Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = QEPAS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3116 KB  
Article
Dual-Component Beat-Frequency Quartz-Enhanced Photoacoustic Spectroscopy Gas Detection System
by Hangyu Xu, Yiwen Feng, Zihao Chen, Zhenzhao Zhuang, Jinbao Xia, Yiyang Zhao and Sasa Zhang
Photonics 2025, 12(8), 747; https://doi.org/10.3390/photonics12080747 - 24 Jul 2025
Viewed by 428
Abstract
This study designed and validated a dual-component beat-frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) gas detection system utilizing time-division multiplexing (TDM). By applying TDM to drive distributed feedback lasers, the system achieved the simultaneous detection of acetylene and methane. Its key innovation lies in exploiting [...] Read more.
This study designed and validated a dual-component beat-frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) gas detection system utilizing time-division multiplexing (TDM). By applying TDM to drive distributed feedback lasers, the system achieved the simultaneous detection of acetylene and methane. Its key innovation lies in exploiting the transient response of the quartz tuning fork (QTF) to acquire gas concentrations while concurrently capturing the QTF resonant frequency and quality factor in real-time. Owing to the short beat period and rapid system response, this approach significantly reduces time-delay constraints in time-division measurements, eliminating the need for periodic calibration inherent in conventional methods and preventing detection interruptions. The experimental results demonstrate minimum detection limits of 5.69 ppm for methane and 0.60 ppm for acetylene. Both gases exhibited excellent linear responses over the concentration range of 200 ppm to 4000 ppm, with the R2 value for methane being 0.996 and for acetylene being 0.997. The system presents a viable solution for the real-time, calibration-free monitoring of dissolved gases in transformer oil. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

10 pages, 1296 KB  
Article
High-Sensitivity Dynamic Detection of Dissolved Acetylene in Transformer Oil Based on High-Power Quartz-Enhanced Photoacoustic Spectroscopy Sensing System
by Yuxiang Wu, Tiehua Ma, Chenhua Liu, Yashan Fan, Shuai Shi, Songjie Guo, Yu Wang, Xiangjun Xu, Guqing Guo, Xuanbing Qiu, Zhijin Shang and Chuanliang Li
Photonics 2025, 12(7), 713; https://doi.org/10.3390/photonics12070713 - 16 Jul 2025
Viewed by 387
Abstract
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with [...] Read more.
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with an optimized acoustic resonator to enhance the acoustic signal. The laser power was boosted to 150 mW using a C-band erbium-doped fiber amplifier (EDFA), achieving a detection limit of 469 ppb for C2H2 with an integration time of 1 s. The headspace degassing method was utilized to extract dissolved gases from the transformer oil, and the equilibrium process for the release of dissolved C2H2 was successfully monitored using the developed high-power QEPAS system. This approach provides reliable technical support for the real-time monitoring of the operational safety of power transformers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 3527 KB  
Article
Photoacoustic Spectroscopy Combined with a Multipass Circular Cell to Detect Low Concentrations of Ammonia
by Oscar E. Bonilla-Manrique, Alejandro Pérez Gonzalez-Banfi, Jorge Viñuela Pérez and Gabriele Dessena
Appl. Sci. 2025, 15(12), 6727; https://doi.org/10.3390/app15126727 - 16 Jun 2025
Viewed by 533
Abstract
Photoacoustic spectroscopy (PAS) has become a valuable technique for trace gas detection due to its high sensitivity and potential for miniaturization. This study presents the development and evaluation of a near-infrared PAS system using a 1532 nm semiconductor laser and a multipass cell [...] Read more.
Photoacoustic spectroscopy (PAS) has become a valuable technique for trace gas detection due to its high sensitivity and potential for miniaturization. This study presents the development and evaluation of a near-infrared PAS system using a 1532 nm semiconductor laser and a multipass cell (MPC) designed to enhance the optical path and thereby improve the detection of ammonia (NH3). The minimum detection limit was determined to be 770 ppb, with a normalized noise equivalent absorption (NNEA) coefficient of 1.07 × 10−8 W cm−1 Hz−1/2. While competitive with similar PAS systems, these results indicate that mid-infrared technologies still offer superior detection thresholds. The findings suggest that while this near-infrared setup may not yet match the sensitivity of systems using quantum cascade lasers or QEPAS, it offers notable advantages in terms of simplicity, cost, and potential for field deployment. The system’s configuration makes it a viable and efficient tool for industrial gas monitoring and real-time environmental applications, with future improvements likely to come from transitioning to the mid-infrared region and advancing laser stabilization and miniaturization techniques. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensors)
Show Figures

Figure 1

13 pages, 950 KB  
Article
Surveillance of Multidrug-Resistant Genes in Clinically Significant Gram-Negative Bacteria Isolated from Hospital Wastewater
by Shriya C. Shetty, Lakshya S. Gowda, Ankeeta Menona Jacob, Kalidas Shetty and A. Veena Shetty
Antibiotics 2025, 14(6), 607; https://doi.org/10.3390/antibiotics14060607 - 15 Jun 2025
Viewed by 826
Abstract
Background/Objectives: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance for tackling the AMR. In this regard, the present study investigated the occurrence of Gram-negative bacteria from HWW and evaluated the isolates’ multi-drug-resistant (MDR) pattern in the study environment. Methods: This descriptive study involves HWW samples (n = 24) consecutively collected across 6 months. The samples were cultured for bacteria, identified, and subjected to antimicrobial susceptibility testing via Kirby–Bauer. PCR confirmed the presence of drug-resistance genes in Gram-negative bacterial isolates. Results: High rates of Enterobacterales resistant to carbapenems and cephalosporins observed in isolates from final treated effluent. The molecular screening showed tetD, tetE, tetG, catA1, catA2, blaNDM-1, quinolones, qnrA, qnrB, qnrS, and qepa. Conclusions: Overall, our results suggest that microbiological surveillance and identification of resistance genes of clinically important pathogens in HWW can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections. Full article
(This article belongs to the Special Issue Tracking Reservoirs of Antimicrobial Resistance Genes in Environment)
Show Figures

Graphical abstract

16 pages, 8177 KB  
Article
Study and Characterization of Silicon Nitride Optical Waveguide Coupling with a Quartz Tuning Fork for the Development of Integrated Sensing Platforms
by Luigi Melchiorre, Ajmal Thottoli, Artem S. Vorobev, Giansergio Menduni, Angelo Sampaolo, Giovanni Magno, Liam O’Faolain and Vincenzo Spagnolo
Sensors 2025, 25(12), 3663; https://doi.org/10.3390/s25123663 - 11 Jun 2025
Viewed by 1141
Abstract
This work demonstrates an ultra-compact optical gas-sensing system, consisting of a pigtailed laser diode emitting at 1392.5 nm for water vapor (H2O) detection, a silicon nitride (Si3N4) optical waveguide to guide the laser light, and a custom-designed, [...] Read more.
This work demonstrates an ultra-compact optical gas-sensing system, consisting of a pigtailed laser diode emitting at 1392.5 nm for water vapor (H2O) detection, a silicon nitride (Si3N4) optical waveguide to guide the laser light, and a custom-designed, low-frequency, and T-shaped Quartz Tuning Fork (QTF) as the sensitive element. The system employs both Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) and Light-Induced Thermoelastic Spectroscopy (LITES) techniques for trace gas sensing. A 3.8 mm-wide, S-shaped waveguide path was designed to prevent scattered laser light from directly illuminating the QTF. Both QEPAS and LITES demonstrated comparably low signal-to-noise ratios (SNRs), ranging from 1.6 to 3.2 for a 1.6% indoor H2O concentration, primarily owing to the reduced optical power (~300 μW) delivered to the QTF excitation point. These results demonstrate the feasibility of integrating photonic devices and piezoelectric components into portable gas-sensing systems for challenging environments. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

13 pages, 862 KB  
Article
Quinolone Resistance and Prevalence of the Related Genes in Photobacterium damselae subsp. damselae Recovered from Diseased Fish in Eastern China
by Xiangyun Yang, Chen Shen, Suming Zhou, Liyun Jin, Yajun Wang and Fei Yin
Fishes 2025, 10(6), 280; https://doi.org/10.3390/fishes10060280 - 7 Jun 2025
Viewed by 410
Abstract
Photobacterium damselae subsp. damselae is a well-recognized marine animal pathogen. Herein, 70 P. damselae subsp. damselae isolates were investigated for quinolone susceptibility and prevalence of the genes including quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes. A total of 18/70 isolates [...] Read more.
Photobacterium damselae subsp. damselae is a well-recognized marine animal pathogen. Herein, 70 P. damselae subsp. damselae isolates were investigated for quinolone susceptibility and prevalence of the genes including quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes. A total of 18/70 isolates exhibited high-level resistance, and 23/70 isolates exhibited moderate resistance according to the MIC values. QRDR analysis showed that double mutants in both GyrA (Ser83Ile) and ParC (6/17 Ser80Phe or 11/17 Ser80Tyr) were detected in 94.4% (17/18) high-level quinolone resistance P. damselae subsp. damselae strains. PMQR detection showed that 60.0% (42/70) carried at least one PMQR (1/42 qnrB coexistence with aac(6′)-Ib-cr, 1/42 qnrS coexistence with aac(6′)-Ib-cr, 44/46 qnrS). QnrA, QnrC, qnrD and qepA were not detected in all strains. Among the 42 PMQR-positive strains, 24 showed fluoroquinolones MICs ≤ 0.5 mg/L and 13 MICs ≥ 2 mg/L, all carrying QRDR mutations. For the twenty-eight non-PMQR strains, twenty-three showed fluoroquinolone MICs ≤ 0.5 mg/L without QRDR mutations, and five MICs ≥ 2 mg/L carrying QRDR mutations. In conclusion, qnrS (qnrS2 allele) is the major PMQR widespread in P. damselae subsp. damselae isolated from eastern China; however, QRDR mutation plays a marked role in mediating fluoroquinolone resistance. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Graphical abstract

13 pages, 4663 KB  
Article
Greenhouse Gases Detection Exploiting a Multi-Wavelength Interband Cascade Laser Source in a Quartz-Enhanced Photoacoustic Sensor
by Raffaele De Palo, Nicoletta Ardito, Andrea Zifarelli, Angelo Sampaolo, Marilena Giglio, Pietro Patimisco, Ezio Ranieri, Robert Weih, Josephine Nauschütz, Oliver König and Vincenzo Spagnolo
Sensors 2025, 25(8), 2442; https://doi.org/10.3390/s25082442 - 12 Apr 2025
Cited by 1 | Viewed by 793
Abstract
This study presents the performance of a multi-gas sensor for greenhouse detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS). The QEPAS sensor exploits an innovative, compact three-wavelength laser module as excitation source. The module integrates three interband cascade laser chips with a beam combining [...] Read more.
This study presents the performance of a multi-gas sensor for greenhouse detection based on quartz-enhanced photoacoustic spectroscopy (QEPAS). The QEPAS sensor exploits an innovative, compact three-wavelength laser module as excitation source. The module integrates three interband cascade laser chips with a beam combining system, all enclosed in a compact metallic package with sizes of 40 × 52 × 17 mm to generate a single output beam. The multi-gas QEPAS sensor was tested in a laboratory environment for the sequential detection of two greenhouse gases, methane (CH4) and carbon dioxide (CO2), and a precursor greenhouse gas, carbon monoxide (CO). At an integration time of 100 ms, minimum detection limits of 21 ppb, 363 ppb, and 156 ppb, were estimated for CH4, CO2, and CO detection, respectively, all well below their natural abundance in air. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Laser Spectroscopy and Sensing)
Show Figures

Figure 1

11 pages, 1240 KB  
Article
Calibration of a Quartz Tuning Fork as a Sound Detector
by Judith Falkhofen and Marcus Wolff
Appl. Sci. 2025, 15(7), 3655; https://doi.org/10.3390/app15073655 - 26 Mar 2025
Viewed by 422
Abstract
This study compares the performance of a quartz tuning fork (QTF) with a highly sensitive ultrasound microphone in the context of acoustic measurements, applying the substitution calibration method. QTF sensors are increasingly used for high-precision tasks due to their sensitivity and stability, while [...] Read more.
This study compares the performance of a quartz tuning fork (QTF) with a highly sensitive ultrasound microphone in the context of acoustic measurements, applying the substitution calibration method. QTF sensors are increasingly used for high-precision tasks due to their sensitivity and stability, while microphones are still the standard in general acoustic measurements. The aim of this study is to evaluate both technologies across several key performance metrics, including linearity of response, sensitivity, noise characteristics, and acoustic detection limit. Which sensor is better suited to which acoustic and physical condition? The results show that QTFs perform exceptionally well in applications requiring high precision, especially in high-frequency and narrow-band measurements. The signal-to-noise-ratio (SNR) of the QTF at its resonance frequency is 14 dB higher than that of the microphone, whereas the detection limit and linearity are comparable. The findings suggest that QTF sensors are particularly advantageous for specialized applications like photoacoustic spectroscopy (PAS). Full article
(This article belongs to the Special Issue Application of Ultrasonic Non-destructive Testing)
Show Figures

Figure 1

10 pages, 3418 KB  
Article
Off-Beam Acoustic Micro-Resonator for QEPAS Sensor with a Custom Quartz Tuning Fork
by Yong Wang, Gang Wang, Jiapeng Wang, Chaofan Feng, Qingyuan Tian, Yifan Chen, Ruyue Cui, Hongpeng Wu and Lei Dong
Atmosphere 2025, 16(3), 352; https://doi.org/10.3390/atmos16030352 - 20 Mar 2025
Cited by 1 | Viewed by 554
Abstract
Quartz-enhanced photoacoustic spectroscopy (QEPAS) has shown great promise for monitoring greenhouse gases and pollutants with a high measurement accuracy and limit of detection. A QEPAS sensor, which can achieve high photoacoustic signal gain without requiring the laser beam to pass through the two [...] Read more.
Quartz-enhanced photoacoustic spectroscopy (QEPAS) has shown great promise for monitoring greenhouse gases and pollutants with a high measurement accuracy and limit of detection. A QEPAS sensor, which can achieve high photoacoustic signal gain without requiring the laser beam to pass through the two prongs of a quartz tuning fork (QTF), is reported. A custom QTF with a resonant frequency of 7.2 kHz and a quality factor of 8406 was employed as a sound detection element, and the parameters of the acoustic micro-resonator (AmR) in the off-beam QEPAS spectrophone were optimized. A signal-to-noise ratio (SNR) gain of 16 was achieved based on the optimal AmR dimensions compared to the bare custom QTF. Water vapor (H2O) was detected utilizing the QEPAS sensor equipped with the off-beam spectrophone, achieving a minimum detection limit (MDL) of 4 ppm with a normalized noise equivalent absorption coefficient (NNEA) of 5.7 × 10−8 cm−1·W·Hz−1/2 at an integration time of 300 ms. Full article
(This article belongs to the Special Issue New Insights into Photoacoustic Spectroscopy and Its Applications)
Show Figures

Figure 1

12 pages, 4590 KB  
Article
Analysis of Efflux Pump Contributions and Plasmid-Mediated Genetic Determinants in Ciprofloxacin-Resistant Salmonella
by Xiujuan Zhou, Shanrong Yi, Dai Kuang, Chunlei Shi and Chunbo Qu
Pathogens 2024, 13(12), 1126; https://doi.org/10.3390/pathogens13121126 - 20 Dec 2024
Viewed by 3378
Abstract
This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in Salmonella. Treatment with PAβN, an efflux pump inhibitor, resulted in a 4–32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant Salmonella isolates. Notably, isolates without [...] Read more.
This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in Salmonella. Treatment with PAβN, an efflux pump inhibitor, resulted in a 4–32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant Salmonella isolates. Notably, isolates without point mutations reverted from resistance to sensitivity. The efflux pump played a crucial role in resistance development, particularly in serovar Enteritidis, where PAβN treatment caused a more significant MIC reduction (16–32-fold) in five strains carrying the GyrA (Asp87Tyr) mutation, which initially exhibited high MICs (8 μg/mL). Several resistance genes were identified on transferable plasmids: oqxAB and aac(6′)-Ib-cr were associated with IncF plasmids in S. Enteritidis, IncA/C plasmids in S. Typhimurium, and IncHI2 plasmids in S. Virchow. Additionally, qnrS1 and/or qepA were carried by IncA/C plasmids in S. Thompson. Whole-genome sequencing revealed the presence of an oqxAB module integrated into the chromosomal DNA of S. Derby. Although the MICs of ciprofloxacin in transconjugants and transformants remained low (1–4 μg/mL), they exceeded the clinical breakpoint for susceptibility. These findings highlight the synergistic impact of efflux pumps and plasmid-mediated resistance mechanisms, contributing to the increasing prevalence of ciprofloxacin resistance and posing a significant threat to food safety. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

11 pages, 488 KB  
Article
A Deep Learning Approach to Investigating Clandestine Laboratories Using a GC-QEPAS Sensor
by Giorgio Felizzato, Nicola Liberatore, Sandro Mengali, Roberto Viola, Vittorio Moriggia and Francesco Saverio Romolo
Chemosensors 2024, 12(8), 152; https://doi.org/10.3390/chemosensors12080152 - 5 Aug 2024
Cited by 5 | Viewed by 2114
Abstract
Illicit drug production in clandestine laboratories involves the use of large quantities of different chemicals that can be obtained for legitimate purposes. The identification of these chemicals, including reagents, catalyzers and solvents, is crucial for forensic investigations. From a legal point of view, [...] Read more.
Illicit drug production in clandestine laboratories involves the use of large quantities of different chemicals that can be obtained for legitimate purposes. The identification of these chemicals, including reagents, catalyzers and solvents, is crucial for forensic investigations. From a legal point of view, a drug precursor is a material that is specific and critical to the production of a finished chemical and that constitutes a significant portion of the final molecular structure of the drug. In this study, a gas chromatography quartz-enhanced photoacoustic spectroscopy (GC-QEPAS) sensor—in conjunction with a deep learning model—was evaluated for its effectiveness in the detection and identification of interesting compounds for the production of amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), phenylcyclohexyl piperidine (PCP), and cocaine. The GC-QEPAS sensor includes a gas sampler, a fast GC for separation, and a QEPAS detector, which excites molecules exiting the GC column using a quantum cascade laser to provide the infra-red (IR) spectrum. The on-site capability of the GC-QEPAS system offers significant advantages over the current instruments employed in this field, including rapid analysis, which is crucial in field operations. This allows law enforcement to quickly identify specimens of interest on site. The system’s performance was validated by taking into account the limit of detection, repeatability, and within-laboratory reproducibility. The results showed excellent repeatability and reproducibility for both the GC and QEPAS modules. The deep learning model, a multilayer perceptron neural network, was trained using IR spectra and retention times, achieving very high classification accuracy in the testing conditions. This study demonstrated the efficacy of the GC-QEPAS sensor combined with a deep learning model for the reliable identification of drug precursors, providing a robust tool for law enforcement during criminal investigations in clandestine laboratories. Full article
(This article belongs to the Special Issue Chemical Sensing and Analytical Methods for Forensic Applications)
Show Figures

Figure 1

15 pages, 1951 KB  
Article
Insight into the Effects of Norfloxacin on Bacterial Community and Antibiotic Resistance Genes during Chicken Manure Composting
by Yao Feng, Huading Shi, Yang Fei, Quansheng Zhao and Zhaojun Li
Fermentation 2024, 10(7), 366; https://doi.org/10.3390/fermentation10070366 - 18 Jul 2024
Cited by 1 | Viewed by 1722
Abstract
Composting emerges as an effective strategy to eliminate antibiotics and antibiotic resistance genes (ARGs) in animal manure. In this study, chicken manure with the addition of wheat straw and sawdust was used as composting raw materials, and different concentrations of norfloxacin were added [...] Read more.
Composting emerges as an effective strategy to eliminate antibiotics and antibiotic resistance genes (ARGs) in animal manure. In this study, chicken manure with the addition of wheat straw and sawdust was used as composting raw materials, and different concentrations of norfloxacin were added to investigate its effects on physicochemical properties, bacterial community, and ARGs during the composting process. Results show that the presence of norfloxacin has obvious effects on the composting physicochemical properties and germination index (GI). A high concentration of norfloxacin influences the succession direction of the bacterial community and promotes the transfers of gyrA, gyrB, parC, qepA, and qnrB. The composting physicochemical properties alter bacterial communities and further influence the fate of ARGs. These results suggest that meticulous management of antibiotic usage and compost conditions are vital strategies for mitigating the influx of antibiotics and ARGs into the environment, both at the source and on the path. Full article
Show Figures

Figure 1

10 pages, 2115 KB  
Article
Quartz Enhanced Photoacoustic Spectroscopy on Solid Samples
by Judith Falkhofen, Marc-Simon Bahr, Bernd Baumann and Marcus Wolff
Sensors 2024, 24(13), 4085; https://doi.org/10.3390/s24134085 - 24 Jun 2024
Cited by 1 | Viewed by 4518
Abstract
Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique in which the sound wave is detected by a quartz tuning fork (QTF). It enables particularly high specificity with respect to the excitation frequency and is well known for an extraordinarily sensitive analysis of gaseous samples. [...] Read more.
Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique in which the sound wave is detected by a quartz tuning fork (QTF). It enables particularly high specificity with respect to the excitation frequency and is well known for an extraordinarily sensitive analysis of gaseous samples. We have developed the first photoacoustic (PA) cell for QEPAS on solid samples. Periodic heating of the sample is excited by modulated light from an interband cascade laser (ICL) in the infrared region. The cell represents a half-open cylinder that exhibits an acoustical resonance frequency equal to that of the QTF and, therefore, additionally amplifies the PA signal. The antinode of the sound pressure of the first longitudinal overtone can be accessed by the sound detector. A 3D finite element (FE) simulation confirms the optimal dimensions of the new cylindrical cell with the given QTF resonance frequency. An experimental verification is performed with an ultrasound micro-electromechanical system (MEMS) microphone. The presented frequency-dependent QEPAS measurement exhibits a low noise signal with a high-quality factor. The QEPAS-based investigation of three different solid synthetics resulted in a linearly dependent signal with respect to the absorption. Full article
(This article belongs to the Special Issue Photoacoustic Sensing, Imaging, and Communications)
Show Figures

Figure 1

11 pages, 2064 KB  
Article
Emergence of Plasmid-Mediated Quinolone Resistance (PMQR) Genes in Campylobacter coli in Tunisia and Detection of New Sequence Type ST13450
by Manel Gharbi, Rihab Tiss, Melek Chaouch, Safa Hamrouni and Abderrazak Maaroufi
Antibiotics 2024, 13(6), 527; https://doi.org/10.3390/antibiotics13060527 - 5 Jun 2024
Cited by 2 | Viewed by 1700
Abstract
The aim of this study is to investigate the occurrence of plasmid mediated quinolone resistance (PMQR) determinants in Campylobacter coli isolates collected from broilers, laying hens and poultry farm environments. One hundred and thirty-nine C. coli isolates were isolated from broilers (n = 41), laying [...] Read more.
The aim of this study is to investigate the occurrence of plasmid mediated quinolone resistance (PMQR) determinants in Campylobacter coli isolates collected from broilers, laying hens and poultry farm environments. One hundred and thirty-nine C. coli isolates were isolated from broilers (n = 41), laying hens (n = 53), eggs (n = 4) and the environment (n = 41) of 23 poultry farms located in northeastern of Tunisia. Antimicrobial susceptibility testing was performed on all isolates according to the recommendation of the European Committee on Antimicrobial Susceptibility Testing guidelines. The detection of PMQR genes: qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6)-Ib gene was performed using polymerase chain reaction (PCR) and specific primers. aac(6′)-Ib amplicons were further analyzed by digestion with BtsCI to identify the aac(6′)-Ib-cr variant. Mutations in GyrA and the occurrence of RE-CmeABC efflux pump were determined by mismatch amplification mutation assay (MAMA) PCR and PCR, respectively. In addition, eleven isolates were selected to determine their clonal lineage by MLST. The 139 C. coli isolates were resistant to ciprofloxacin, and 86 (61.8%) were resistant to nalidixic acid. High rates of resistance were also observed toward erythromycin (100%), azithromycin (96.4%), tetracycline (100%), chloramphenicol (98.56%), ampicillin (66.1%), amoxicillin-clavulanic acid (55.39%), and kanamycin (57.55%). However, moderate resistance rates were observed for gentamicin (9.35%) and streptomycin (22.3%). All quinolone-resistant isolates harbored the Thr-86-Ile amino acid substitution in GyrA, and the RE-CmeABC efflux pump was detected in 40.28% of isolates. Interestingly, the qnrB, qnrS, qepA, and aac(6′)-Ib-cr were detected in 57.7%, 61.15%, 21.58%, and 10% of isolates, respectively. The eleven isolates studied by MLST belonged to a new sequence type ST13450. This study described for the first time the occurrence of PMQR genes in C. coli isolates in Tunisia and globally. Full article
(This article belongs to the Special Issue Antibiotics Resistance in Animals and the Environment)
Show Figures

Figure 1

17 pages, 5223 KB  
Article
Influence of the Gain–Bandwidth of the Front-End Amplifier on the Performance of a QEPAS Sensor
by Luigi Lombardi, Gianvito Matarrese and Cristoforo Marzocca
Acoustics 2024, 6(1), 240-256; https://doi.org/10.3390/acoustics6010013 - 6 Mar 2024
Cited by 1 | Viewed by 2270
Abstract
The quartz tuning fork used as an acoustic sensor in quartz-enhanced photo-acoustic spectroscopy gas detection systems is usually read out by means of a transimpedance preamplifier based on a low-noise operational amplifier closed in a feedback loop. The gain–bandwidth product of the operational [...] Read more.
The quartz tuning fork used as an acoustic sensor in quartz-enhanced photo-acoustic spectroscopy gas detection systems is usually read out by means of a transimpedance preamplifier based on a low-noise operational amplifier closed in a feedback loop. The gain–bandwidth product of the operational amplifier used in the circuit is a key parameter which must be properly chosen to guarantee that the circuit works as expected. Here, we demonstrate that if the value of this parameter is not sufficiently large, the response of the preamplifier exhibits a peak at a frequency which does not coincide with the series resonant frequency of the quartz tuning fork. If this peak frequency is selected for modulating the laser bias current and is also used as the reference frequency of the lock-in amplifier, a penalty results in terms of signal-to-noise ratio at the output of the QEPAS sensor. This worsens the performance of the gas sensing system in terms of ultimate detection limits. We show that this happens when the front-end preamplifier of the quartz tuning fork is based on some amplifier models that are typically used for such application, both when the integration time of the lock-in amplifier filter is long, to boost noise rejection, and when it is short, in order to comply with a relevant measurement rate. Full article
(This article belongs to the Special Issue Resonators in Acoustics (2nd Edition))
Show Figures

Figure 1

Back to TopTop