Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = SWASH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6240 KB  
Article
Real-Time Gain Scheduling Controller for Axial Piston Pump Based on LPV Model
by Alexander Mitov, Tsonyo Slavov and Jordan Kralev
Actuators 2025, 14(9), 421; https://doi.org/10.3390/act14090421 - 29 Aug 2025
Viewed by 414
Abstract
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this [...] Read more.
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this type of pump, the displacement volume depends on the swash plate swivel angle. The swash plate is actuated by a hydraulic-driven mechanism. The classical control device is a hydro-mechanical type, which can realize different control laws (by pressure, flow rate, or power). In the present development, it is replaced by an electro-hydraulic proportional spool valve, which controls the swash plate-actuating mechanism. The designed digital gain scheduling controller evaluates control signal values applied to the proportional valve. The digital controller is based on the new linear parameter-varying mathematical model. This model is estimated and validated from experimental data for various loading modes by an identification procedure. The controller is implemented by a rapid prototyping system, and various real-time loading experiments are performed. The obtained results with the gain scheduling PI controller are compared with those obtained by other classical PI controllers. The developed control system achieves appropriate control performance for a wide working mode of the axial piston pump. The comparison analyses of the experimental results showed the advantages of the adaptive PI controller and confirmed the possibility for its implementation in a real-time control system of different types of variable displacement pumps. Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

14 pages, 4599 KB  
Article
Predictive Flood Uncertainty Associated with the Overtopping Rates of Vertical Seawall on Coral Reef Topography
by Hongqian Zhang, Bin Lu, Yumei Geng and Ye Liu
Water 2025, 17(15), 2186; https://doi.org/10.3390/w17152186 - 22 Jul 2025
Viewed by 293
Abstract
Accurate prediction of wave overtopping rates is essential for flood risk assessment along coral reef coastlines. This study quantifies the uncertainty sources affecting overtopping rates for vertical seawalls on reef flats, using ensemble simulations with a validated non-hydrostatic SWASH model. By generating extensive [...] Read more.
Accurate prediction of wave overtopping rates is essential for flood risk assessment along coral reef coastlines. This study quantifies the uncertainty sources affecting overtopping rates for vertical seawalls on reef flats, using ensemble simulations with a validated non-hydrostatic SWASH model. By generating extensive random wave sequences, we identify spectral resolution, wave spectral width, and wave groupiness as the dominant controls on the uncertainty. Statistical metrics, including the Coefficient of Variation (CV) and Range Uncertainty Level (RUL), demonstrate that overtopping rates exhibit substantial variability under randomized wave conditions, with CV exceeding 40% for low spectral resolutions (50–100 bins), while achieving statistical convergence (CV around 20%) requires at least 700 frequency bins, far surpassing conventional standards. The RUL, which describes the ratio of extreme to minimal overtopping rates, also decreases markedly as the number of frequency bins increases from 50 to 700. It is found that the overtopping rate follows a normal distribution with 700 frequency bins in wave generation. Simulations further demonstrate that overtopping rates increase by a factor of 2–4 as the JONSWAP spectrum peak enhancement factor (γ) increases from 1 to 7. The wave groupiness factor (GF) emerges as a predictor of overtopping variability, enabling a more efficient experimental design through reduction in groupiness-guided replication. These findings establish practical thresholds for experimental design and highlight the critical role of spectral parameters in hazard assessment. Full article
Show Figures

Figure 1

19 pages, 6238 KB  
Article
Overtopping over Vertical Walls with Storm Walls on Steep Foreshores
by Damjan Bujak, Nino Krvavica, Goran Lončar and Dalibor Carević
J. Mar. Sci. Eng. 2025, 13(7), 1285; https://doi.org/10.3390/jmse13071285 - 30 Jun 2025
Viewed by 339
Abstract
As sea levels rise and extreme weather events become more frequent due to climate change, coastal urban areas are increasingly vulnerable to wave overtopping and flooding. Retrofitting existing vertical seawalls with retreated storm walls represents a key adaptive strategy, especially in the Mediterranean, [...] Read more.
As sea levels rise and extreme weather events become more frequent due to climate change, coastal urban areas are increasingly vulnerable to wave overtopping and flooding. Retrofitting existing vertical seawalls with retreated storm walls represents a key adaptive strategy, especially in the Mediterranean, where steep foreshores and limited public space constrain conventional coastal defenses. This study investigates the effectiveness of storm walls in reducing wave overtopping on vertical walls with steep foreshores (1:7 to 1:10) through high-fidelity numerical simulations using the SWASH model. A comprehensive parametric study, involving 450 test cases, was conducted using Latin Hypercube Sampling to explore the influence of geometric and hydrodynamic variables on overtopping rate. Model validation against Eurotop/CLASH physical data demonstrated strong agreement (r = 0.96), confirming the reliability of SWASH for such applications. Key findings indicate that longer promenades (Gc) and reduced impulsiveness of the wave conditions reduce overtopping. A new empirical reduction factor, calibrated for integration into the Eurotop overtopping equation for plain vertical walls, is proposed based on dimensionless promenade width and water depth. The modified empirical model shows strong predictive performance (r = 0.94) against SWASH-calculated overtopping rates. This work highlights the practical value of integrating storm walls into urban seawall design and offers engineers a validated tool for enhancing coastal resilience. Future research should extend the framework to other superstructure adaptations, such as parapets or stilling basins, to further improve flood protection in the face of climate change. Full article
(This article belongs to the Special Issue Climate Change Adaptation Strategies in Coastal and Ocean Engineering)
Show Figures

Figure 1

14 pages, 1795 KB  
Article
Numerical Simulation Study on the Volumetric Efficiency Loss of CO2 Swash Plate Axial Piston Pumps
by Xiyin Wang and Sanping Zhou
Appl. Sci. 2025, 15(13), 7032; https://doi.org/10.3390/app15137032 - 22 Jun 2025
Viewed by 741
Abstract
With the aim of addressing the low volumetric efficiency of CO2 swashplate axial piston pumps, the influence of four volumetric losses—loss of the CO2 compression retention volume, leakage volume loss of the port pair, leakage volume loss of the plunger pair, [...] Read more.
With the aim of addressing the low volumetric efficiency of CO2 swashplate axial piston pumps, the influence of four volumetric losses—loss of the CO2 compression retention volume, leakage volume loss of the port pair, leakage volume loss of the plunger pair, and leakage volume loss of the slipper pair—on volumetric efficiency was analyzed using a transient numerical simulation method. The numerical simulation results showed that the real physical property model can accurately describe the compression retention characteristics of CO2 under high-pressure conditions. CO2 compression retention volume loss accounted for 28.6% of the volumetric efficiency and was the main factor causing low volumetric efficiency of the piston pump. Leakage volume losses of the slipper pair, the flow distribution pair, and the plunger pair accounted for about 3.4%, 1.5%, and 0.5% of the volumetric efficiency, respectively. These research results provide a reference for volumetric efficiency loss analyses of piston pumps. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

9 pages, 378 KB  
Review
Dynamics of Onset and Progression in Amyotrophic Lateral Sclerosis
by Michael Swash and Mamede de Carvalho
Brain Sci. 2025, 15(6), 601; https://doi.org/10.3390/brainsci15060601 - 3 Jun 2025
Viewed by 1213
Abstract
This review focuses on the complexities of amyotrophic lateral sclerosis (ALS) onset, highlighting the insidious nature of the disease and the challenges in defining its precise origin and early pathogenic mechanisms. The clinical presentation of ALS is characterised by progressive muscle weakness and [...] Read more.
This review focuses on the complexities of amyotrophic lateral sclerosis (ALS) onset, highlighting the insidious nature of the disease and the challenges in defining its precise origin and early pathogenic mechanisms. The clinical presentation of ALS is characterised by progressive muscle weakness and wasting, often with widespread fasciculations, reflecting lower motor neuron hyperexcitability. The disease’s pathogenesis involves a prolonged preclinical phase of neuronal proteinopathy, particularly TDP-43 accumulation, which eventually leads to motor neuron death and overt ALS. This review discusses the difficulties in detecting this transition and the implications for early therapeutic intervention. It also addresses the involvement of both the upper and lower motor neuron systems, as well as the importance of following presymptomatic patients with genetic mutations. The significance of understanding the distinct processes of TDP-43 deposition and subsequent neuronal degeneration in developing effective treatments is emphasised. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 5743 KB  
Article
Study on the Mechanism of Local Scour Around Bridge Piers
by Haiyang Dong, Zongyu Li and Zhilin Sun
J. Mar. Sci. Eng. 2025, 13(6), 1021; https://doi.org/10.3390/jmse13061021 - 23 May 2025
Viewed by 919
Abstract
Local scour around bridge piers poses significant challenges to the stability and safety of bridge structures. Local scour results from the combined effects of increased longitudinal flow velocity, the direct impact of the flow in front of the pier, and the suction effect [...] Read more.
Local scour around bridge piers poses significant challenges to the stability and safety of bridge structures. Local scour results from the combined effects of increased longitudinal flow velocity, the direct impact of the flow in front of the pier, and the suction effect of horseshoe vortices. This study utilizes a three-dimensional mathematical model to simulate the flow field around the pier, employing the SWASH (simulating waves till shore) model. Experimental observations in a bed load flume were conducted to analyze the contribution of different factors to local scour. The results indicate that the scour depth caused predominantly by the flow accounts for approximately 75–80% of the total scour depth. Analysis of the longitudinal flow velocity distribution suggests that the scour depth due to the redistribution of longitudinal flow velocity generally accounts for 15–30% of the total scour depth. These findings provide insights into the local scour mechanism and have implications for the design and maintenance of bridge foundations. Full article
Show Figures

Figure 1

22 pages, 7903 KB  
Article
Gear Pump Versus Variable Axial Piston Pump in Electro-Hydrostatic Servoactuators
by Alexandru Dumitrache, Liviu Dinca, Jenica-Ileana Corcau, Adriana Ionescu and Mihai Negru
Actuators 2025, 14(5), 256; https://doi.org/10.3390/act14050256 - 21 May 2025
Viewed by 573
Abstract
This paper presents a comparison of some different configurations of electro-hydrostatic actuators (EHA). The gear pump EHA has a simpler mechanical configuration, but the electronic power command circuits and the electric motor are in high demand due to the very frequent speed variations. [...] Read more.
This paper presents a comparison of some different configurations of electro-hydrostatic actuators (EHA). The gear pump EHA has a simpler mechanical configuration, but the electronic power command circuits and the electric motor are in high demand due to the very frequent speed variations. The variable piston pump EHA has a more complicated mechanical configuration, but the electronic power command circuits and the main electric motor are less loaded due to the constant speed of the electric motor. The variable displacement pump control can be made either using an electric motor and mechanical transmission, or an additional hydraulic circuit, to modify the swash plate angle. In total, four EHA configurations are studied in this paper (one with a gear pump and three with variable axial piston pumps). The paper aims to advantages and disadvantages of each type of EHA, using numerical simulations. Full article
Show Figures

Figure 1

36 pages, 25021 KB  
Article
Real-Time Object Detection and Distance Measurement Enhanced with Semantic 3D Depth Sensing Using Camera–LiDAR Fusion
by Ahmet Serhat Yildiz, Hongying Meng and Mohammad Rafiq Swash
Appl. Sci. 2025, 15(10), 5543; https://doi.org/10.3390/app15105543 - 15 May 2025
Cited by 2 | Viewed by 954
Abstract
Camera and LiDAR data fusion has been a popular research area, especially in the field of autonomous vehicles. This study evaluates the efficiency and accuracy of different depth point extraction methods, including Point-by-Point (PbyP), Complete Region Depth Extraction (CoRDE), Central Region Depth Extraction [...] Read more.
Camera and LiDAR data fusion has been a popular research area, especially in the field of autonomous vehicles. This study evaluates the efficiency and accuracy of different depth point extraction methods, including Point-by-Point (PbyP), Complete Region Depth Extraction (CoRDE), Central Region Depth Extraction (CeRDE), and Grid Central Region Depth Extraction (GCRDE), across object categories such as person, bicycle, car, bus, and truck, and occlusion levels ranging from 0 to 3. The approaches are assessed based on extraction time, accuracy, and root mean squared error (RMSE). Bounding box-based methods, such as PbyP and CoRDE, consistently show slower extraction times compared to segmentation mask methods, with CeRDE being the most efficient in terms of computational speed. However, segmentation mask methods, particularly CeRDE and GCRDE, offer superior accuracy, especially for complex objects like trucks and cars, where bounding box methods struggle, particularly at higher occlusion levels. In terms of RMSE, segmentation mask methods consistently outperform bounding box methods, providing more precise depth estimations, particularly for larger and more occluded objects. Overall, segmentation mask methods are preferred for applications where accuracy is critical, despite their slower processing speed, while bounding box methods are suitable for real-time applications requiring faster depth extraction. GeRDE offers a balance between speed and accuracy, making it ideal for tasks needing both efficiency and precision. Full article
Show Figures

Figure 1

21 pages, 6159 KB  
Article
Coastal Flooding Hazards in Northern Portugal: A Practical Large-Scale Evaluation of Total Water Levels and Swash Regimes
by Jose Eduardo Carneiro-Barros, Ajab Gul Majidi, Theocharis Plomaritis, Tiago Fazeres-Ferradosa, Paulo Rosa-Santos and Francisco Taveira-Pinto
Water 2025, 17(10), 1478; https://doi.org/10.3390/w17101478 - 14 May 2025
Viewed by 1028
Abstract
The northern Portuguese coast has been increasingly subjected to wave-induced coastal flooding, highlighting a critical need for comprehensive overwash assessment in the region. This study systematically evaluates the total water levels (TWLs) and swash regimes over a 120 km stretch of the northern [...] Read more.
The northern Portuguese coast has been increasingly subjected to wave-induced coastal flooding, highlighting a critical need for comprehensive overwash assessment in the region. This study systematically evaluates the total water levels (TWLs) and swash regimes over a 120 km stretch of the northern coast of Portugal. Traditional approaches to overwash assessment often rely on detailed models and location-specific data, which can be resource-intensive. The presented methodology addresses these limitations by offering a pragmatic balance between accuracy and practicality, suitable for extended coastal areas with reduced human and computational resources. A coastal digital terrain model was used to extract essential geomorphological features, including the dune toe, dune crest, and/or crown of defense structures, as well as the sub-aerial beach profile. These features help establish a critical threshold for flooding, alongside assessments of beach slope and other relevant parameters. Additionally, a wave climate derived from a SWAN regional model was integrated, providing a comprehensive time-series hindcast of sea-states from 1979 to 2023. The wave contribution to TWL was considered by using the wave runup, which was calculated using different empirical formulas based on SWAN’s outputs. Astronomical tides and meteorological surge—the latter reconstructed using a long short-term memory (LSTM) neural network—were also integrated to form the TWL. This integration of geomorphological and oceanographic data allows for a straightforward evaluation of swash regimes and consequently overwash potential. The accuracy of various empirical predictors for wave runup, a primary hydrodynamic factor in overwash processes, was assessed. Several reports from hazardous events along this stretch were used as validation for this method. This study further delineates levels of flooding hazard—ranging from swash and collision to overwash at multiple representative profiles along the coast. This regional-scale assessment contributes to a deeper understanding of coastal flooding dynamics and supports the development of targeted, effective coastal management strategies for the northern Portuguese coast. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

12 pages, 4494 KB  
Article
Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas
by Ilya V. Buynevich, Michael Savarese and H. Allen Curran
J. Mar. Sci. Eng. 2025, 13(5), 950; https://doi.org/10.3390/jmse13050950 - 14 May 2025
Viewed by 863
Abstract
Quaternary carbonate strandplains serve as archives of land–sea interaction, including the impacts of storms and tsunamis. Incipient lithification, especially of compound beach/dune ridges within the action zone of salt spray, presents challenges to geological research, which is often limited to exposures. This study [...] Read more.
Quaternary carbonate strandplains serve as archives of land–sea interaction, including the impacts of storms and tsunamis. Incipient lithification, especially of compound beach/dune ridges within the action zone of salt spray, presents challenges to geological research, which is often limited to exposures. This study combines aerial image analysis with geophysical datasets to assess the morphostratigraphy and internal structure of the Freedom Beach Strandplain along southern Eleuthera Island, The Bahamas. Color-intensity analysis of field photographs and satellite images revealed general patterns that can be used to distinguish between areas with different grayscale parameters (sand-covered surfaces, lithified ridges, vegetation, etc.). Cross-shore (dip-section) high-resolution (800 MHz) georadar images across ten ridges (A-J) documented the internal architecture of swash-aligned ridge–swale sets. Signatures attributed to storms include truncations in shore-normal radargrams, scour features in alongshore (strike-section) images, and an extensive accumulation of large mollusk shells along one of the oldest ridges (ridge J). Preliminary radiocarbon dating yielded ages of up to 600 years, suggesting intense storms with 50–60-year periodicity as a possible mechanism for ridge formation. Full article
Show Figures

Figure 1

25 pages, 18408 KB  
Article
Surf and Swash Zone Dynamics from High-Frequency Observations at a Microtidal Low-Energy Dissipative Beach
by Dimitris Chatzistratis, Antonis E. Chatzipavlis, Isavela N. Monioudi, Adonis F. Velegrakis, Olympos P. Andreadis, Fotis Psarros and Ivan T. Petsimeris
J. Mar. Sci. Eng. 2025, 13(5), 861; https://doi.org/10.3390/jmse13050861 - 25 Apr 2025
Viewed by 1438
Abstract
This study examines the surf and swash zone dynamics of a microtidal, low-energy, dissipative beach in Kos Island, Greece, using high-frequency optical monitoring with a Beach Optical Monitoring System (BOMS) and in situ wave measurements during the winter period. Increased wave heights induced [...] Read more.
This study examines the surf and swash zone dynamics of a microtidal, low-energy, dissipative beach in Kos Island, Greece, using high-frequency optical monitoring with a Beach Optical Monitoring System (BOMS) and in situ wave measurements during the winter period. Increased wave heights induced the offshore migration of the wave-breaking zone with significant alongshore variability; however, no triggering of NOM (Net Offshore Movement) behavior was verified, while occasional rhythmic patterns were observed in the breaking location under moderate wave conditions. Shoreline dynamics showed transient erosional episodes coupled with elevated run-up excursions, yet the shoreline showed signs of recovery, suggesting a quasi-equilibrium state. Run-up energy spectra were consistently dominated by lower frequencies than those of incoming waves under both low- and high-energy conditions. This behavior is attributed to the nearshore sandbars acting as low-pass filters, dissipating high-frequency wave energy and allowing for lower-frequency motions to dominate run-up processes. A widely used empirical wave run-up predictor corresponded well with the video observations, confirming its applicability to low-energy dissipative beaches. These results underscore the role of submerged sandbars in regulating wave energy dissipation and stabilizing beach morphology under low-to-moderate wave conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 8687 KB  
Article
Research on the Effect of Damping Grooves on the Pressure and Cavitation Characteristics of Axial Piston Pumps
by Ruichuan Li, Dongrun Li, Zhengyu Li, Tong Wu and Jikang Xu
Processes 2025, 13(5), 1274; https://doi.org/10.3390/pr13051274 - 22 Apr 2025
Cited by 1 | Viewed by 596
Abstract
The damping groove structure of the port plate plays a crucial role in the pulsation suppression, vibration reduction, and noise optimization of the piston pump. Different damping groove structures have a significant impact on the flow distribution process during the normal operation of [...] Read more.
The damping groove structure of the port plate plays a crucial role in the pulsation suppression, vibration reduction, and noise optimization of the piston pump. Different damping groove structures have a significant impact on the flow distribution process during the normal operation of the port plate, affecting the pump outlet flow and pressure pulsations, which in turn influence the noise level of the piston pump. Therefore, the damping groove in the piston pump is one of the key structures influencing the pump’s pressure and cavitation behavior. To address the pressure shocks and oscillations caused by the distribution process in the piston pump, this study proposes a novel damping groove and performs CFD simulations on the non-damped groove. The analysis focuses on the pressure pulsation characteristics in the plunger chamber and the cavitation behavior of the pump. Additionally, an optimization analysis of the structural parameters of the new damping groove is conducted, which effectively reduces pressure shocks and cavitation in the swash plate axial piston pump. This study provides a theoretical foundation for improving the performance and lifespan of piston pumps. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

21 pages, 7385 KB  
Article
Research on Grid-Connected Speed Control of Hydraulic Wind Turbine Based on Enhanced Chaotic Particle Swarm Optimization Fuzzy PID
by Yujie Wang, Yang Cao, Zhong Qian, Jianping Xia, Xuhong Kang, Yixian Zhu, Yanan Yang, Wendong Zhang, Shaohua Chen and Guoqing Wu
Algorithms 2025, 18(4), 187; https://doi.org/10.3390/a18040187 - 25 Mar 2025
Cited by 1 | Viewed by 451
Abstract
An enhanced chaotic particle swarm optimization fuzzy PID is introduced to address the hydraulic wind turbine grid-connected speed control conditions. In the enhanced algorithm, a Circle chaotic mapping is combined with particle swarm optimization (PSO) to prevent PSO from becoming trapped in local [...] Read more.
An enhanced chaotic particle swarm optimization fuzzy PID is introduced to address the hydraulic wind turbine grid-connected speed control conditions. In the enhanced algorithm, a Circle chaotic mapping is combined with particle swarm optimization (PSO) to prevent PSO from becoming trapped in local optima. Moreover, a linear inertia weight reduction strategy is integrated to harmonize the algorithm’s capacity for expansive exploration and meticulous exploitation. Then, the enhanced algorithm is utilized to adjust and perfect the configuration variables within the fuzzy PID system. Based on the optimization, speed characteristics of the variable motor are analyzed. Simulation results show that when the swash plate angle factor varies within a specific range, the variable motor speed is only related to the quantitative pump speed. When the input speed of the quantitative pump changes in a step from 400 to 500 r/min, the enhanced CPSO fuzzy PID control approach reduces ascension time by 40% and 76%, and settling time by 80% and 76%, compared to the fuzzy PID and PSO fuzzy PID control approaches, respectively. When the input speed changes in a step from 500 to 600 r/min, the approach reduces ascension time by 25% and 72%, and settling time by 80% and 72%, respectively. When the input speed varies within a range of 400–500 r/min, the approach reduces ascension time by 37.5% and 80%, and settling time by 83% and 80%, respectively. And the enhanced CPSO fuzzy PID speed-control system exhibits no overshoot. Therefore, the enhanced CPSO fuzzy PID algorithm enhances the quantitative pump-motor system’s stability and rapidity, meeting hydraulic wind turbine grid-connected speed-control needs. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

34 pages, 23812 KB  
Article
Novel Approach for Robust Control of Axial Piston Pump
by Tsonyo Slavov, Alexander Mitov and Jordan Kralev
Mathematics 2025, 13(4), 643; https://doi.org/10.3390/math13040643 - 16 Feb 2025
Viewed by 614
Abstract
The article is devoted to designing novel multivariable robust μ-control of an open-circuit axial piston pump. In contrast with classical solutions of displacement volume control, in our case, the hydro-mechanical controller (by pressure, flow rate, or power) is replaced by an electro-hydraulic [...] Read more.
The article is devoted to designing novel multivariable robust μ-control of an open-circuit axial piston pump. In contrast with classical solutions of displacement volume control, in our case, the hydro-mechanical controller (by pressure, flow rate, or power) is replaced by an electro-hydraulic proportional valve which receives a control signal from an industrial microcontroller. The valve is used as the actuator of the pump swash plate. The pump swash plate swivel angle determines the displacement volume and the flow rate of the pump. The μ-controller design is performed on the basis of a one-input, two-output model with multiplicative output uncertainty. This model is estimated and validated from experimental data at various loads by multivariable identification. The designed control system achieves robust stability and robust performance for the wide working mode of an axial piston pump. To conduct this experimental study, the authors have developed a laboratory test bench, enabling a real-time function of the control system via USB/CAN communication. The designed controller is implemented in a rapid prototyping system, and real-time experiments are performed. They show the advantages of μ-control and confirm the possibility of its implementation in the case of the real-time control of an axial piston pump. Full article
Show Figures

Figure 1

21 pages, 9003 KB  
Article
An Investigation on the Ball Screw-Based Variable Displacement Mechanism for Axial Piston Pumps with Feedforward Differential Input Control
by Guangcheng Zhang, Bokai Wang and Yueh-Jaw Lin
Sensors 2025, 25(4), 994; https://doi.org/10.3390/s25040994 - 7 Feb 2025
Viewed by 990
Abstract
This paper proposes a variable mechanism structure based on a ball screw design for precise displacement control in axial piston pumps, with the objective of improving actuator position and velocity control within the displacement-controlled (DC) systems. Traditional valve-controlled cylinder variable mechanisms (VCCVM) often [...] Read more.
This paper proposes a variable mechanism structure based on a ball screw design for precise displacement control in axial piston pumps, with the objective of improving actuator position and velocity control within the displacement-controlled (DC) systems. Traditional valve-controlled cylinder variable mechanisms (VCCVM) often suffer from limited control precision over the swash plate due to numerous uncertain parameters within the hydraulic system. To address this issue, a ball screw is utilized to replace the original valve-controlled cylinder for swash plate control, enhancing accuracy and responsiveness. In addition, an in-depth analysis of the Ball Screw Variable Mechanism (BSVM) is conducted, leading to the development of a coupled mechanical–hydraulic dynamic model. Based on this model, a controller is designed to improve system performance. Finally, the effectiveness and high performance of the proposed new structure and control strategy were validated through comparative experiments and simulations. The experimental results confirm the advantages of the proposed design, demonstrating satisfactory improvements in control precision. Full article
(This article belongs to the Special Issue Applied Robotics in Mechatronics and Automation)
Show Figures

Figure 1

Back to TopTop