Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = Si-DLC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3116 KB  
Article
A Study on the Structure and Properties of NiCr-DLC Films Prepared by Filtered Cathodic Vacuum Arc Deposition
by Bo Zhang, Lan Zhang, Shuai Wu, Xue Peng, Xiaoping Ouyang, Bin Liao and Xu Zhang
Coatings 2025, 15(10), 1136; https://doi.org/10.3390/coatings15101136 - 1 Oct 2025
Viewed by 223
Abstract
Diamond-like carbon (DLC) films are valued for their high hardness and wear resistance, but their application in harsh environments is limited by high internal stress and poor corrosion resistance. Co-doping with transition metals offers a promising route to overcome these drawbacks by tailoring [...] Read more.
Diamond-like carbon (DLC) films are valued for their high hardness and wear resistance, but their application in harsh environments is limited by high internal stress and poor corrosion resistance. Co-doping with transition metals offers a promising route to overcome these drawbacks by tailoring microstructure and enhancing multifunctional performance. However, the synergistic effects of Ni and Cr co-doping in DLC remain underexplored. In this study, Ni and Cr co-doped DLC (NiCr-DLC) films were fabricated using filtered cathodic vacuum arc deposition (FCVAD). By varying the C2H2 flow rate, the carbon content and microstructure evolved from columnar to fine-grained and compact structures. The optimized film (F55) achieved an ultralow surface roughness (Sa = 0.26 nm), even smoother than the Si substrate. The Ni–Cr co-doping promoted a nanocomposite structure, yielding a maximum hardness of 15.56 GPa and excellent wear resistance (wear rate: 4.45 × 10−7 mm3/N·m). Electrochemical tests revealed significantly improved corrosion resistance compared to AISI 304L stainless steel, with F55 exhibiting the highest corrosion potential, the lowest current density, and the largest impedance modulus. This work demonstrates that Ni-Cr co-doping effectively enhances the mechanical and corrosion properties of DLC films while improving surface quality, providing a viable strategy for developing robust, multifunctional protective coatings for demanding applications in aerospace, automotive, and biomedical systems. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 11190 KB  
Article
Enhancing Adhesion of Si-Doped Diamond-like Carbon Coatings on Carbon Steel via Laser Cladding
by Ming Gong, Haitao Li, Mingzhong Wu and Peng Lv
Coatings 2025, 15(10), 1121; https://doi.org/10.3390/coatings15101121 - 26 Sep 2025
Viewed by 290
Abstract
A duplex coating system, consisting of a laser-cladded Fe-Cr-based interlayer and a silicon-doped diamond-like carbon (Si-DLC) top layer, was deposited on medium carbon steel substrate using laser cladding (LC) followed by plasma-enhanced chemical vapor deposition (PECVD). The LC interlayer (thickness of 1.5 mm, [...] Read more.
A duplex coating system, consisting of a laser-cladded Fe-Cr-based interlayer and a silicon-doped diamond-like carbon (Si-DLC) top layer, was deposited on medium carbon steel substrate using laser cladding (LC) followed by plasma-enhanced chemical vapor deposition (PECVD). The LC interlayer (thickness of 1.5 mm, hardness of 455–620 HV0.3) was applied on both argon ion-etched and non-etched substrate surfaces. The microstructure and adhesion strength of the coatings were systematically investigated. The results show that the LC interlayer significantly enhanced the mechanical support for the Si-DLC coating, increasing adhesion strength by 4~5 times compared to direct deposition. Argon ion etching introduced micro-roughened surface features, increasing interfacial contact area and further boosting adhesion. A synergistic effect was observed between substrate hardness and ion etching in enhancing Si-DLC coating adhesion. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

15 pages, 11891 KB  
Article
Investigation of the Microstructure and Properties of Cage-Shaped Hollow Cathode Bias Voltage Modulated Si-Doped DLC Thick Film
by Ming Gong, Haitao Li, Mingzhong Wu and Peng Lv
Coatings 2025, 15(8), 930; https://doi.org/10.3390/coatings15080930 - 8 Aug 2025
Cited by 1 | Viewed by 530
Abstract
To mitigate the high residual stress inherent in single-layer diamond-like carbon (DLC) films, we fabricate alternating soft/hard multilayer DLC thick films using a cage-type hollow cathode plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure, mechanical properties, and corrosion resistance of these films were [...] Read more.
To mitigate the high residual stress inherent in single-layer diamond-like carbon (DLC) films, we fabricate alternating soft/hard multilayer DLC thick films using a cage-type hollow cathode plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure, mechanical properties, and corrosion resistance of these films were systematically investigated. Periodic film structures were characterized via scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM), and X-Ray photoelectron spectroscopy (XPS). Adhesion and hardness were evaluated using a scratch tester and a nanoindentation tester, respectively, while corrosion resistance was assessed by dynamic potential polarization tests in a 3.5 wt% NaCl solution. Findings indicate that as the modulation period of the Si-DLC films increases, a greater proportion of high-energy carbon particles penetrate the non-biased layer under workpiece bias, ultimately disrupting the layered structure in the 90-layer film. This results in densification, reflected in three key improvements: (1) an increase in sp3-bonded carbon content and enhanced smoothness, (2) enhanced adhesion (from 34 N to 46 N) and nanohardness (from 4.94 GPa to 8.41 GPa), and (3) a tenfold reduction in corrosion current density (icorr) compared to single-layer Si-DLC films. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 7306 KB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 822
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

22 pages, 6755 KB  
Article
Structural, Mechanical, and Tribological Properties of Molybdenum-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Krisjanis Smits, Anatolijs Sarakovskis and Liutauras Marcinauskas
Crystals 2025, 15(5), 463; https://doi.org/10.3390/cryst15050463 - 15 May 2025
Cited by 1 | Viewed by 2736
Abstract
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of [...] Read more.
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of chemical bonds, friction force at nanoscale, and nanohardness of the DLC coatings were investigated by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nanoindenter, respectively. The concentration of molybdenum in the films varies from 1.2 at.% to 10.3 at.%. The increase in molybdenum content promotes the graphitization of DLC films, lowering the sp3 site fraction and increasing the oxygen content, which contributes to the reduction in nanohardness (by 21%) of the DLC films. The decrease in the synthesis temperature from 235 °C to 180 °C enhanced the oxygen amount up to 20.4 at.%. The sp3 site fraction and nanohardness of the Mo-DLC films were enhanced with the reduction in the deposition temperature. The film deposited at a substrate temperature of 235 °C exhibited the lowest friction coefficient (CoF) of 0.03, where its molybdenum concentration was 1.2 at.%. The decline in the synthesis temperature increased the CoF of the Mo-DLC films up to seven times. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

21 pages, 6806 KB  
Article
Increasing the Wear Resistance of Stamping Tools for Coordinate Punching of Sheet Steel Using CrAlSiN and DLC:Si Coatings
by Sergey N. Grigoriev, Marina A. Volosova, Ilya A. Korotkov, Vladimir D. Gurin, Artem P. Mitrofanov, Sergey V. Fedorov and Anna A. Okunkova
Technologies 2025, 13(1), 30; https://doi.org/10.3390/technologies13010030 - 12 Jan 2025
Viewed by 2319
Abstract
The punching of holes or recesses on computer numerical control coordinate presses occurs in sheets at high speeds (up to 1200 strokes/min) with an accuracy of ~0.05 mm. One of the most effective approaches to the wear rate reduction of stamping tools is [...] Read more.
The punching of holes or recesses on computer numerical control coordinate presses occurs in sheets at high speeds (up to 1200 strokes/min) with an accuracy of ~0.05 mm. One of the most effective approaches to the wear rate reduction of stamping tools is the use of solid lubricants, such as wear-resistant coatings, where the bulk properties of the tool are combined with high microhardness and lubricating ability to eliminate waste disposal and remove oil contaminants from liquid lubricants. This work describes the efficiency of complex CrAlSiN/DLC:Si coatings deposited using a hybrid unit combining physical vapor deposition and plasma-assisted chemical vapor deposition technologies to increase the wear resistance of a punch tool made of X165CrMoV12 die steel during coordinate punching of 4.0 mm thick 41Cr4 carbon structural steel sheets. The antifriction layer of DLC:Si allows for minimizing the wear under thermal exposure of 200 °C. The wear criterion of the lateral surface was 250 μm. The tribological tests allow us to consider the CrAlSiN/DLC:Si coatings as effective in increasing the wear resistance of stamping tools (21,000 strokes for the uncoated tool and 48,000 strokes for the coated one) when solving a wide range of technological problems in sheet stamping of structural steels. Full article
Show Figures

Figure 1

18 pages, 18179 KB  
Article
Improving the Wear and Corrosion Resistance of Titanium Alloy Parts via the Deposition of DLC Coatings
by Alexander Metel, Catherine Sotova, Sergey Fyodorov, Valery Zhylinski, Vadzim Chayeuski, Filipp Milovich, Anton Seleznev, Yuri Bublikov, Kirill Makarevich and Alexey Vereschaka
C 2024, 10(4), 106; https://doi.org/10.3390/c10040106 - 16 Dec 2024
Cited by 5 | Viewed by 2824
Abstract
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, [...] Read more.
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, ensuring the formation of a chromium-saturated diffusion surface layer in the substrate. A Si-DLC layer followed by a pure DLC layer was then deposited. The hardness of the coatings, their surface morphology, fracture strength in the scratch test, and tribological properties and wear resistance in the pin-on-disk test in contact with Al2O3 and steel indenters were investigated. The structure of the DLC coating was studied using transmission electron microscopy, and its corrosion resistance in an environment simulating blood plasma was also investigated. In the pin-on-disk test in contact with Al2O3 and AISI 52100 indenters, the DLC-coated sample demonstrates a much lower friction coefficient and significantly better wear resistance compared to the nitride-coated and uncoated samples. Both nitride coatings—(Zr,Hf)N and ZrN—and the DLC coating slow down the corrosive dissolution of the base compared to the uncoated sample. The corrosion currents of the (Zr,Hf)N-coated samples are 37.01 nA/cm2, 20% higher than those of the ZrN-coated samples. The application of (Zr,Hf)N, ZrN, and DLC coatings on the Ti-6Al-4V alloy significantly inhibits dissolution currents (by 30–40%) and increases polarization resistance 1.5–2.0-fold compared to the uncoated alloy in 0.9% NaCl at 40 °C. Thus, the DLC coating of the described structure simultaneously provides effective wear and corrosion resistance in an environment simulating blood plasma. This coating can be considered in the manufacture of medical products (in particular, implants) from titanium alloys, including those functioning in the human body and subject to mechanical wear (e.g., knee joint endoprostheses). Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Figure 1

21 pages, 3722 KB  
Article
X-Ray Photoelectron Spectroscopy of TixAl and TixAl/A-Si:H Interlayer with Different Thicknesses on Stainless Steel to Enhancing Adhesion of DLC Films
by W. S. Hincapie Campos, J. M. Gutiérrez Bernal, G. Capote and V. J. Trava-Airoldi
Coatings 2024, 14(11), 1393; https://doi.org/10.3390/coatings14111393 - 1 Nov 2024
Viewed by 1788
Abstract
In this research, two intermediate layers were deposited on 316L stainless steel to improve the adhesion of diamond-like carbon (DLC) films, one composed of TixAl and produced using the RF sputtering technique with three thicknesses, 100 nm, 200 nm, and 300 [...] Read more.
In this research, two intermediate layers were deposited on 316L stainless steel to improve the adhesion of diamond-like carbon (DLC) films, one composed of TixAl and produced using the RF sputtering technique with three thicknesses, 100 nm, 200 nm, and 300 nm; the other, interlayer composed of amorphous hydrogenated silicon (a-Si:H). The DLC films were deposited using the pulsed-DC PECVD method with an active screen to achieve the AISI 316L/TixAl//DLC and AISI 316L/TiₓAl/a-Si/DLC configurations. The binding energy between the substrate/TixAl and TixAl/a-Si:H was investigated via X-ray photoelectron spectroscopy with high-resolution spectra. The chemical composition and microstructure of the titanium–aluminum interlayers were investigated using energy-dispersive X-ray spectroscopy and X-ray diffraction, and the microstructure of the DLC coatings was studied using Raman spectroscopy. The coatings’ adherence was measured using scratch and indentation tests, and the hardness of the DLC coatings was determined with the nanoindentation test. The X-ray diffractograms did not allow the determination of any crystalline structure in the TixAl interlayers. The XPS results showed that between the AISI 316L substrate and the TixAl intermediate layer, Ti-O-Fe and FeAl2O4 were formed. On the other hand, at the TixAl/a-Si:H interface, TiSi2 and Al2SiO5 compounds were identified. The DLC coatings grew as hydrogenated amorphous carbon with a hydrogen content of around 30 at.% and a hardness of 24 GPa. The deposition methods used and the TixAl/a-Si:H interlayers allowed the obtainment of adherent DLC coatings on AISI 316L stainless steel substrates. High critical load values of about 30 N were obtained. The novelty of this work is underscored by the absence of previous studies that thoroughly examine the bonds present in interlayers used as gradients to enhance the adhesion of DLC. Full article
Show Figures

Figure 1

11 pages, 3907 KB  
Article
The Influence of Deposition Temperature on the Microscopic Process of Diamond-like Carbon (DLC) Film Deposition on a 2024 Aluminum Alloy Surface
by Li Yang, Tong Li, Baihui Shang, Lili Guo, Tong Zhang and Weina Han
Crystals 2024, 14(11), 950; https://doi.org/10.3390/cryst14110950 - 31 Oct 2024
Viewed by 1364
Abstract
In this experiment, plasma-enhanced chemical vapor deposition technology was used to deposit diamond-like carbon thin films on the surface of a 2024 aluminum alloy. The effects of deposition temperature on the microstructure, carbon, silicon, and aluminum element distribution, and film substrate adhesion of [...] Read more.
In this experiment, plasma-enhanced chemical vapor deposition technology was used to deposit diamond-like carbon thin films on the surface of a 2024 aluminum alloy. The effects of deposition temperature on the microstructure, carbon, silicon, and aluminum element distribution, and film substrate adhesion of diamond-like carbon thin films were studied using field emission scanning electron microscopy, energy-dispersive spectroscopy, XRD, scratch gauge, and ultra-depth-of-field microscopy. The results showed that with the increase in deposition temperature, the thickness of DLC film decreased from 8.72 μm to 5.37 μm, and the film bonded well with the substrate. There is a clear transition layer containing silicon elements between the DLC film and the aluminum alloy substrate. The transition layer is a solid solution formed by aluminum and silicon elements, which increases the bonding strength between the film and substrate. C-Si and C-C exist in the form of covalent bonds and undergo orbital hybridization, making the DLC film more stable. When the deposition temperature exceeds the aging temperature of a 2024 aluminum alloy, it will affect the properties of the aluminum alloy substrate. Therefore, the deposition temperature should be below the aging temperature of the 2024 aluminum alloy for coating. At a deposition temperature of 100 °C, the maximum membrane substrate bonding force is 14.45 N. When a continuous sound signal appears and the friction coefficient is the same as that of the substrate, the film is completely damaged. From the super-depth map of the scratch morphology, it can be seen that, at a deposition temperature of 100 °C, a small amount of thin film detachment appears around the scratch. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 4332 KB  
Article
Comparative Analysis of Cutting Forces in CNC Milling of MDF: The Role of Tool Coatings, Cutting Speed, and Feed Per Tooth
by Luďka Hanincová, Jiří Procházka and Vít Novák
Coatings 2024, 14(9), 1085; https://doi.org/10.3390/coatings14091085 - 23 Aug 2024
Cited by 4 | Viewed by 2140
Abstract
This study investigates the influence of various tool coatings, cutting speeds, and feed per tooth values on cutting forces during the CNC milling of Medium Density Fiberboard (MDF). The coatings tested include reference, TripleSi, Hyperlox, DLC, and lapped coatings. Experiments were conducted using [...] Read more.
This study investigates the influence of various tool coatings, cutting speeds, and feed per tooth values on cutting forces during the CNC milling of Medium Density Fiberboard (MDF). The coatings tested include reference, TripleSi, Hyperlox, DLC, and lapped coatings. Experiments were conducted using an SCM Morbidelli m100 CNC milling machine under controlled conditions. Cutting speeds were set at 8, 10, and 12 m/s, while feed per tooth values were varied at 0.1, 0.2, and 0.3 mm. Cutting forces were measured using a three-axis piezoelectric dynamometer Kistler, and the data were analyzed to determine the impact of these variables on cutting performance. The results revealed that while cutting speed had a minimal effect on cutting forces, feed per tooth significantly influenced them, with higher values of feed per tooth leading to increased forces. Among the coatings, lapped and TripleSi exhibited the lowest cutting forces, whereas DLC showed the highest. Statistical analysis, including ANOVA and Scheffé tests, confirmed the significant differences between the coatings and highlighted the superior performance of the lapped and TripleSi coatings in reducing cutting forces. Full article
Show Figures

Figure 1

12 pages, 3290 KB  
Article
Anti-Corrosion SiOx-Doped DLC Coating for Raster Steel Linear Scales
by Algirdas Lazauskas, Viktoras Grigaliūnas, Dalius Jucius, Šarūnas Meškinis, Mindaugas Andrulevičius, Asta Guobienė, Andrius Vasiliauskas and Albinas Kasparaitis
Coatings 2024, 14(7), 818; https://doi.org/10.3390/coatings14070818 - 1 Jul 2024
Cited by 2 | Viewed by 1785
Abstract
In this study, we investigated the efficacy of SiOx-doped diamond-like carbon (DLC) films for enhancing the corrosion resistance of raster steel linear scales. The research work highlights the significant role of DLC film materials in enhancing corrosion resistance, making them a [...] Read more.
In this study, we investigated the efficacy of SiOx-doped diamond-like carbon (DLC) films for enhancing the corrosion resistance of raster steel linear scales. The research work highlights the significant role of DLC film materials in enhancing corrosion resistance, making them a promising solution for various industrial applications. The Raman spectroscopy analysis of SiOx-doped DLC films, synthesized via a direct ion beam technique with HMDSO vapor, revealed prominent D and G bands characteristic of amorphous carbon materials, with a high degree of disorder indicated by an ID/IG ratio of 1.85. X-ray diffraction patterns confirmed the amorphous nature of the SiOx-doped DLC films and the minimal impact of the DLC deposition process on the underlying crystalline structure of steel. UV–Vis-NIR reflectance spectra of SiOx-doped DLC on stainless steel demonstrated improvements in the blue wavelength region compared to stainless steel with ripples alone, which is beneficial for applications utilizing blue light. Corrosion tests, including immersion in a 5% salt solution and salt spray testing, showed that SiOx-doped DLC-coated stainless steel exhibited superior corrosion resistance compared to uncoated steel, with no significant signs of corrosion observed after extended exposure. These findings underscore the potential of SiOx-doped DLC coatings to provide long-term corrosion protection and maintain the structural integrity and surface quality of steel components in harsh environments. Full article
Show Figures

Figure 1

12 pages, 4336 KB  
Article
The Induced Orientation of Hydroxypropyl Methylcellulose Coating for Ultralow Wear
by Haosheng Pang, Jianxun Xu, Huan Liu, Wenjuan Wang, Xuan Yin, Dameng Liu and Bing Zhang
Lubricants 2024, 12(4), 129; https://doi.org/10.3390/lubricants12040129 - 15 Apr 2024
Cited by 2 | Viewed by 3759
Abstract
This study investigated the frictional properties of HPMC under different load and concentration conditions through friction experiments and surface characterization. The study aimed to explore and reveal the influence of load and concentration on the frictional properties of HPMC, as well as its [...] Read more.
This study investigated the frictional properties of HPMC under different load and concentration conditions through friction experiments and surface characterization. The study aimed to explore and reveal the influence of load and concentration on the frictional properties of HPMC, as well as its anti−wear mechanism. The results of the study indicated that under the same solution concentration, the effect of load on the friction coefficient of HPMC was not significant. Specifically, for samples with low concentration (C−0.2), the wear ratio of HPMC under a 4 N load (1.01 × 10−11 mm3·N−1·m−1) was significantly lower than the wear ratio under a 2 N load (1.71 × 10−10 mm3·N−1·m−1). The orientation−driven formation of graphite−like carbon nanosheets, initiated by the decomposition of HPMC short chains, created a tribofilm−containing organic−chain mixed nanosheet on the sliding contact surface, which prevented direct contact between the upper and lower friction pairs. This achieved the anti−wear mechanism of two−body wear (tribo−film of an mDLC−coated ball and tribo−film of a GLC−coated Si wafer), ultimately leading to a state of ultra−low wear at the interface. The excellent anti−wear performance of HPMC suggests its potential as a candidate for the next generation of environmentally friendly bio−based solid lubricants. Full article
Show Figures

Figure 1

14 pages, 6273 KB  
Article
Investigation of the Tribological Properties and Corrosion Resistance of Multilayer Si-DLC Films on the Inner Surfaces of N80 Steel Pipes
by Shaolong Wang, Guangan Zhang, Anqing Fu, Xueqian Cao, Chengxian Yin and Zhengyu Liu
Coatings 2024, 14(4), 385; https://doi.org/10.3390/coatings14040385 - 25 Mar 2024
Cited by 1 | Viewed by 1588
Abstract
In order to solve the problem of the corrosion and wear of N80 metal pipelines exposed to corrosive media and abrasive sand during the development of petroleum resources, the proposed solution involves utilizing HC-PECVD technology to deposit a series of multilayer Si-DLC films [...] Read more.
In order to solve the problem of the corrosion and wear of N80 metal pipelines exposed to corrosive media and abrasive sand during the development of petroleum resources, the proposed solution involves utilizing HC-PECVD technology to deposit a series of multilayer Si-DLC films with varying thicknesses on the inner surfaces of the N80 steel pipes. This investigation systematically explored the microstructure, mechanical properties, tribological features, and corrosion resistance of the multilayer Si-DLC films. Remarkably, after coating the multilayer (Si-DLC)40 film on the inner wall of the N80 tube, the friction coefficient decreased from 0.7~0.75 to 0.2~3, and the wear rate decreased by two orders of magnitude. In addition, the corrosion current decreased by 50%, and the impedance doubled in a 3.5 wt% NaCl solution saturated with CO2. Thus, the multilayer (Si-DLC)40 film on the inner wall of the N80 tube exhibited superior tribological properties and exceptional corrosion resistance. These findings are anticipated to furnish valuable data and technical insights for mitigating corrosion in N80 steel pipes during petroleum exploitation. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

12 pages, 15224 KB  
Article
Enhanced Wear and Corrosion Resistance of AZ91 Magnesium Alloy via Adherent Si-DLC Coating with Si-Interlayer: Impact of Biasing Voltage
by Changqing Cui and Chunyan Yang
Coatings 2024, 14(3), 341; https://doi.org/10.3390/coatings14030341 - 13 Mar 2024
Cited by 7 | Viewed by 1811
Abstract
Magnesium alloys are the lowest-density structural metals with a wide range of applications, such as aircraft skins, engine casings and automobile hubs. However, its low surface hardness and non-corrosion resistance in natural environments limit its wide range of applications. In this work, Si-DLC [...] Read more.
Magnesium alloys are the lowest-density structural metals with a wide range of applications, such as aircraft skins, engine casings and automobile hubs. However, its low surface hardness and non-corrosion resistance in natural environments limit its wide range of applications. In this work, Si-DLC coatings (Si: 15 at.%) are fabricated on AZ91 alloy using a hollow cathode discharge combined with a DC bias voltage from 0 to −300 V to increase the deposition rate and modulate the structure and properties of the coatings. The Si interlayer with a thickness of around 0.6 µm is deposited first to enhance the adhesion. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy are used to investigate the effect of DC bias on the microstructure evolution of Si-DLC coatings. Meanwhile, corrosion and wear resistance of the coatings at various bias voltages have been investigated using electrochemical workstations and pin-on-desk wear testers. It is shown that the bias-free coating has a loose structure and is less resistant to corrosion and wear. The bias coating has a compact structure, small carbon cluster size, high chloride ion corrosion resistance, and high wear resistance against Al2O3 spheres. The corrosion potential of the coating bias at −300 V is −0.98 V, the corrosion current density is 1.35 × 10−6 A·cm−2, the friction coefficient is 0.08, and the wear rate is 10−8 orders of magnitude. The formation of SiC nanocrystals and high sp3-C, as well as the formation of transfer films on the surface of their counterparts, are the main reasons for the ultra-high wear resistance of the bias coatings. The wear rate, coefficient of friction, and corrosion rate of the coating are 0.0069 times, 0.2 times, and 0.0088 times that of the AZ91 alloy, respectively. However, the bias coating has only short to medium-term protection against the magnesium alloy and no long-term protection due to cracks caused by its high internal stress. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 11551 KB  
Article
Wear of Carbide Plates with Diamond-like and Micro-Nano Polycrystalline Diamond Coatings during Interrupted Cutting of Composite Alloy Al/SiC
by Evgeny E. Ashkinazi, Sergey V. Fedorov, Artem K. Martyanov, Vadim S. Sedov, Roman A. Khmelnitsky, Victor G. Ralchenko, Stanislav G. Ryzhkov, Andrey A. Khomich, Mikhail A. Mosyanov, Sergey N. Grigoriev and Vitaly I. Konov
J. Manuf. Mater. Process. 2023, 7(6), 224; https://doi.org/10.3390/jmmp7060224 - 8 Dec 2023
Cited by 5 | Viewed by 2693
Abstract
The complexity of milling metal matrix composite alloys based on aluminum like Al/SiC is due to their low melting point and high abrasive ability, which causes increased wear of carbide tools. One of the effective ways to improve its reliability and service life [...] Read more.
The complexity of milling metal matrix composite alloys based on aluminum like Al/SiC is due to their low melting point and high abrasive ability, which causes increased wear of carbide tools. One of the effective ways to improve its reliability and service life is to modify the surface by plasma chemical deposition of carbon-based multilayer functional layers from vapor (CVD) with high hardness and thermal conductivity: diamond-like (DLC) or polycrystalline diamond (PCD) coatings. Experiments on an indexable mill with CoroMill 200 inserts have shown that initial tool life increases up to 100% for cases with DLC and up to 300% for multilayered MCD/NCD films at a cutting speed of 800 m/min. The primary mechanism of wear of a carbide tool in this cutting mode was soft abrasion, when wear on both the rake and flank surfaces occurred due to the extrusion of cobalt binder between tungsten carbide grains, followed by their loss. Analysis of the wear pattern of plates with DLC and MCD/NCD coatings showed that abrasive wear begins to prevail against the background of soft abrasion. Adhesive wear is also present to a lesser extent, but there is no chipping of the base material from the cutting edge. Full article
Show Figures

Figure 1

Back to TopTop