Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (328)

Search Parameters:
Keywords = Schlieren

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7708 KiB  
Article
Top and Side Leakage Effects on Thermoregulation and Moisture Retention with Facemask Wearing
by Kian Barari, Xiuhua Si, Rozhin Hajian and Jinxiang Xi
J. Respir. 2025, 5(2), 5; https://doi.org/10.3390/jor5020005 - 3 Apr 2025
Viewed by 19
Abstract
Background/Objectives: Mask-wearing-induced discomfort often leads to unconscious loosening of the mask to relieve the discomfort, thereby compromising protective efficacy. This study investigated how leakage flows affect mask-associated thermoregulation and vapor trapping to inform better mask designs. An integrated ambience–mask–face–airway model with various mask-wearing [...] Read more.
Background/Objectives: Mask-wearing-induced discomfort often leads to unconscious loosening of the mask to relieve the discomfort, thereby compromising protective efficacy. This study investigated how leakage flows affect mask-associated thermoregulation and vapor trapping to inform better mask designs. An integrated ambience–mask–face–airway model with various mask-wearing misfits was developed. Methods: The transient warming/cooling effects, thermal buoyancy force, tissue heat generation, vapor phase change, and fluid/heat/mass transfer through a porous medium were considered in this model, which was validated using Schlieren imaging, a thermal camera, and velocity/temperature measurements. Leakages from the top and side of the mask were analyzed in comparison to a no-leak scenario under cyclic respiration conditions. Results: A significant inverse relationship was observed between mask leakage and facial temperature/humidity. An equivalent impact from buoyancy forces and exhalation flow inertia was observed both experimentally and numerically, indicating a delicate balance between natural convection and forced convection, which is sensitive to leakage flows and critical in thermo-humidity regulation. For a given gap, the leakage fraction was not constant within one breathing cycle but constantly increased during exhalation. Persistently higher temperatures were found in the nose region throughout the breathing cycle in a sealed mask and were mitigated during inhalation when gaps were present. Vapor condensation occurred within the mask medium during exhalation in all mask-wearing cases. Conclusions: The thermal and vapor temporal variation profiles were sensitive to the location of the gap, highlighting the feasibility of leveraging temperature and relative humidity to test mask fit and quantify leakage fraction. Full article
(This article belongs to the Collection Feature Papers in Journal of Respiration)
Show Figures

Figure 1

12 pages, 5722 KiB  
Article
Steady Smoldering of Fuel Rods: Relationship Between Propagation Velocity and Fume Thickness on Schlieren Photographs
by Guangxin Yu, Xin Chen, Yi Zhang, Jianwen Zha and Fang He
Processes 2025, 13(4), 954; https://doi.org/10.3390/pr13040954 - 24 Mar 2025
Viewed by 157
Abstract
The steady smoldering of rod-shaped fuels, a traditional Chinese disinfection and pest control technique, presents unique challenges in theoretical modeling. Conventional analytical approaches based on energy and mass conservation equations form an underdetermined system, failing to uniquely resolve three critical parameters: temperature field, [...] Read more.
The steady smoldering of rod-shaped fuels, a traditional Chinese disinfection and pest control technique, presents unique challenges in theoretical modeling. Conventional analytical approaches based on energy and mass conservation equations form an underdetermined system, failing to uniquely resolve three critical parameters: temperature field, char morphology, and propagation velocity. This study establishes a quantitative relationship between smoldering propagation velocity and smoke schlieren thickness through integrated experimental and theoretical methodologies. Systematic experiments were conducted on vertically oriented fuel rods (upward and downward configurations), measuring propagation velocity, char cone geometries, and schlieren photographs. By incorporating surface oxidation kinetics and oxygen transport mechanisms into a theoretical model, we revealed an inverse proportionality between propagation velocity and schlieren thickness, thereby introducing a third constraint to resolve the system. Comparative analysis demonstrated excellent agreement between calculated and measured velocities for downward smoldering, with deviations below 20% for biomass rods and 60% for commercial incense rods. Significant discrepancies in upward smoldering were attributed to smoke plume entrainment effects. This work enhances the mechanistic understanding of smoldering propagation dynamics in anisotropic fuel systems. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

26 pages, 6566 KiB  
Review
The B30.2/SPRY-Domain: A Versatile Binding Scaffold in Supramolecular Assemblies of Eukaryotes
by Peer R. E. Mittl and Hans-Dietmar Beer
Crystals 2025, 15(3), 281; https://doi.org/10.3390/cryst15030281 - 19 Mar 2025
Viewed by 283
Abstract
B30.2 domains, sometimes referred to as PRY/SPRY domains, were originally identified by sequence profiling methods at the gene level. The B30.2 domain comprises a concanavalin A-like fold consisting of two twisted seven-stranded anti-parallel β-sheets. B30.2 domains are present in about 150 human and [...] Read more.
B30.2 domains, sometimes referred to as PRY/SPRY domains, were originally identified by sequence profiling methods at the gene level. The B30.2 domain comprises a concanavalin A-like fold consisting of two twisted seven-stranded anti-parallel β-sheets. B30.2 domains are present in about 150 human and 700 eukaryotic proteins, usually fused to other domains. The B30.2 domain represents a scaffold, which, through six variable loops, binds different unrelated peptides or endogenous low-molecular-weight compounds. At the cellular level, B30.2 proteins engage in supramolecular assemblies with important signaling functions. In humans, B30.2 domains are often found in E3-ligases, such as tripartite motif (Trim) proteins, SPRY domain-containing SOCS box proteins, Ran binding protein 9 and −10, Ret-finger protein-like, and Ring-finger proteins. The B30.2 protein recognizes the target and recruits the E2-conjugase by means of the fused domains, often involving specific adaptor proteins. Further well-studied B30.2 proteins are the methyltransferase adaptor protein Ash2L, some butyrophilins, and Ryanodine Receptors. Although the affinity of an isolated B30.2 domain to its ligand might be weak, it can increase strongly due to avidity effects upon recognition of oligomeric targets or in the context of macromolecular machines. Full article
(This article belongs to the Special Issue Protein Crystallography: The State of the Art)
Show Figures

Graphical abstract

37 pages, 12886 KiB  
Article
From Source to Sink: U-Pb Geochronology and Lithochemistry Unraveling the Missing Link Between Mesoarchean Anatexis and Magmatism in the Carajás Province, Brazil
by Marco Antônio Delinardo-Silva, Lena Virgínia Soares Monteiro, Carolina Penteado Natividade Moreto, Jackeline Faustinoni, Ticiano José Saraiva Santos, Soraya Damasceno Sousa and Roberto Perez Xavier
Minerals 2025, 15(3), 265; https://doi.org/10.3390/min15030265 - 3 Mar 2025
Viewed by 432
Abstract
The connection between crustal anatexis and magmatism is key to understanding the mechanisms that drive the evolution of the continental crust. Isotope geology and lithochemistry are important tools for reconstructing links between these processes, as field evidence of their connection is often obliterated [...] Read more.
The connection between crustal anatexis and magmatism is key to understanding the mechanisms that drive the evolution of the continental crust. Isotope geology and lithochemistry are important tools for reconstructing links between these processes, as field evidence of their connection is often obliterated by deformation in high-grade terrains. Thus, this study proposes new insights into the connection between the Mesoarchean regional metamorphism, crustal anatexis, and plutonism in the northern sector of the Carajás Province (i.e., Carajás Domain), in the Amazonian Craton, around 2.89 to 2.83 Ga. The widespread crustal anatexis in the Carajás Domain involved the water-fluxed melting of banded orthogneisses of the Xingu Complex and Xicrim-Cateté Orthogranulite (crystallization age at ca. 3.06–2.93 Ga), producing metatexites and diatexites with stromatic, net, schollen, and schlieren morphologies and coeval syntectonic leucosomes with composition similar to tonalites, trondhjemites, and granites. These leucosomes yielded crystallization ages of 2853 ± 5 Ma (MSWD: 0.61), 2862 ± 13 Ma (MSWD: 0.1), and 2867 ± 7 Ma (MSWD: 1.3). Their lithochemical data are similar to those of several diachronous Mesoarchean granitoids of the Carajás Domain in terms of major, minor, and trace elements and magmatic affinity. In addition, binary log–log vector diagrams (e.g., La vs. Yb; Rb vs. Yb), Sr/Y vs. Y, and Eu/Eu* vs. Yb plots indicate that plagioclase fractionation preceded melt extraction, establishing evolving source-to-sink trends between leucosomes and granites. These results show that the interplay between high-grade metamorphism, crustal anatexis, and magmatism may have shaped the evolution of the Mesoarchean continental crust in the Carajás Province, developing a petrotectonic assemblage associated with collisional orogens. The Mesoarchean geodynamic setting played a critical role in the development of coeval ca. 2.89 Ga magmatic–hydrothermal copper deposits in the Carajás Province, as well as Neoarchean world-class iron oxide–copper–gold deposits linked to post-orogenic extensional rebound. Full article
(This article belongs to the Special Issue Geochemistry and Geochronology of High-Grade Metamorphic Rocks)
Show Figures

Figure 1

22 pages, 5396 KiB  
Article
Flame Evolution Characteristics for Hydrogen/LPG Co-Combustion in a Counter-Burner
by Rabeea M. Ghazal, Abdulrazzak Akroot and Hasanain A. Abdul Wahhab
Appl. Sci. 2025, 15(5), 2503; https://doi.org/10.3390/app15052503 - 26 Feb 2025
Viewed by 509
Abstract
Industrial development and population growth have significantly escalated worldwide energy demand; in addition, the heightened consumption of primary energy sources such as hydrocarbons has profoundly impacted the atmospheric environment. Among all potential fuels, hydrogen provides the most significant advantages for energy supply and [...] Read more.
Industrial development and population growth have significantly escalated worldwide energy demand; in addition, the heightened consumption of primary energy sources such as hydrocarbons has profoundly impacted the atmospheric environment. Among all potential fuels, hydrogen provides the most significant advantages for energy supply and environmental sustainability. Nonetheless, the combustion of pure hydrogen has challenges related to its production, storage, and utilization. A more effective approach to improve combustion is to utilize hydrogen as an addition to fossil fuels. Hydrogen possesses numerous characteristics that render it a compelling fuel alternative. It possesses high energy density, offering triple the energy compared to liquefied petroleum gas. This indicates that hydrogen is able to deliver equal power output with reduced fuel usage, thus decreasing the fuel used and, consequently, greenhouse gasses linked to combustion. In this study, practical experiments and computer simulations were adopted to predict the behavior of some characteristics of the combustion of Iraqi liquefied petroleum gas, such as flame temperature and laminar burning velocity, in addition to the effect of changing the equivalence ratio and hydrogen enrichment at rates ranging between 5 and 20% at a constant atmospheric pressure and temperature. In the practical aspect, a counter-flow burner was developed at the Training and Workshops Center, University of Technology, Iraq, for the purpose of performing practical experiments. In addition, a MATLAB R2023b program code was developed based on flame front image frames to analyze data and measure flame parameters, i.e., laminar burning velocity, flame temperature, and flame front diameter. While the commercial CFD Ansys Fluent version 17.2 program was used to numerically simulate the premixed counter-flame, the steady laminar flame (SLF) was used. Also, in order to implement the continuity of the numerical simulation, the momentum and energy equations of the counter-flow burner were solved. The results showed that increasing the hydrogen percentage caused an increase in the laminar burning velocity as well as the flame temperature; when the hydrogen percentage in the mixture was 20%, the increasing percentages in the practical experiments were about 25% and 19.6%, respectively, and the percentages in the numerical simulation were about 22.6% and 20.5%, respectively. Also, changing the equivalence ratio from 0.4 to 1.4 had an effect on the shape, color, and method of flame spread, where at the higher percentage, the shape changed and the color concentration increased, meaning that the temperature rose and the method of spread changed to an irregular one. Additionally, several recommendations are suggested for future endeavors in this domain. Full article
(This article belongs to the Special Issue Clean Combustion Technologies and Renewable Fuels)
Show Figures

Figure 1

21 pages, 7912 KiB  
Article
Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics
by Reyna Judith Mendoza-Anchondo, Cornelio Alvarez-Herrera and José Guadalupe Murillo-Ramírez
Fluids 2025, 10(2), 40; https://doi.org/10.3390/fluids10020040 - 3 Feb 2025
Viewed by 2542
Abstract
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of [...] Read more.
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of seven nozzles were visualized. The dependence of the shock cell characteristics on the nozzle pressure ratio (NPR), defined as the ratio of stagnation pressure to atmospheric pressure, was analyzed. The dependence of the nozzle thrust and the specific impulse on the NPR ratio and the mass flow rate was also studied using a simple device based on concepts of fluid mechanics. The results obtained are in agreement with similar results obtained in recently published research on double-bell nozzles. The thrust of all nozzles depends linearly on the shock-cell spacing, which is one of the most relevant findings of this research. In other words, the output airflow structure determines the performance of the nozzles, such as the thrust or the specific impulse they produce. These small nozzles offer significant advantages over conventional nozzles in low energy consumption and lower manufacturing cost, making them suitable for scientific research in space micro-propulsion and cooling microelectronic systems, among other applications. Full article
Show Figures

Figure 1

18 pages, 10143 KiB  
Article
Features of Supersonic Flow Around a Blunt Body in the Area of Junction with a Flat Surface
by T. A. Lapushkina, E. V. Kolesnik, N. A. Monahov, P. A. Popov and K. I. Belov
Fluids 2025, 10(2), 28; https://doi.org/10.3390/fluids10020028 - 26 Jan 2025
Viewed by 448
Abstract
This work studies the influence of a growing boundary layer on the process of supersonic flow around an aerodynamic body. The task is to select and implement in an experiment the parameters of a supersonic flow and to study the flow pattern near [...] Read more.
This work studies the influence of a growing boundary layer on the process of supersonic flow around an aerodynamic body. The task is to select and implement in an experiment the parameters of a supersonic flow and to study the flow pattern near the surface of an aerodynamic body at different viscosity values for the incoming flow. Visualization of the shock wave configuration in front of the body and studying the change in the pressure field in the flow region under these conditions is the main goal of this work. The experiment was carried out on an experimental stand created on the basis of a shock tube. The aerodynamic body under study (a semi-cylinder pointed along a circle or an ellipse) was placed in a supersonic nozzle. The model was clamped by lateral transparent walls, which were simultaneously a source of boundary layer growth and the viewing windows for visualizing the flow. For selected modes with Reynolds numbers from 8200 to 45,000, schlieren flow patterns and pressure distribution fields near the surface of the streamlined models and the plate of the growing boundary layer were obtained. The data show a complex, unsteady flow pattern realized near the model which was caused by the viscous-inviscid interaction of the boundary layer with the bow shock wave near the wall. Full article
Show Figures

Figure 1

25 pages, 5652 KiB  
Article
Vaporization Dynamics of a Volatile Liquid Jet on a Heated Bubbling Fluidized Bed
by Subhasish Mitra and Geoffrey M. Evans
Fluids 2025, 10(1), 19; https://doi.org/10.3390/fluids10010019 - 18 Jan 2025
Viewed by 602
Abstract
In this paper, droplet vaporization dynamics in a heated bubbling fluidized bed was studied. A volatile hydrocarbon liquid jet comprising acetone was injected into a hot bubbling fluidized bed of Geldart A-type glass ballotini particles heated at 150 °C, well above the saturation [...] Read more.
In this paper, droplet vaporization dynamics in a heated bubbling fluidized bed was studied. A volatile hydrocarbon liquid jet comprising acetone was injected into a hot bubbling fluidized bed of Geldart A-type glass ballotini particles heated at 150 °C, well above the saturation temperature of acetone (56 °C). Intense interactions were observed among the evaporating droplets and hot particles during contact with the re-suspension of particles due to a release of vapour. A non-intrusive schlieren imaging method was used to track the hot air and vapour mixture plume in the freeboard region of the bed and the acetone vapour fraction therein was mapped. The jet vaporization dynamics in the bubbling fluidized bed was modelled in a Eulerian–Lagrangian CFD (computational fluid dynamics) modelling framework involving heat and mass transfer sub models. The CFD model indicated a dispersion of the vapour plume from the evaporating droplets which was qualitatively compared with the schlieren images. Further, the CFD simulation predicted a significant reduction (~60 °C) in the local bed temperature at the point of the jet injection, which was indirectly confirmed in an experiment by the presence of particle agglomerates. Full article
Show Figures

Figure 1

28 pages, 15925 KiB  
Article
Comparative Study of Noise Control in Micro Turbojet Engines with Chevron and Ejector Nozzles Through Statistical, Acoustic and Imaging Insight
by Alina Bogoi, Grigore Cican, Mihnea Gall, Andrei Totu, Daniel Eugeniu Crunțeanu and Constantin Levențiu
Appl. Sci. 2025, 15(1), 394; https://doi.org/10.3390/app15010394 - 3 Jan 2025
Cited by 1 | Viewed by 718
Abstract
In connection with subsonic jet noise production, this study investigates acoustic noise reduction in micro turbojet engines by comparing ejector and chevron nozzle configurations to a baseline. Through detailed statistical analysis, including assessments of stationarity and ergodicity, the current work validates that the [...] Read more.
In connection with subsonic jet noise production, this study investigates acoustic noise reduction in micro turbojet engines by comparing ejector and chevron nozzle configurations to a baseline. Through detailed statistical analysis, including assessments of stationarity and ergodicity, the current work validates that the noise signals from turbojet engines could be treated as wide-sense ergodic. This further allows to use time averages in acoustic measurements. Acoustic analysis reveals that the chevron nozzle reduces overall SPL by 1.28%, outperforming the ejector’s 0.51% reduction. Despite the inherent challenges of Schlieren imaging, an in-house code enabled a more refined analysis. By examining the fine-scale turbulent structures, one concludes that chevrons promote higher mixing rates and smaller vortices, aligning with the statistical findings of noise reduction. Schlieren imaging provided visual insight into turbulence behavior across operational regimes, showing that chevrons generate smaller, controlled vortices near the nozzle, which improve mixing and reduce noise. At high speeds, chevrons maintain a confined, high-frequency turbulence that attenuated noise more effectively, while the ejector creates larger structures that contribute to low-frequency noise propagation. Comparison underscores the superior noise-reduction capabilities of chevrons with respect to the ejector, particularly at high-speed. The enhanced Schlieren analysis allowed for new frame-specific insights into turbulence patterns based on density gradients, providing a valuable tool for identifying turbulence features and understanding jet flow dynamics. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

22 pages, 6052 KiB  
Article
In Vitro Induction of Hypertrophic Chondrocyte Differentiation of Naïve MSCs by Strain
by Thomas Jörimann, Priscilla Füllemann, Anita Jose, Romano Matthys, Esther Wehrle, Martin J. Stoddart and Sophie Verrier
Cells 2025, 14(1), 25; https://doi.org/10.3390/cells14010025 - 30 Dec 2024
Viewed by 825
Abstract
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell [...] Read more.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone. A high-throughput uniaxial bioreactor system (StrainBot) was used to apply varying percentages of strain on naïve MSCs encapsulated in GelMa hydrogels. This research shows that cyclic uniaxial compression alone directs naïve MSCs towards a hypertrophic chondrocyte phenotype. This was demonstrated by increased cell volumes and reduced glycosaminoglycan (GAG) production, along with an elevated expression of hypertrophic markers such as MMP13 and Type X collagen. In contrast, Type II collagen, typically associated with resting chondrocytes, was poorly detected under mechanical loading alone conditions. The addition of chondrogenic factor TGFβ1 in the culture medium altered these outcomes. TGFβ1 induced chondrogenic differentiation, as indicated by higher GAG/DNA production and Type II collagen expression, overshadowing the effect of mechanical loading. This suggests that, under mechanical strain, hypertrophic differentiation is hindered by TGFβ1, while chondrogenesis is promoted. Biochemical analyses further confirmed these findings. Mechanical deformation alone led to a larger cell size and a more rounded cell morphology characteristic of hypertrophic chondrocytes, while lower GAG and proteoglycan production was observed. Immunohistology staining corroborated the gene expression data, showing increased Type X collagen with mechanical strain. Overall, this study indicates that mechanical loading alone drives naïve MSCs towards a hypertrophic chondrocyte differentiation path. These insights underscore the critical role of mechanical forces in MSC differentiation and have significant implications for bone healing, regenerative medicine strategies and rehabilitation protocols. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

20 pages, 15019 KiB  
Article
Long-Term Histological Evaluation of a Novel Dermal Template in the Treatment of Pediatric Burns
by Zeena Gerster-Barzanji, Vivienne Woodtli, Mira Klix, Thomas Biedermann, Clemens Schiestl, Kathrin Neuhaus, Melinda Farkas, Jivko Kamarachev, Daniel Rittirsch and Sophie Böttcher-Haberzeth
Bioengineering 2024, 11(12), 1270; https://doi.org/10.3390/bioengineering11121270 - 14 Dec 2024
Viewed by 1209
Abstract
For pediatric patients with full-thickness burns, achieving adequate dermal regeneration is essential to prevent inelastic scars that may hinder growth. Traditional autologous split-thickness skin grafts alone often fail to restore the dermal layer adequately. This study evaluates the long-term effect of using a [...] Read more.
For pediatric patients with full-thickness burns, achieving adequate dermal regeneration is essential to prevent inelastic scars that may hinder growth. Traditional autologous split-thickness skin grafts alone often fail to restore the dermal layer adequately. This study evaluates the long-term effect of using a NovoSorb® Biodegradable Temporizing Matrix (BTM) as a dermal scaffold in four pediatric patients, promoting dermal formation before autografting. Pediatric burn patients treated at the University Children’s Hospital Zurich between 2020 and 2022 underwent a two-step treatment involving NovoSorb® BTM application, followed by autografting. Histological analysis, conducted through 22 punch biopsies taken up to 2.6 years post-application, demonstrated robust dermal reorganization, with mature epidermal regeneration and stable dermo-epidermal connections. Immunofluorescence staining showed rapid capillary ingrowth, while extracellular matrix components, including collagen and elastic fibers, gradually aligned over time, mimicking normal skin structure. By 2.6 years, the dermal layer displayed characteristics close to uninjured skin, with remnants of NovoSorb® BTM degrading within five months post-application. This study suggests that NovoSorb® BTM facilitates elastic scar formation, offering significant benefits for pediatric patients by reducing functional limitations associated with inelastic scarring. Full article
Show Figures

Figure 1

15 pages, 5760 KiB  
Article
Retinal Dystrophy Associated with Homozygous Variants in NRL
by Jordi Maggi, James V. M. Hanson, Lisa Kurmann, Samuel Koller, Silke Feil, Christina Gerth-Kahlert and Wolfgang Berger
Genes 2024, 15(12), 1594; https://doi.org/10.3390/genes15121594 - 12 Dec 2024
Viewed by 1085
Abstract
Background/Objectives: Neural retina leucine zipper (NRL) is a transcription factor involved in the differentiation of rod photoreceptors. Pathogenic variants in the gene encoding NRL have been associated with autosomal dominant retinitis pigmentosa and autosomal recessive clumped pigmentary retinal degeneration. Only a dozen [...] Read more.
Background/Objectives: Neural retina leucine zipper (NRL) is a transcription factor involved in the differentiation of rod photoreceptors. Pathogenic variants in the gene encoding NRL have been associated with autosomal dominant retinitis pigmentosa and autosomal recessive clumped pigmentary retinal degeneration. Only a dozen unrelated families affected by recessive NRL-related retinal dystrophy have been described. The purpose of this study was to expand the genotypic spectrum of this disease by reporting clinical and genetic findings of two unrelated families. Methods: Index patients affected by retinal dystrophy were genetically tested by whole-exome sequencing (WES) and whole-genome sequencing (WGS). Segregation analysis within the families was performed for candidate variants. A minigene assay was performed to functionally characterize a variant suspected to affect splicing. Results: Variant filtering revealed homozygous NRL variants in both families. The variant in patient A was a small deletion encompassing the donor splice site of exon 1 of transcript NM_006177.3. The minigene assay revealed that this variant led to two aberrant transcripts that used alternative cryptic donor splice sites located in intron 1. In patient B, a stop-gain variant was identified in the last exon of NRL in a homozygous state due to maternal uniparental disomy of chromosome 14. Conclusions: Our study expands the genotypic spectrum of autosomal recessive NRL-related retinal dystrophy. Moreover, it underscores the importance of actively maintaining bioinformatic pipelines for variant detection and the utility of minigene assays in functionally characterizing candidate splicing variants. Full article
(This article belongs to the Special Issue Study of Inherited Retinal Diseases—Volume II)
Show Figures

Figure 1

21 pages, 28976 KiB  
Article
Interaction of the Shock Train Leading Edge and Filamentary Plasma in a Supersonic Duct
by Loren C. Hahn, Philip A. Lax, Scott C. Morris and Sergey B. Leonov
Fluids 2024, 9(12), 291; https://doi.org/10.3390/fluids9120291 - 7 Dec 2024
Cited by 1 | Viewed by 739
Abstract
Quasi-direct current (Q-DC) filamentary electrical discharges are used to control the shock train in a back-pressured Mach 2 duct flow. The coupled interaction between the plasma filaments and the shock train leading edge (STLE) is studied for a variety of boundary conditions. Electrical [...] Read more.
Quasi-direct current (Q-DC) filamentary electrical discharges are used to control the shock train in a back-pressured Mach 2 duct flow. The coupled interaction between the plasma filaments and the shock train leading edge (STLE) is studied for a variety of boundary conditions. Electrical parameters associated with the discharge are recorded during actuation, demonstrating a close correlation between the STLE position and dynamics. High-speed self-aligned focusing schlieren (SAFS) and high frame-rate color camera imaging are the primary optical diagnostics used to study the flowfield and plasma morphology. Shock tracking and plasma characterization algorithms are employed to extract time-resolved quantitative data during shock–plasma interactions. Four distinct shock–plasma interaction types are identified and outlined, revealing a strong dependence on the spacing between the uncontrolled STLE and discharge electrodes and a moderate dependence on flow parameters. Full article
(This article belongs to the Special Issue High Speed Flows, 2nd Edition)
Show Figures

Figure 1

18 pages, 6729 KiB  
Article
Experimental Study on Ignition and Pressure-Gain Achievement in Low-Vacuum Conditions for a Pulsed Detonation Combustor
by Andrei Vlad Cojocea, Mihnea Gall, George Ionuț Vrabie, Tudor Cuciuc, Ionuț Porumbel, Gabriel Ursescu and Daniel Eugeniu Crunţeanu
Technologies 2024, 12(12), 252; https://doi.org/10.3390/technologies12120252 - 2 Dec 2024
Viewed by 1760
Abstract
Pressure-gain combustion (PGC) represents a promising alternative to conventional propulsion systems for interplanetary travel due to its key advantages, including higher thermodynamic efficiency, increased specific impulse, and more compact engine designs. However, to elevate this technology to a sufficient technology readiness level (TRL) [...] Read more.
Pressure-gain combustion (PGC) represents a promising alternative to conventional propulsion systems for interplanetary travel due to its key advantages, including higher thermodynamic efficiency, increased specific impulse, and more compact engine designs. However, to elevate this technology to a sufficient technology readiness level (TRL) for practical application, extensive experimental validation, particularly under vacuum conditions, is essential. This study focuses on the performance of a pulsed-detonation combustor (PDC) under near-vacuum conditions, with two primary objectives: to assess the combustor’s ignition capabilities and to characterize the shock wave behavior at the exit plane. To achieve these objectives, high-frequency pressure sensors are strategically positioned within both the vacuum chamber and the combustor prototype to capture the pressure cycles during operation, providing insights into pressure augmentation over a period of approximately 0.5 s. Additionally, the Schlieren visualization technique is employed to analyze and interpret the flow structures of the exhaust jet. The combination of these experimental methods enables a comprehensive understanding of the ignition dynamics and the development of shock waves, contributing valuable data to advance PGC technology for space-exploration applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

19 pages, 2754 KiB  
Article
Rescue of Aberrant Splicing Caused by a Novel Complex Deep-intronic ABCA4 Allele
by Jordi Maggi, Silke Feil, Jiradet Gloggnitzer, Kevin Maggi, James V. M. Hanson, Samuel Koller, Christina Gerth-Kahlert and Wolfgang Berger
Genes 2024, 15(12), 1503; https://doi.org/10.3390/genes15121503 - 23 Nov 2024
Viewed by 1119
Abstract
Background/Objectives: Stargardt disease (STGD1) is an autosomal recessive disorder caused by pathogenic variants in ABCA4 that affects the retina and is characterised by progressive central vision loss. The onset of disease manifestations varies from childhood to early adulthood. Methods: Whole exome (WES), whole [...] Read more.
Background/Objectives: Stargardt disease (STGD1) is an autosomal recessive disorder caused by pathogenic variants in ABCA4 that affects the retina and is characterised by progressive central vision loss. The onset of disease manifestations varies from childhood to early adulthood. Methods: Whole exome (WES), whole gene, and whole genome sequencing (WGS) were performed for a patient with STGD1. Results: WES revealed a heterozygous pathogenic missense variant in ABCA4, but no second pathogenic variant was found. ABCA4 whole-gene sequencing, subsequent WGS, and segregation analysis identified a complex deep-intronic allele (NM_000350.2(ABCA4):c.[1555-5882C>A;1555-5784C>G]) in trans to the missense variant. Minigene assays combined with nanopore sequencing were performed to characterise this deep-intronic complex allele in more detail. Surprisingly, the reference minigene revealed the existence of two pseudoexons in intron 11 of the ABCA4 gene that are included in low-abundance (<1%) transcripts. Both pseudoexons could be confirmed in cDNA derived from wildtype retinal organoids. Despite mild splicing predictions, the variant minigene revealed that the complex deep-intronic allele substantially increased the abundance of transcripts that included the pseudoexon overlapping with the variants. Two antisense oligonucleotides (AONs) were designed to rescue the aberrant splicing events. Both AONs increased the proportion of correctly spliced transcripts, and one of them rescued correct splicing to reference levels. Conclusions: Minigene assays combined with nanopore sequencing proved instrumental in identifying low-abundance transcripts including pseudoexons from wildtype ABCA4 intron 11, one of which was substantially increased by the complex allele. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

Back to TopTop