Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,889)

Search Parameters:
Keywords = SRL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2605 KB  
Review
Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research
by Md. Muzammal Hoque, Valeria Iannelli, Francesca Padula, Rosa Paola Radice, Biplob Kumar Saha, Giuseppe Martelli, Antonio Scopa and Marios Drosos
Bioengineering 2025, 12(9), 909; https://doi.org/10.3390/bioengineering12090909 - 25 Aug 2025
Abstract
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to [...] Read more.
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to support regenerative agriculture and mitigate climate change. Functioning as biofertilizers, biostimulants, and bioremediators, microalgae accelerate nutrient cycling, improve soil aggregation through extracellular polymeric substances (EPSs), and stimulate rhizospheric microbial diversity. Empirical studies demonstrate their ability to increase crop yields by 5–25%, reduce chemical nitrogen inputs by up to 50%, and boost both organic carbon content and enzymatic activity in soils. Their application in saline and degraded lands further promotes resilience and ecological regeneration. Microalgal cultivation platforms offer scalable in situ carbon sequestration, converting atmospheric carbon dioxide (CO2) into biomass with potential downstream vaporization into biofuels, bioplastics, and biochar, aligning with circular economy principles. While the commercial viability of microalgae is challenged by high production costs, technical complexities, and regulatory gaps, recent breakthroughs in cultivation systems, biorefinery integration, and strain optimization highlight promising pathways forward. This review highlights the strategic importance of microalgae in enhancing climate resilience, promoting agricultural sustainability, restoring soil health, and driving global bioeconomic transformation. Full article
(This article belongs to the Special Issue Engineering Microalgal Systems for a Greener Future)
Show Figures

Graphical abstract

11 pages, 34421 KB  
Case Report
Early Diagnosis and Follow-Up of a Novel Homozygous Mutation in SOST Gene in a Child with Recurrent Facial Palsy: A Case Report and Review of the Literature
by Fabio Acquaviva, Giorgia Bruno, Federica Palladino, Alfonso Rubino, Carmela Russo, Maria Pandolfi, Eugenio Maria Covelli, Eloisa Evangelista, Luigia De Falco, Alfonsina Tirozzi, Daniele De Brasi and Antonio Varone
Int. J. Mol. Sci. 2025, 26(17), 8175; https://doi.org/10.3390/ijms26178175 - 22 Aug 2025
Viewed by 189
Abstract
Recurrent facial palsy is a rare event in the pediatric population, mostly idiopathic or associated with common comorbidities or, rarely, observed in syndromic conditions. However, some cases are difficult to explain and need more accurate diagnostic approaches. In this work, we describe a [...] Read more.
Recurrent facial palsy is a rare event in the pediatric population, mostly idiopathic or associated with common comorbidities or, rarely, observed in syndromic conditions. However, some cases are difficult to explain and need more accurate diagnostic approaches. In this work, we describe a pediatric case of recurrent facial palsy secondary to hyperostosis of the skull and narrowing of the neural foramina related to a SOST-related sclerosing bone dysplasia. To our knowledge, this is the first Italian case that is also related to a novel loss-of-function variant in the SOST gene. We highlight the clinical relevance of a proper early diagnosis and the need for correct monitoring of the clinical evolution, considering the natural history of the disease, to prevent/reduce severe neurological complications. Full article
Show Figures

Figure 1

11 pages, 714 KB  
Article
Active Microbiological Surveillance for Contrasting Multi-Drug-Resistant Pathogens: Comparison Between a Multiplex Real-Time PCR Method and Culture
by Gaetano Maugeri, Maddalena Calvo, Guido Scalia and Stefania Stefani
Diagnostics 2025, 15(17), 2128; https://doi.org/10.3390/diagnostics15172128 - 22 Aug 2025
Viewed by 137
Abstract
Background/Objectives. Multi-drug-resistant (MDR) microorganisms pose a significant challenge in healthcare settings, particularly with beta-lactam-resistant Gram-negative bacteria and glycopeptide-resistant enterococci. Culture represents the most reliable technique in determining their presence within surveillance swabs. However, it requires a long time-to-result (TTR) and shows low [...] Read more.
Background/Objectives. Multi-drug-resistant (MDR) microorganisms pose a significant challenge in healthcare settings, particularly with beta-lactam-resistant Gram-negative bacteria and glycopeptide-resistant enterococci. Culture represents the most reliable technique in determining their presence within surveillance swabs. However, it requires a long time-to-result (TTR) and shows low sensitivity. Molecular techniques integrate diagnostic procedures, allowing TTR reduction and precise identification of genes. Methods. During our usual surveillance campaign, we had the opportunity to evaluate the Allplex Entero-DR assay (Seegene Inc., Seoul, Republic of Korea) and the Entero-DR Plus assay (Arrow Diagnostics srl, Genova, Italy) molecular kits for the detection of extended-β-lactamases (ESBL), carbapenem- and vancomycin-resistant genes, as well as Acinetobacter spp. and Pseudomonas aeruginosa spp. identification directly from rectal swabs. A comparison between these tests and the culture-based routine completed the study. Results. The analysis included 300 rectal swabs from the University Hospital Policlinico (Catania, Italy). One hundred and eighty-eight samples (62.6%) resulted as positive for at least one Allplex™ target, reaching optimal sensitivity and negative predictive value (100%). Our results underlined the ubiquitous blaCTX-M and van genes presence and demonstrated the diffusion of double-carbapenemases genes and metallo-β-lactamases-producing strains. In our epidemiological setting, few data were collected about carbapenem-resistant P. aeruginosa and Acinetobacter spp., which require further evaluations on simultaneous respiratory colonization and higher sample numbers. Conclusions. Our analysis highlighted the importance of combining conventional and advanced diagnostic methods in investigating MDR pathogens. The right approach should be based on the prevalence and variability of resistance mechanisms within a specific epidemiological area. Remarkably, molecular screenings may exclude negative samples within high-risk areas due to a significant negative predictive value. Full article
Show Figures

Figure 1

23 pages, 2749 KB  
Article
Eco-Friendly vs. Traditional Cleaning in Healthcare Settings: Microbial Safety and Environmental Footprint
by Riccardo Fontana, Mattia Buratto, Anna Caproni, Chiara Nordi, Mariangela Pappadà, Martina Facchini, Cesare Buffone, Beatrice Bandera, Luciano Vogli and Peggy Marconi
Hygiene 2025, 5(3), 37; https://doi.org/10.3390/hygiene5030037 - 22 Aug 2025
Viewed by 146
Abstract
Growing concern for environmental sustainability has resulted in the implementation of sanitization methods that respect ecological principles. This research evaluates a “green” sanitizing protocol that uses CAM (Minimum Environmental Criteria)-compliant products against a traditional protocol within two ASL Roma 1 facilities. The study [...] Read more.
Growing concern for environmental sustainability has resulted in the implementation of sanitization methods that respect ecological principles. This research evaluates a “green” sanitizing protocol that uses CAM (Minimum Environmental Criteria)-compliant products against a traditional protocol within two ASL Roma 1 facilities. The study performed a Life Cycle Assessment (LCA) following ISO 14040, ISO 14044, and ISO 14067 standards to measure greenhouse gases emissions. Microbiological sampling was conducted according to established protocols across three different risk zones utilizing contact plates and surface swabs. The Life Cycle Assessment showed that CO2 emissions reduced by 49.6% to 53.3% at different sites due to reduced energy use together with concentrated detergents and improved washing cycles. Microbiological testing revealed notable decreases in contamination rates across both cleaning systems yet demonstrated the “green” system achieved superior results specifically within high-risk zones. The “green” protocol matched traditional cleaning methods hygienically but delivered significant environmental advantages which positions it as a sustainable hospital cleaning solution. Full article
Show Figures

Figure 1

18 pages, 5174 KB  
Article
Leaf Nutrient Resorption Efficiency Aligns with the Leaf but Not Root Economic Spectrum in a Tropical Mangrove Forest
by Dalong Jiang, Tao Nie, Qiuyu He, Zuo Xu, Han Y. H. Chen, Erhui Feng and Josep Peñuelas
Plants 2025, 14(17), 2610; https://doi.org/10.3390/plants14172610 - 22 Aug 2025
Viewed by 185
Abstract
Leaf nutrient resorption efficiency (NuRE) is critical for plant nutrient conservation, yet its relationship with leaf and root economic traits remains poorly understood in mangroves. We quantified nitrogen (N) and phosphorus (P) resorption across ten mangrove species (five trees and five shrubs) in [...] Read more.
Leaf nutrient resorption efficiency (NuRE) is critical for plant nutrient conservation, yet its relationship with leaf and root economic traits remains poorly understood in mangroves. We quantified nitrogen (N) and phosphorus (P) resorption across ten mangrove species (five trees and five shrubs) in Hainan, China, and related NuRE to key leaf (leaf mass per area, LMA; leaf dry mass content, LDMC; and green leaf nitrogen and phosphorus contents, Ngr and Pgr, respectively) and root (specific root length, SRL; root tissue density, RTD; root diameter, RD; and root nitrogen content, Nroot) traits. We found that species with a lower leaf structural investment (LMA = 103–173 g m−2, LDMC = 19–27%) presented a 6–45% greater N and P resorption efficiency than those with a higher structural investment (LMA = 213–219 g m−2, LDMC = 26–31%). Contrary to global meta-analyses, higher green leaf N and P contents also predicted a greater NuRE, implying enhanced internal recycling under chronic nutrient limitation. Root traits (SRL, RTD, RD, and Nroot) had no significant influence on NuRE, indicating decoupled above- versus belowground strategies. Trees and shrubs diverged in size but converged in NuRE–leaf trait relationships. These findings refine plant economics theory and guide restoration by prioritizing species with acquisitive, high-NuRE foliage for nutrient-poor coasts. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 2569 KB  
Article
Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli
by Gabriela N. Tenea, Diana Molina, Yuleissy Cuamacas, George Cătălin Marinescu and Roua Gabriela Popescu
Antibiotics 2025, 14(9), 851; https://doi.org/10.3390/antibiotics14090851 - 22 Aug 2025
Viewed by 153
Abstract
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied [...] Read more.
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied individually or in combination thereof, against MDR-Escherichia coli strain L1PEag1. Methods: Fourteen ExAFs were screened for inhibitory activity using time–kill assays, and structural damage to bacterial cells was assessed via scanning and transmission electron microscopy (SEM/TEM). The most potent formulation was further characterized by liquid chromatography–tandem mass spectrometry (LC–MS/MS) employing a Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) approach for untargeted metabolite profiling. Results: Among the tested formulations, E10, comprising CFS from Weissella cibaria UTNGt21O, exhibited the strongest inhibitory activity (zone of inhibition: 17.12 ± 0.22 mm), followed by E1 (CFS from Lactiplantibacillus plantarum Gt28L and Lactiplantibacillus plantarum Gt2, 3:1 v/v) and E2 (Gt28L CFS + EPS from Gt2, 3:1 v/v). Time–kill assays demonstrated rapid, dose-dependent bactericidal activity: E1 and E10 achieved >98% reduction in viable counts within 2–3 h, at 1× MIC, while E2 sustained 98.24% inhibition over 18 h, at 0.25× MIC. SEM and TEM revealed pronounced ultrastructural damage, including membrane disruption, cytoplasmic condensation, and intracellular disintegration, consistent with a membrane-targeting mode of action. Metabolomic profiling of E10 identified 22 bioactive metabolites, including lincomycin, the proline-rich peptide Val–Leu–Pro–Val–Pro–Gln, multiple flavonoids, and loperamide. Several compounds shared structural similarity with ribosomally synthesized and post-translationally modified peptides (RiPPs), including lanthipeptides and lassopeptides, suggesting a multifaceted antimicrobial mechanism. Conclusions: These findings position ExAFs, particularly E10, as promising, peptide-rich, bio-based antimicrobial candidates for food safety or therapeutic applications. The co-occurrence of RiPP analogs and secondary metabolites in the formulation suggests the potential for complementary or multi-modal bactericidal effects, positioning these compounds as promising eco-friendly alternatives for combating MDR pathogens. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

28 pages, 1337 KB  
Review
Recent Advances in Microbial Bioconversion as an Approach to Boost Hydroxytyrosol Recovery from Olive Mill Wastewater
by Irene Maria Zingale, Anna Elisabetta Maccarronello, Claudia Carbone, Cinzia Lucia Randazzo, Teresa Musumeci and Cinzia Caggia
Fermentation 2025, 11(8), 477; https://doi.org/10.3390/fermentation11080477 - 20 Aug 2025
Viewed by 347
Abstract
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic [...] Read more.
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic hydrolysis, utilizing purified enzymes to cleave glycosidic or ester bonds, and microbial bioconversion, employing whole microorganisms with their intrinsic enzymes and metabolic pathways, are effective biotechnological strategies for fostering the release of HT from its conjugated forms. These approaches offer great potential for the sustainable recovery of HT from OMWW, contributing to the valorization of this environmentally impactful agro-industrial by-product. Processed OMWW can lead to clean-label HT-enriched foods and beverages, capitalizing on by-product valorization and improving food safety and quality. In this review, the most important aspects of the chemistry, technology, and microbiology of OMWW were explored in depth. Recent trends and findings in terms of both enzymatic and microbial bioconversion processes are critically discussed, including spontaneous and driven fermentation, using selected microbial strains. These approaches are presented as economically viable options for obtaining HT-enriched OMWW for applications in the food and nutraceutical sectors. The selected topics aim to provide the reader with a solid background while inspiring and facilitating future research and innovation. Full article
(This article belongs to the Special Issue Microbial Upcycling of Organic Waste to Biofuels and Biochemicals)
Show Figures

Graphical abstract

21 pages, 1260 KB  
Article
Sensory Evaluation and Physicochemical Analysis of Beers with Old Sardinian Wheats
by Manuela Sanna, Maria Grazia Farbo, Antonio Valentoni, Riccardo Melis, Maria Cristina Porcu, Piero Pasqualino Piu, Marco Serra and Luca Pretti
Appl. Sci. 2025, 15(16), 9138; https://doi.org/10.3390/app15169138 - 19 Aug 2025
Viewed by 161
Abstract
The aim of the present study was to evaluate the acceptability, sensory profile, and physicochemical properties of craft beers produced with unmalted old Sardinian durum (Trigu Murru, Trigu Moru) and soft (Tricu Cossu, Trigu Denti de Cani) wheat [...] Read more.
The aim of the present study was to evaluate the acceptability, sensory profile, and physicochemical properties of craft beers produced with unmalted old Sardinian durum (Trigu Murru, Trigu Moru) and soft (Tricu Cossu, Trigu Denti de Cani) wheat varieties. Chemical analysis, by GC-MS, and sensory analysis conducted through a Check-All-That-Apply (CATA) questionnaire, modified Quantitative Descriptive Analysis (QDA), and an acceptability test were performed. The beer brewed with Tricu Cossu received the highest overall liking, characterized by pronounced honey aroma, sweet taste, and cereal notes, supported by a balanced volatile composition. Trigu Denti de Cani also achieved high acceptability, with a profile combining honey and cereal notes, moderate bitterness, and a clean finish. Trigu Murru presented intense cereal and honey notes but was penalized by lower scores in other sensory dimensions, leading to reduced consumer acceptance. Trigu Moru exhibited the lowest liking, dominated by bitter and astringent sensations, though potentially appealing to consumers seeking robust and intense flavor profiles. Multivariate analysis confirmed these sensory-based distinctions, linking each wheat variety to a specific volatile pattern and sensory identity. The multivariate analysis performed on the volatile compounds detected confirmed the differences found with the sensory analysis. Full article
(This article belongs to the Special Issue Sensory Evaluation and Flavor Analysis in Food Science)
17 pages, 4158 KB  
Article
Exploring the Role of Ferroptosis in the Pathophysiology and Circadian Regulation of Restless Legs Syndrome
by Maria Paola Mogavero, Giovanna Marchese, Giovanna Maria Ventola, Giuseppe Lanza, Oliviero Bruni, Luigi Ferini-Strambi and Raffaele Ferri
Biomolecules 2025, 15(8), 1184; https://doi.org/10.3390/biom15081184 - 18 Aug 2025
Viewed by 202
Abstract
The study objectives were to investigate the role of ferroptosis, the mechanism linking iron accumulation, oxidative stress, and dopaminergic dysfunction, in restless legs syndrome (RLS), and to explore its connection with circadian regulation, a key feature of RLS and a known modulator of [...] Read more.
The study objectives were to investigate the role of ferroptosis, the mechanism linking iron accumulation, oxidative stress, and dopaminergic dysfunction, in restless legs syndrome (RLS), and to explore its connection with circadian regulation, a key feature of RLS and a known modulator of ferroptosis. We conducted pathway and gene expression analyses in 17 RLS patients and 39 controls, focusing on pathways related to ferroptosis, oxidative stress, iron metabolism, dopaminergic signaling, circadian rhythms, and immune responses. Enrichment analysis, differential gene expression, and cross-pathway gene overlaps were assessed. Ferroptosis and efferocytosis pathways were significantly upregulated in RLS, while oxidative phosphorylation, phosphatidylinositol signaling, PI3K-Akt, FoxO, and adipocytokine pathways were downregulated. The circadian rhythm pathway was markedly suppressed, with 12 circadian genes downregulated, suggesting that circadian disruption may drive ferroptosis activation. Decreased expression of protective pathways, including antioxidant responses and autophagy, was associated with increased iron accumulation, oxidative stress, and inflammation. Dopaminergic synapse genes were upregulated, possibly as a compensatory response to neuronal damage. Several genes overlapped across ferroptosis, circadian, and dopaminergic pathways, indicating a shared pathogenic mechanism. Our findings support a model in which circadian disruption promotes ferroptosis in RLS, contributing to iron overload, oxidative damage, and dopaminergic dysfunction. This pathogenic cascade may also enhance immune activation and inflammation. Circadian regulation and ferroptosis emerge as promising therapeutic targets in RLS. Further studies in larger cohorts are warranted to validate these mechanistic insights. Full article
Show Figures

Graphical abstract

17 pages, 1150 KB  
Article
Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123
by Angela Longo, Luca Sconosciuto, Michela Verni, Vito Emanuele Carofiglio, Domenico Centrone, Marianna Villano, Gaia Salvatori, Erica Pontonio, Marco Montemurro and Carlo Giuseppe Rizzello
Microorganisms 2025, 13(8), 1917; https://doi.org/10.3390/microorganisms13081917 - 17 Aug 2025
Viewed by 295
Abstract
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by Azohydromonas [...] Read more.
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by Azohydromonas lata DSM 1123. The substrate was characterized by low protein and fat contents and a relevant lactose concentration (3.81%, w/v). Due to A. lata’s inability to directly metabolize lactose, β-galactosidase supplementation was necessary. Mineral supplementation of pasteurized RCEW significantly improved both microbial biomass and PHA synthesis, achieving up to 25.94% intracellular PHA content, whereas pre-adaptation trials failed to enhance strain performance. Moderate nitrogen limitation in the substrate (C/N ratio 44) favored PHA synthesis (0.55 g/L) and 32.74% intracellular accumulation. Thermal treatments decreased initial microbial contamination, hence a balanced mixture of pasteurized–sterilized (75:25) substrate was used to modulate RCEW protein content without the inclusion of additional technological or chemical processing steps and without lactose loss or dilution. Bioreactor trials using optimized RCEW pre-treatment conditions led to a further increase in biomass (2.36 g/L) and PHA production (0.88 g/L), especially under fed-batch conditions. The extracted polymer was confirmed to be polyhydroxybutyrate (PHB), with high thermal stability and a molecular weight of 5.9 KDa. Full article
Show Figures

Figure 1

11 pages, 1051 KB  
Article
White Matter Integrity and Anticoagulant Use: Age-Stratified Insights from MRI Diffusion-Weighted Imaging
by Teodora Anca Albu, Nicoleta Iacob and Daniela Susan-Resiga
Appl. Sci. 2025, 15(16), 9022; https://doi.org/10.3390/app15169022 - 15 Aug 2025
Viewed by 175
Abstract
Apparent diffusion coefficient (ADC) values, derived from diffusion-weighted magnetic resonance imaging (DW-MRI), increase with age, reflecting microstructural changes in white matter integrity. However, factors beyond chronological aging may influence cerebral diffusion characteristics. We investigated whether anticoagulant use is associated with favorable white matter [...] Read more.
Apparent diffusion coefficient (ADC) values, derived from diffusion-weighted magnetic resonance imaging (DW-MRI), increase with age, reflecting microstructural changes in white matter integrity. However, factors beyond chronological aging may influence cerebral diffusion characteristics. We investigated whether anticoagulant use is associated with favorable white matter ADC profiles, suggesting preserved microvascular health. ADC values were analyzed in cerebral white matter across four age-defined adult cohorts (20–59 years). Minimum, mean, and maximum ADC values were extracted. Patients at the lowest and highest ends of the ADC spectrum within each group were identified. The prevalence of anticoagulant use was compared between groups, and a logistic regression model adjusted for age was used to assess the independent association between anticoagulant use and lower ADC values. Across all cohorts (n = 892), anticoagulated patients (n = 89) were significantly overrepresented among individuals with low ADC values consistent with younger diffusion profiles. Of the anticoagulated patients, 93.3% had ADC values below the lower cut-off limit. In contrast, only 30% of non-anticoagulated patients exhibited such profiles. Anticoagulant use was independently associated with low ADC values after adjusting for age (OR = 4.89, p < 0.0001). Anticoagulation is strongly associated with lower, more favorable ADC values in cerebral white matter, independent of age. These findings support the potential neuroprotective role of anticoagulants and suggest that diffusion MRI may serve as a surrogate marker for early microvascular brain health. Full article
(This article belongs to the Special Issue MR-Based Neuroimaging)
Show Figures

Figure 1

11 pages, 681 KB  
Review
Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications
by Giulia Michela Pellegrino, Alessandro Gobbi, Marco Fantini, Riccardo Pellegrino and Giuseppe Francesco Sferrazza Papa
Children 2025, 12(8), 1073; https://doi.org/10.3390/children12081073 - 15 Aug 2025
Viewed by 290
Abstract
Recent documents from leading international pediatric respiratory societies have strongly encouraged the use of lung function tests in clinical practice and research. These tests can explore ventilatory function across its volumetric and temporal domains, providing information on the intrapulmonary location and extent of [...] Read more.
Recent documents from leading international pediatric respiratory societies have strongly encouraged the use of lung function tests in clinical practice and research. These tests can explore ventilatory function across its volumetric and temporal domains, providing information on the intrapulmonary location and extent of damage caused by respiratory diseases. The choice of which test to use in each case to investigate presenting respiratory symptoms depends on the patient’s symptoms and the diagnostic–therapeutic phase being addresse d. In the most common and representative chronic pediatric condition—bronchial asthma—lung function tests play an especially important role due to the disease’s complexity and the fluctuating nature of airway obstruction. This review aims to examine the potential of various lung function tests in asthma, helping clinicians and researchers to optimize diagnosis and follow-up with the most appropriate methodology. While spirometry and flow resistance measurements using the interrupter technique have historically been the cornerstones of diagnosis and clinical monitoring in childhood asthma, the advent of new technologies—such as multiple breath nitrogen washout (MBNW) and the forced oscillation technique (FOT)—is opening up the door to a more nuanced view of the disease. These tools allow for an evaluation of asthma as a structurally complex and topographically and temporally disorganized condition. FOT, in particular, facilitates measurement acceptability in less cooperative subjects, both in respiratory physiology labs and even at the patient’s home. Full article
(This article belongs to the Special Issue Lung Function and Respiratory Diseases in Children and Infants)
Show Figures

Figure 1

16 pages, 1211 KB  
Article
“Encyclopaedia Cloacae”—Mapping Wastewaters from Pathogen A to Z
by Aurora Hirvonen, Sara Comero, Simona Tavazzi, Giulio Mariani, Caterina Cacciatori, Roberta Maffettone, Francesco Pierannunzi, Giulia Panzarella, Luis Bausa-Lopez, Sorin Sion, Tanja Casado Poblador, Natalia Głowacka, Davey L. Jones, Mauro Petrillo, Antonio Marchini, Maddalena Querci, Bernd Manfred Gawlik and on behalf of the Encyclopaedia Cloacae Collaborators
Microorganisms 2025, 13(8), 1900; https://doi.org/10.3390/microorganisms13081900 - 15 Aug 2025
Viewed by 396
Abstract
The Encyclopaedia Cloacae is a novel and centralised digital platform designed to support and advance wastewater-based epidemiology (WBE) by cataloguing pathogens detectable in wastewater and their relevance to public health surveillance. The platform is hosted on the EU Wastewater Observatory for Public Health [...] Read more.
The Encyclopaedia Cloacae is a novel and centralised digital platform designed to support and advance wastewater-based epidemiology (WBE) by cataloguing pathogens detectable in wastewater and their relevance to public health surveillance. The platform is hosted on the EU Wastewater Observatory for Public Health (EU4S) website, where it is populated with peer-reviewed research through a structured workflow under harmonised criteria which address the presence of pathogens in human excreta, detectability in wastewater, and integration into public health systems. This tri-criteria approach ensures that the database is both scientifically robust and operationally actionable. Complemented by the Visualising the Invisible dashboard, the platform offers geospatial insights into global WBE research activity. By consolidating peer-reviewed evidence on pathogen detectability in wastewater and human excreta, the Encyclopaedia Cloacae enables early detection of infectious diseases, whether already known or newly emerging. The continuously updated repository and geospatial dashboards help to identify surveillance gaps and research hotspots, to support timely public health responses, enhance pandemic preparedness, and strengthen global health security. In addition, it supports One Health strategies, connecting the health of humans, animals, and the shared environment. This article outlines the platform’s architecture, data curation methodology, and future directions, including automation and expansion to encompass broader health determinants such as antimicrobial resistance and chemical hazards. Full article
(This article belongs to the Special Issue Surveillance of SARS-CoV-2 Employing Wastewater)
Show Figures

Figure 1

35 pages, 8425 KB  
Article
Multifactorial Analysis of Defects in Oil Storage Tanks: Implications for Structural Performance and Safety
by Alexandru-Adrian Stoicescu, Razvan George Ripeanu, Maria Tănase, Costin Nicolae Ilincă and Liviu Toader
Processes 2025, 13(8), 2575; https://doi.org/10.3390/pr13082575 - 14 Aug 2025
Viewed by 246
Abstract
This article investigates the combined effects of different common defects on the structural integrity and operational and environmental safety in the operation of an existing Light Cycle Oil (LCO) storage tank. This study correlates all the tank defects (like corrosion and local plate [...] Read more.
This article investigates the combined effects of different common defects on the structural integrity and operational and environmental safety in the operation of an existing Light Cycle Oil (LCO) storage tank. This study correlates all the tank defects (like corrosion and local plate thinning, deformations, and local stress concentrators) against the loads and their combinations that occur during the tank’s lifetime. All the information gathered by various inspection techniques is used together to create a digital twin of the equipment that will be further analyzed by Finite Element Analysis. A tank condition assessment is a complex activity, and it is based on the experience of the engineer performing it. Since there are multiple methods for performing a comprehensive analysis, starting from the basic visual inspection (which is the most important) and some measurements followed by analytical calculations, up to full wall thickness measurements, 3D scan of deformations and FEA analysis of the tank digital twin, it depends on the engineer performing the evaluation to chose the best method for each particular case from technical and economical point of views. The goal of this article is to demonstrate that analytical and FEA methods have the same result and also to establish a well-determined standard calculation model for future applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

14 pages, 900 KB  
Case Report
Ocular and Neurological Sequelae in Long COVID: Dry Eye, Asthenopia, Sleep Disorders, Asthenia, and Restless Legs Syndrome—A Case Report with Literature Review
by Mario Troisi, Salvatore Troisi, Livio Vitiello, Diego Strianese, Carlo Bellucci, Michele Rinaldi, Luca D’Andrea and Ciro Costagliola
Life 2025, 15(8), 1289; https://doi.org/10.3390/life15081289 - 14 Aug 2025
Viewed by 570
Abstract
This case report presents a unique constellation of symptoms—including dry eye disease, visual and general asthenia, sleep disturbances, and restless legs syndrome—in a patient with a recent history of coronavirus disease 2019 (COVID-19) infection. While these symptoms have individually been associated with either [...] Read more.
This case report presents a unique constellation of symptoms—including dry eye disease, visual and general asthenia, sleep disturbances, and restless legs syndrome—in a patient with a recent history of coronavirus disease 2019 (COVID-19) infection. While these symptoms have individually been associated with either COVID-19 or long COVID, their concurrent presentation and the simultaneous, positive response across all manifestations to a combined therapeutic regimen have not been previously described in a single case. The patient demonstrated notable improvement in both ocular and systemic symptoms following a six-week treatment with topical tear substitutes and oral administration of melatonin, and a multivitamin supplement including B-complex vitamins, antioxidants, and neuroprotective agents (Colinplus Delta®, Farmaplus Italia Srl, Via Giovanni Porzio 4, 80143 Napoli, Italy). This response suggests a possible shared pathophysiological mechanism underlying these manifestations, potentially involving post-viral neuroinflammation, immune dysregulation, oxidative stress, or autonomic dysfunction. This case report highlights the need for an increased awareness of the interconnected nature of ocular and neurological symptoms in long COVID and supports further research into non-invasive, multimodal treatment strategies for this emerging clinical spectrum. Full article
(This article belongs to the Special Issue Human Health Before, During, and After COVID-19)
Show Figures

Figure 1

Back to TopTop