (AMF) that can interact to promote growth and therapeutic properties. Therefore, the purpose of this research was to evaluate the microbiome of Lippia alba and Petiveria alliacea, species known for their high potential for medicinal benefits in Colombia. To achieve this, rhizosphere soils and roots were sampled from five departments in Colombia: Boyacá, Cundinamarca, Tolima, Putumayo, and Valle del Cauca. The results revealed that the dominant bacterial groups in both plants were primarily Proteobacteria, Acidobacteriota, and Actinobacteriota, with the first phylum showing the highest number of differentially abundant genera between the sampling points. In fungi, Ascomycota tended to dominate in most of the sampled locations, while Mortierellomycota was particularly abundant in roots of P. alliacea in Valle. Furthermore, the study of AMF indicated differentiation in the colonization for both plants, with the genera Glomus and Paraglomus being predominant. Differences in the Shannon diversity index were recorded between sampling types within these sampling points, possibly influenced by local and environmental factors. Our findings reveal that the microbiomes of both medicinal plants exhibit distinct community assemblies, which could be a significant factor for their future therapeutic use. Full article
(This article belongs to the Special Issue Microbiota Diversity in Plants and Forest)
Show Figures

Figure 1

34 pages, 7881 KB  
Review
Amazonian Plants: A Global Bibliometric Approach to Petiveria alliacea L. Pharmacological and Toxicological Properties
by Brenda Costa da Conceição, Thales Andrade da Silva, Lucas Villar Pedrosa da Silva Pantoja, Diandra Araújo da Luz, Eloise Karoline Serrão Cardoso, Laryssa Danielle da Silva Reis, Maria Carolina Raiol-da-Silva, Monique Silva Kussler, Cristiane Socorro Ferraz Maia and Enéas Andrade Fontes-Júnior
Plants 2023, 12(18), 3343; https://doi.org/10.3390/plants12183343 - 21 Sep 2023
Cited by 6 | Viewed by 3630
Abstract
Petiveria alliacea L. (Phytolaccaceae) holds significant importance in the Amazon region, where it has been traditionally utilized in folk medicine. In this study, we conducted a comprehensive bibliometric analysis using conventional metrics, combined with a critical content review of its pharmacological and toxicological [...] Read more.
Petiveria alliacea L. (Phytolaccaceae) holds significant importance in the Amazon region, where it has been traditionally utilized in folk medicine. In this study, we conducted a comprehensive bibliometric analysis using conventional metrics, combined with a critical content review of its pharmacological and toxicological properties, to identify gaps in the existing literature that require further investigation. Our investigation identified a total of 55 articles that met the inclusion criteria for this study. Remarkably, Brazil emerged as the primary contributor within the scope of this review, indicating a strong presence of research from this country. Furthermore, professional scientific societies have played a pivotal role in facilitating the dissemination of scientific findings through specialist journals, fostering the sharing of research work within the community. Analysis of keyword co-occurrence revealed that “Petiveria alliacea”, “plant extract”, and “guatemala” were the most frequently encountered terms, indicating their significance within the literature. In terms of study designs, in vivo and in vitro were the predominant types observed, highlighting their prevalence in this field of study. Our study also identified a lack in knowledge yet to be investigated. Full article
(This article belongs to the Special Issue Advances in Research on the Medicinal Value of Plants)
Show Figures

Figure 1

13 pages, 1857 KB  
Article
Isolation and Characterization of Fungal Endophytes from Petiveria alliacea and Their Antimicrobial Activities in South Florida
by Ganesh Khadka, Thirunavukkarasu Annamalai, Kateel G. Shetty, Yuk-Ching Tse-Dinh and Krish Jayachandran
Microbiol. Res. 2023, 14(3), 1470-1482; https://doi.org/10.3390/microbiolres14030100 - 19 Sep 2023
Cited by 3 | Viewed by 5311
Abstract
Microorganisms associated with medicinal plants are of great interest as they are the producers of important bioactive compounds effective against common and drug-resistant pathogens. The characterization and biodiversity of fungal endophytes of the Petiveria alliacea plant and their antimicrobial production potential are of [...] Read more.
Microorganisms associated with medicinal plants are of great interest as they are the producers of important bioactive compounds effective against common and drug-resistant pathogens. The characterization and biodiversity of fungal endophytes of the Petiveria alliacea plant and their antimicrobial production potential are of great interest as they are known for their antimicrobial and anticancer properties. In this study, we investigated the endophytic fungal microbiome associated with P. alliacea, and the endophytic fungal isolates were classified into 30 morphotypes based on their cultural and morphological characteristics. Ethyl acetate extract of fungal endophytes was obtained by liquid–liquid partitioning of culture broth followed by evaporation. The crude extract dissolved in dimethyl sulfoxide was screened for antimicrobial activity against three bacterial strains (Escherichia coli ATTC 25902, Staphylococcus aureus ATTC 14775, Bacillus subtilis NRRL 5109) and two fungal strains (Candida albicans ATTC 10231 and Aspergillus fumigatus NRRL 5109). Among the crude extracts from endophytes isolated from leaves, 65% of them showed antimicrobial activity against the bacteria tested. Similarly, 71 and 88% of the fungal crude extracts from endophytes isolated from root and stem, respectively, showed inhibitory activities against at least one of the bacterial strains tested. Crude extracts (at a concentration of 10 mg/mL) from ten of the fungal isolates have shown a zone of inhibition of more than 12 mm against both Gram-positive and negative bacteria tested. Sequenced data from isolates showing strong inhibitory activity revealed that Fusarium solani, F. proliferatum, and Fusarium oxysporium are the major endophytes responsible for bioactive potential. These results indicate that Petiveria alliacea harbors fungal endophytes capable of producing antimicrobial metabolites. Future studies need to focus on testing against drug-resistant bacteria (ESKAPE group) and other pathogenic bacteria and fungi. Full article
Show Figures

Figure 1

17 pages, 2649 KB  
Article
Petiveria alliacea Reduces Tumor Burden and Metastasis and Regulates the Peripheral Immune Response in a Murine Myeloid Leukemia Model
by Natalia Murillo, Paola Lasso, Claudia Urueña, Daniel Pardo-Rodriguez, Ricardo Ballesteros-Ramírez, Giselle Betancourt, Laura Rojas, Mónica P. Cala and Susana Fiorentino
Int. J. Mol. Sci. 2023, 24(16), 12972; https://doi.org/10.3390/ijms241612972 - 19 Aug 2023
Cited by 8 | Viewed by 3283
Abstract
The poor response, adverse effects and drug resistance to treatment of acute myeloid leukemia (AML) have led to searching for safer and more effective therapeutic alternatives. We previously demonstrated that the alcoholic extract of Petiveria alliacea (Esperanza) has a significant in vitro antitumor [...] Read more.
The poor response, adverse effects and drug resistance to treatment of acute myeloid leukemia (AML) have led to searching for safer and more effective therapeutic alternatives. We previously demonstrated that the alcoholic extract of Petiveria alliacea (Esperanza) has a significant in vitro antitumor effect on other tumor cells and also the ability to regulate energy metabolism. We evaluated the effect of the Esperanza extract in vitro and in vivo in a murine model of AML with DA-3/ER-GM cells. First, a chemical characterization of the extract was conducted through liquid and gas chromatography coupled with mass spectrometry. In vitro findings showed that the extract modulates tumor metabolism by decreasing glucose uptake and increasing reactive oxygen species, which leads to a reduction in cell proliferation. Then, to evaluate the effect of the extract in vivo, we standardized the mouse model by injecting DA-3/ER-GM cells intravenously. The animals treated with the extract showed a lower percentage of circulating blasts, higher values of hemoglobin, hematocrit, and platelets, less infiltration of blasts in the spleen, and greater production of cytokines compared to the control group. These results suggest that the antitumor activity of this extract on DA-3/ER-GM cells can be attributed to the decrease in glycolytic metabolism, its activity as a mitocan, and the possible immunomodulatory effect by reducing tumor proliferation and metastasis. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

15 pages, 3655 KB  
Article
Doxorubicin Activity Is Modulated by Traditional Herbal Extracts in a 2D and 3D Multicellular Sphere Model of Leukemia
by Laura Corzo Prada, Claudia Urueña, Efraín Leal-García, Alfonso Barreto, Ricardo Ballesteros-Ramírez, Viviana Rodríguez-Pardo and Susana Fiorentino
Pharmaceutics 2023, 15(6), 1690; https://doi.org/10.3390/pharmaceutics15061690 - 9 Jun 2023
Cited by 5 | Viewed by 2395
Abstract
The modulation of the tumor microenvironment by natural products may play a significant role in the response of tumor cells to chemotherapy. In this study, we evaluated the effect of extracts derived from P2Et (Caesalpinia spinosa) and Anamú-SC (Petiveria alliacea [...] Read more.
The modulation of the tumor microenvironment by natural products may play a significant role in the response of tumor cells to chemotherapy. In this study, we evaluated the effect of extracts derived from P2Et (Caesalpinia spinosa) and Anamú-SC (Petiveria alliacea) plants, previously studied by our group, on the viability and ROS levels in the K562 cell line (Pgp− and Pgp+), endothelial cells (ECs, Eahy.926 cell line) and mesenchymal stem cells (MSC) cultured in 2D and 3D. The results show that: (a) the two botanical extracts are selective on tumor cells compared to doxorubicin (DX), (b) cytotoxicity is independent of the modulation of intracellular ROS for plant extracts, unlike DX, (c) the interaction with DX can be influenced by chemical complexity and the expression of Pgp, (d) the 3D culture shows a greater sensitivity of the tumor cells to chemotherapy, in co-treatment with the extracts. In conclusion, the effect of the extracts on the viability of leukemia cells was modified in multicellular spheroids with MSC and EC, suggesting that the in vitro evaluation of these interactions can contribute to the comprehension of the pharmacodynamics of the botanical drugs. Full article
Show Figures

Graphical abstract

16 pages, 2023 KB  
Article
Natural Products Obtained from Argentinean Native Plants Are Fungicidal against Citrus Postharvest Diseases
by Norma Hortensia Alvarez, María Inés Stegmayer, Gisela Marisol Seimandi, José Francisco Pensiero, Juan Marcelo Zabala, María Alejandra Favaro and Marcos Gabriel Derita
Horticulturae 2023, 9(5), 562; https://doi.org/10.3390/horticulturae9050562 - 9 May 2023
Cited by 4 | Viewed by 2140
Abstract
Natural products obtained from plants constitute an alternative to chemically synthesized fungicides, whose improper use might have caused the development of resistant fungal strains. In the present work, 40 products obtained from 20 native Argentinean plant species were tested against three citrus postharvest [...] Read more.
Natural products obtained from plants constitute an alternative to chemically synthesized fungicides, whose improper use might have caused the development of resistant fungal strains. In the present work, 40 products obtained from 20 native Argentinean plant species were tested against three citrus postharvest pathogens: Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii. Natural products were obtained by classical solvent extraction methods and the fungicidal evaluation was carried out by agar diffusion tests using commercial fungicides as negative controls and dimethyl sulfoxide as a positive one. The inhibition percentages were determined 7 and 14 days post inoculation of each fungus. Most of the products tested showed inhibition percentages higher than 50% for G. citri-aurantii, but only 20% of them were active against P. digitatum and P. italicum. The most promising products which inhibited (100%) the growth of at least one of the three phytopathogens were extracted from the following plants: Orthosia virgata, Petiveria alliacea, Funastrum clausum, Solanum caavurana, and Solanum pilcomayense. These products were tested over inoculated oranges and there were no statistically significant differences between the treatments with a commercial fungicide and the methanolic extract in the control of fruit rot. The products extracted from native plants have fungicide potential, but further studies are required. Full article
(This article belongs to the Special Issue Sustainable Control Strategies of Plant Pathogens in Horticulture)
Show Figures

Graphical abstract

11 pages, 2216 KB  
Communication
Cytotoxicity of Extracts from Petiveria alliacea Leaves on Yeast
by Bruna B. F. Cal, Luana B. N. Araújo, Brenno M. Nunes, Claudia R. da Silva, Marcia B. N. Oliveira, Bianka O. Soares, Alvaro A. C. Leitão, Marcelo de Pádula, Debora Nascimento, Douglas S. A. Chaves, Rachel F. Gagliardi and Flavio J. S. Dantas
Plants 2022, 11(23), 3263; https://doi.org/10.3390/plants11233263 - 27 Nov 2022
Cited by 4 | Viewed by 2966
Abstract
Petiveria alliacea L. is a plant used in traditional medicine harboring pharmacological properties with anti-inflammatory, antinociceptive, hypoglycemiant and anesthetic activities. This study assessed the potential cytotoxic, genotoxic and mutagenic effects of ethanolic extract of P. alliacea on Saccharomyces cerevisiae strains. S. cerevisiae FF18733 [...] Read more.
Petiveria alliacea L. is a plant used in traditional medicine harboring pharmacological properties with anti-inflammatory, antinociceptive, hypoglycemiant and anesthetic activities. This study assessed the potential cytotoxic, genotoxic and mutagenic effects of ethanolic extract of P. alliacea on Saccharomyces cerevisiae strains. S. cerevisiae FF18733 (wild type) and CD138 (ogg1) strains were exposed to fractioned ethanolic extracts of P. alliacea in different concentrations. Three experimental assays were performed: cellular inactivation, mutagenesis (canavanine resistance system) and loss of mitochondrial function (petites colonies). The chemical analyses revealed a rich extract with phenolic compounds such as protocatechuic acid, cinnamic and catechin epicatechin. A decreased cell viability in wild-type and ogg1 strains was demonstrated. All fractions of the extract exerted a mutagenic effect on the ogg1 strain. Only ethyl acetate and n-butanol fractions increased the rate of petites colonies in the ogg1 strain, but not in the wild-type strain. The results indicate that fractions of mid-polarity of the ethanolic extract, at the studied concentrations, can induce mutagenicity mediated by oxidative lesions in the mitochondrial and genomic genomes of the ogg1-deficient S. cerevisiae strain. These findings indicate that the lesions caused by the fractions of P. alliacea ethanolic extract can be mediated by reactive oxygen species and can reach multiple molecular targets to exert their toxicity. Full article
(This article belongs to the Special Issue Plant Derivatives and Their Pharmaceutical Potential)
Show Figures

Figure 1

14 pages, 1525 KB  
Article
In Vivo and In Silico Study of the Antinociceptive and Toxicological Effect of the Extracts of Petiveria alliacea L. Leaves
by Kelly del Carmen Cruz-Salomón, Rosa Isela Cruz-Rodríguez, Josué Vidal Espinosa-Juárez, Abumalé Cruz-Salomón, Alfredo Briones-Aranda, Nancy Ruiz-Lau and Víctor Manuel Ruíz-Valdiviezo
Pharmaceuticals 2022, 15(8), 943; https://doi.org/10.3390/ph15080943 - 29 Jul 2022
Cited by 12 | Viewed by 3573
Abstract
Petiveria alliacea L. is an herb used in traditional medicine in Mexico and its roots have been studied to treat pain. However, until now, the antinociceptive properties of the leaves have not been investigated, being the main section used empirically for the treatment [...] Read more.
Petiveria alliacea L. is an herb used in traditional medicine in Mexico and its roots have been studied to treat pain. However, until now, the antinociceptive properties of the leaves have not been investigated, being the main section used empirically for the treatment of diseases. For this reason, this study aimed to evaluate the antinociceptive and toxoicological activity of various extracts (aqueous, hexanic, and methanolic) from P. alliacea L. leaves in NIH mice and to perform an in silico analysis of the phytochemical compounds. Firstly, the antinociceptive effect was analyzed using the formalin model and the different doses of each of the extracts that were administered orally to obtain the dose–response curves. In addition, acute toxicity was determined by the up and down method and serum biochemical analysis. Later, the phytochemical study of extracts was carried out by thin layer chromatography (TLC) and visible light spectroscopy, and the volatile chemical components were analyzed by gas chromatography-mass spectrometry (GC/MS). Moreover, the most abundant compounds identified in the phytochemical study were analyzed in silico to predict their biological activity (PASSonline) and toxicology (OSIRIS Property Explorer). As a result, it was known that all extracts at doses from 10 to 316 mg/kg significantly reduced the pain response in both phases of the formalin model, with values of 50–60% for the inflammatory response. The toxicological studies (DL50) exhibited that all extracts did not cause any mortality up to the 2000 mg/kg dose level. This was corroborated by the values in the normal range of the biochemical parameters in the serum. Finally, the phytochemical screening of the presence of phenolic structures (coumarins, flavonoids) and terpenes (saponins and terpenes) was verified, and the highest content was of a lipid nature, 1.65 ± 0.54 meq diosgenin/mL in the methanolic extract. A total of 54 components were identified, 11 were the most abundant, and only four (Eicosane, Methyl oleate, 4-bis(1-phenylethyl) phenol, and Ethyl linolenate) of them showed a probability towards active antinociceptive activity in silico greater than 0.5. These results showed that the P. alliacea L. leaf extract possesses molecules with antinociceptive activity. Full article
Show Figures

Graphical abstract

13 pages, 791 KB  
Article
Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd.
by Mirtha Navarro, Ileana Moreira, Elizabeth Arnaez, Silvia Quesada, Gabriela Azofeifa, Diego Alvarado and Maria J. Monagas
Plants 2017, 6(4), 50; https://doi.org/10.3390/plants6040050 - 19 Oct 2017
Cited by 25 | Viewed by 7214
Abstract
The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured [...] Read more.
The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured by the Folin-Ciocalteau method, were observed for P. niruri extracts (328.8 gallic acid equivalents/g) than for S. reticulata (79.30 gallic acid equivalents/g) whereas P. alliaceae extract showed the lowest value (13.45 gallic acid equivalents/g). A total of 20 phenolic acids and proanthocyanidins were identified in the extracts, including hydroxybenzoic acids (benzoic, 4-hydroxybenzoic, gallic, prochatechuic, salicylic, syringic and vanillic acids); hydroxycinnamic acids (caffeic, ferulic, and p-coumaric acids); and flavan-3-ols monomers [(+)-catechin and (−)-epicatechin)]. Regarding proanthocyanidin oligomers, five procyanidin dimers (B1, B2, B3, B4, and B5) and one trimer (T2) are reported for the first time in P. niruri, as well as two propelargonidin dimers in S. reticulata. Additionally, P. niruri showed the highest antioxidant DPPH and ORAC values (IC50 of 6.4 μg/mL and 6.5 mmol TE/g respectively), followed by S. reticulata (IC50 of 72.9 μg/mL and 2.68 mmol TE/g respectively) and P. alliaceae extract (IC50 >1000 μg/mL and 1.32 mmol TE/g respectively). Finally, cytotoxicity and selectivity on gastric AGS and colon SW20 adenocarcinoma cell lines were evaluated and the best values were also found for P. niruri (SI = 2.8), followed by S. reticulata (SI = 2.5). Therefore, these results suggest that extracts containing higher proanthocyanidin content also show higher bioactivities. Significant positive correlation was found between TPC and ORAC (R2 = 0.996) as well as between phenolic content as measured by UPLC-DAD and ORAC (R2 = 0.990). These findings show evidence for the first time of the diversity of phenolic acids in P. alliaceae and S. reticulata, and the presence of proanthocyanidins as minor components in latter species. Of particular relevance is the occurrence of proanthocyanidin oligomers in phenolic extracts from P. niruri and their potential bioactivity. Full article
(This article belongs to the Special Issue Medicinal Plants and Natural Product Research)
Show Figures

Figure 1

Back to TopTop