Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Sinonovacula constricta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3246 KB  
Article
Genome-Wide Analysis Reveals Expansion and Positive Selection of Monocarboxylate Transporter Genes Linked to Enhanced Salinity and Ammonia Tolerance in Sinonovacula constricta
by Yiping Meng, Liyuan Lv, Hanhan Yao, Zhihua Lin and Yinghui Dong
Animals 2025, 15(6), 795; https://doi.org/10.3390/ani15060795 - 11 Mar 2025
Cited by 1 | Viewed by 712
Abstract
Our previous genome analysis of Sinonovacula constricta revealed an expansion of the monocarboxylate transporter gene family, which is crucial for metabolic dynamic balance and intracellular pH regulation. To further elucidate the role of these expanded MCT genes in response to variable environmental conditions, [...] Read more.
Our previous genome analysis of Sinonovacula constricta revealed an expansion of the monocarboxylate transporter gene family, which is crucial for metabolic dynamic balance and intracellular pH regulation. To further elucidate the role of these expanded MCT genes in response to variable environmental conditions, we conducted a comprehensive genome-wide identification, phylogenetic evolution and expression analysis. In this study, 16 sodium-coupled monocarboxylate transporter genes (designated as ScSMCTs) and 54 proton-coupled monocarboxylate transporter genes (designated as ScMCTs) were identified from the S. constricta genome. The results of gene number comparison indicated significant expansion of ScSMCTs and ScMCTs in mollusks compared to vertebrates, likely due to tandem repeats and dispersed duplications in S. constricta. The syntenic analysis demonstrated that the razor-clam MCT genes had the highest number of homologous gene pairs with Meretrix meretrix. The phylogenetic tree showed that MCT and SMCT proteins were distinctly clustered in two large branches. Moreover, positive selection analysis revealed three positive selection sites in the MCT amino acid sequences sites. Multi-transcriptome analyses and the temporal expression patterns displayed that ScSMCTs and ScMCTs play distinct roles in response to salinity and ammonia stressors. It is worth noting that the majority of these genes involved in abiotic stresses belong to MCTs. Overall, our findings revealed the important roles of ScSMCTs and ScMCTs under abiotic stress, and provided valuable information for the evolution of this family in mollusks, as well as a theoretical basis for the further study of the mechanism and function of this gene family in S. constricta. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 4349 KB  
Article
Effect of Freeze Drying and Hot Air Drying on the Composition and Bioactivities of Lipids from Razor Clam Sinonovacula constricta
by Dexu Wang, Runjia Chang, Changyu Liu, Jiaxun Li, Jibin Liu, Ning Li, Yun Zhang, Xiaobin Li, Peihai Li and Kechun Liu
Foods 2025, 14(6), 915; https://doi.org/10.3390/foods14060915 - 7 Mar 2025
Viewed by 1089
Abstract
Razor clams, which are rich in diverse lipids, are notable for their unique health benefits and functional properties. This study comprehensively characterized and compared the composition and bioactivities of razor clam lipids after freeze drying (FD) and hot air drying (HD) using UPLC-MS/MS-based [...] Read more.
Razor clams, which are rich in diverse lipids, are notable for their unique health benefits and functional properties. This study comprehensively characterized and compared the composition and bioactivities of razor clam lipids after freeze drying (FD) and hot air drying (HD) using UPLC-MS/MS-based lipidomics and zebrafish models. Lipidomics analysis identified 1056 lipids classified into five lipid classes, among which glycerophospholipid (GP) was the most abundant, accounting for 57.39% of the total lipids. The total lipids were also grouped into 24 lipid subclasses, including dominated triglycerides, phosphatidylethanolamines, and phosphatidylcholines. Differential lipid species were identified between the FD, HD, and fresh (FS) sample groups, with 174, 141, and 154 species differing between FD vs. FS, HD vs. FS, and FD vs. HD, respectively. The antithrombotic, anti-inflammatory, and antioxidant activities of lipids extracted from FD, HD, and FS razor clams were evaluated using the zebrafish model. Lipids from FD and FS razor clams exhibited all bioactivities at some concentrations, while HD lipids showed antithrombotic and anti-inflammatory activities but lacked antioxidant activity. In summary, the lipid composition and bioactivities of fresh razor clams were altered following FD and HD processes, with significant differences observed between the two methods. These findings underscore the nutritional value of fresh razor clams after processing and provide insights for developing razor clam products. Full article
Show Figures

Figure 1

15 pages, 9087 KB  
Article
Genome-Wide Identification and Expression Analysis of the ALDH Gene Family in Sinonovacula constricta Bivalve in Response to Acute Hypersaline Stress
by Jianing Yu, Biao Wu, Yinghui Dong, Zhihua Lin and Hanhan Yao
Animals 2025, 15(1), 64; https://doi.org/10.3390/ani15010064 - 30 Dec 2024
Cited by 1 | Viewed by 1128
Abstract
The razor clam Sinonovacula constricta, a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)+-dependent superfamily, [...] Read more.
The razor clam Sinonovacula constricta, a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)+-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism. This study presents the first comprehensive analysis of the ALDH family in S. constricta under acute high salt stress conditions and identifies 16 ScALDH genes across 10 subfamilies. These genes are located on eight chromosomes, with tandem duplications observed on chromosome 10; they encode mostly acidic and hydrophilic proteins. Among them, ScALDH18A1 contains a conserved P5CS domain that is implicated in proline synthesis and osmotic regulation. The expression of 14 ScALDH members were significantly altered under acute salt stress conditions, with ScALDH8 and ScALDH18A1 showing increased expression levels, suggesting their involvement in osmotic pressure regulation. This research provides insights into the characteristics, evolution, and response to salinity stress of the ScALDH gene family while shedding light on ALDH function in bivalves, as well as serving as a foundation for further studies on osmotic stress regulation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 3377 KB  
Article
Discovery of Methyl-End Desaturases in Razor Clam Sinonovacula constricta (Lamarck 1818) and Their Spatio-Temporal Expression
by Xinyi Chen, Xiang Fang, Dongzi Yang, Jilin Xu and Zhaoshou Ran
Fishes 2024, 9(9), 359; https://doi.org/10.3390/fishes9090359 - 13 Sep 2024
Cited by 1 | Viewed by 1004
Abstract
Clarifying the biosynthetic pathway of the long-chain polyunsaturated fatty acids (LC-PUFA) of Sinonovacula constricta is essential for utilizing its LC-PUFA resources. Methyl-end (or “ωx”) desaturases are the rate-limiting enzymes in LC-PUFA biosynthesis, catalyzing the conversion of oleic acid to linoleic acid (LA) or [...] Read more.
Clarifying the biosynthetic pathway of the long-chain polyunsaturated fatty acids (LC-PUFA) of Sinonovacula constricta is essential for utilizing its LC-PUFA resources. Methyl-end (or “ωx”) desaturases are the rate-limiting enzymes in LC-PUFA biosynthesis, catalyzing the conversion of oleic acid to linoleic acid (LA) or LA to α-linolenic acid. However, their presence in S. constricta remains uncertain. Herein, we identified two ωx desaturase-like genes within the S. constricta genome, both located on the ninth chromosome possibly due to genome duplication. These genes exhibited nearly identical sequences, differing by only one amino acid, and each encodes a 354-residue peptide with typical ωx desaturase characteristics. Phylogenetic analysis grouped these putative ωx desaturases with similar enzymes from other invertebrates. However, when heterologously expressed in yeast, they exhibited no detectable desaturation activity. This suggests either non-functionality in yeast or extremely subtle desaturation abilities. Additionally, both genes displayed the highest expression in the inhalant siphon rather than in digestive tissues and exhibited relatively high expression throughout the development stages of S. constricta, except in zygotes. These findings suggest potential in vivo functional roles for these ωx desaturases in S. constricta. Collectively, these results significantly enrich our understanding of the repertoire of LC-PUFA biosynthetic enzymes in this important bivalve species. Full article
(This article belongs to the Special Issue Advances in Bivalve Aquaculture)
Show Figures

Figure 1

10 pages, 1393 KB  
Article
Investigating the Impact of Humic Acid on Copper Accumulation in Sinonovacula constricta Using a Toxicokinetic–Toxicodynamic Model
by Mingyi Cai, Tian Ma, Huayong Que, Bo Shi, Xiande Liu and Yizhou Ke
Toxics 2024, 12(1), 74; https://doi.org/10.3390/toxics12010074 - 15 Jan 2024
Cited by 2 | Viewed by 1916
Abstract
In aquatic ecosystems, the interaction between heavy metals and dissolved organic carbon (DOC) plays a pivotal role in modifying the bioavailability of these metals. This study, employing a toxicokinetic–toxicodynamic model, delves into the interactive effects of humic acid (HA), a significant component of [...] Read more.
In aquatic ecosystems, the interaction between heavy metals and dissolved organic carbon (DOC) plays a pivotal role in modifying the bioavailability of these metals. This study, employing a toxicokinetic–toxicodynamic model, delves into the interactive effects of humic acid (HA), a significant component of DOC, on the bioaccumulation and toxicity of copper (Cu) in the estuarine economic bivalve Sinonovacula constricta. Utilizing the stable isotope 65Cu as a tracer, we evaluated Cu uptake in S. constricta under varied DOC concentrations in a controlled laboratory setting. Our findings reveal that at DOC concentrations below 3.05 mg L−1, the bioavailability of Cu is reduced due to shifts in the speciation distribution of Cu, resulting in decreased bioaccumulation within S. constricta. Conversely, at DOC levels exceeding 3.05 mg L−1, the formation of colloidal Cu–HA complexes allows its entry into the bivalves’ digestive system. Moreover, toxicity assays demonstrate an increase in S. constricta survival rates with higher DOC concentrations, suggesting a protective effect of DOC against Cu toxicity. The integration of accumulation and toxicity data infers that Cu–HA complexes, when ingested via the digestive tract, exhibit lower toxicity compared to Cu directly assimilated from the water phase. These findings emphasize the need to consider environmental DOC levels in assessing Cu pollution risks and provide insights for managing heavy metal toxicity in estuarine aquaculture. Full article
Show Figures

Figure 1

11 pages, 4455 KB  
Communication
The Complete Mitochondrial Genome and Phylogenetic Analysis of the Freshwater Shellfish Novaculina chinensis (Bivalvia: Pharidae)
by Ziquan Zhou, Yuxin Song, Zewen Zheng, Yunguang Liu, Haiyan Yao, Xiaozhen Rao and Gang Lin
Int. J. Mol. Sci. 2024, 25(1), 67; https://doi.org/10.3390/ijms25010067 - 20 Dec 2023
Cited by 5 | Viewed by 2161
Abstract
Razor clams, belonging to the Pharidae and Solenidae families, are ecologically and economically important; however, very little research has been conducted on the Pharidae family. The genus Novaculina is a marine-derived freshwater lineage, and Novaculina chinensis is a rare freshwater species of the [...] Read more.
Razor clams, belonging to the Pharidae and Solenidae families, are ecologically and economically important; however, very little research has been conducted on the Pharidae family. The genus Novaculina is a marine-derived freshwater lineage, and Novaculina chinensis is a rare freshwater species of the Pharidae family. In order to understand the phylogenetic relationships of N. chinensis, we sequenced the mitochondrial genome of the genus Novaculina, which is 16,262 bp in length and consists of 12 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (rRNAs). The phylogenetic relationships of 69 Imparidentian mitochondrial genomes (mitogenomes) indicated that N. chineisis is closely related to Sinonovacula constricta of the order Adapedonta. Our study also found that the Ka/Ks ratios of 12 protein-coding genes in the Pharidae family are lower than one, indicating the occurrence of negative purification selection. Morphological observations of the siphons of N. chinensis, Novaculina myanmarensis, and Novaculina gangetica indicate that N. chinensis may be the ancestral clade of the genus Novaculina, which has not been proposed in previous studies. Our study provides useful molecular information on the phylogenetic and evolutionary relationships of Pharidae and also contributes to the conservation and management of the germplasm resources of N. chinensis. Full article
Show Figures

Figure 1

16 pages, 5352 KB  
Article
Genome-Wide Identification of 5-HT Receptor Gene Family in Razor Clam Sinonovacula constricta and Their Circadian Rhythm Expression Analysis
by Qiyi You, Qijun Li, Liyuan Lv, Zhihua Lin, Yinghui Dong and Hanhan Yao
Animals 2023, 13(20), 3208; https://doi.org/10.3390/ani13203208 - 14 Oct 2023
Cited by 5 | Viewed by 1973
Abstract
Serotonin (5-HT) is primarily distributed in the gastrointestinal and central nervous systems, where it plays a crucial role in regulating various physiological functions such as digestion, reproduction and establishing animal emotions. 5-HT is an effective oxytocin widely used in molluscan aquaculture, and its [...] Read more.
Serotonin (5-HT) is primarily distributed in the gastrointestinal and central nervous systems, where it plays a crucial role in regulating various physiological functions such as digestion, reproduction and establishing animal emotions. 5-HT is an effective oxytocin widely used in molluscan aquaculture, and its physiological functions are performed by binding to corresponding 5-HT receptors (5-HTRs). In this study, seven 5-HTR genes of Sinonovacula constricta (Sc5-HTRs) were identified and analyzed, and they were designated as Sc5-HT1A, Sc5-HT1D, Sc5-HT2-1, Sc5-HT2-2, Sc5-HT2-3, Sc5-HT4 and Sc5-HT6. Phylogenetic analysis showed that the seven Sc5-HTRs were conserved among mollusks, and the Sc5-HTRs were all transmembrane proteins. The seven Sc5-HTR genes were distributed on chromosome 1, 2, 13 and 14. After injecting 5-HT, there was a significant increase in mRNA expression levels of Sc5-HT1A (p < 0.05) and Sc5-HT2-3 (p < 0.01), while Sc5-HT4 decreased significantly (p < 0.01) compared to control groups which might be effective 5-HT receptors. Furthermore, two of the receptors (Sc5-HT2-3 and Sc5-HT4) were expressed in the circadian rhythm patterns, indicating their potential influence on the nocturnal spawning of S. constricta. Overall, these findings provide a theoretical basis for understanding the structures and functions of 5-HTR gene family members, and may facilitate the artificial propagation of mollusks. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 3552 KB  
Article
Effects of Three Microalgal Diets Varying in LC-PUFA Composition on Growth, Fad, and Elovl Expressions, and Fatty Acid Profiles in Juvenile Razor Clam Sinonovacula constricta
by Fei Kong, Zhaoshou Ran, Haixuan Xie, Xuxu Tian, Kai Liao and Jilin Xu
Fishes 2023, 8(10), 484; https://doi.org/10.3390/fishes8100484 - 27 Sep 2023
Cited by 7 | Viewed by 1739
Abstract
The razor clam Sinonovacula constricta is the first marine mollusk demonstrated to possess the complete long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic pathway. This study explored the impact of different microalgae on growth, Fad and Elovl expressions, and fatty acid (FA) profiles in juvenile [...] Read more.
The razor clam Sinonovacula constricta is the first marine mollusk demonstrated to possess the complete long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic pathway. This study explored the impact of different microalgae on growth, Fad and Elovl expressions, and fatty acid (FA) profiles in juvenile S. constricta. Results revealed that juveniles fed with Isochrysis galbana (rich in DHA) or Chaetoceros calcitrans (rich in EPA) consistently exhibited higher growth than those fed Chlorella sp. (rich in LA and ALA), underscoring the importance of dietary LC-PUFA in S. constricta’s development. Expression of most Fad and Elovl in C. calcitrans and I. galbana-fed juveniles were initially up-regulated, then down-regulated, suggesting LC-PUFA demand for faster growth. Although Chlorella sp.-fed juveniles exhibited decreased mRNA levels for most genes, levels were notably higher lately compared to those fed C. calcitrans or I. galbana, hinting at potential LC-PUFA biosynthesis induction. FA profiles in S. constricta generally mirrored those in ingested microalgae, implying direct FA accumulation from diets. Some microalgal FA were absent in farmed S. constricta, while others emerged, indicating S. constricta’s ability to selectively accumulate and synthesize FA. This study enhances the understanding of dietary FA metabolism in S. constricta, valuable for selecting appropriate microalgae in its farming practices. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Graphical abstract

17 pages, 4012 KB  
Article
Study on the Microflora Structure in a Litopenaeus vannameiSinonovacula constricta Tandem-Culture Model Based on High-Throughput Sequencing under Different Culture Densities
by Chunpu Zhao, Jilin Xu, Shanliang Xu, Gege Bao and Danli Wang
Fishes 2023, 8(6), 287; https://doi.org/10.3390/fishes8060287 - 26 May 2023
Cited by 3 | Viewed by 1637
Abstract
In this study, we evaluated the intestinal contents of Pacific whiteleg shrimp (Litopenaeus vannamei), the visceral mass of razor clams (Sinonovacula constricta) and the water columns and the substrate sediments in different culture-density groups in a L. vannamei [...] Read more.
In this study, we evaluated the intestinal contents of Pacific whiteleg shrimp (Litopenaeus vannamei), the visceral mass of razor clams (Sinonovacula constricta) and the water columns and the substrate sediments in different culture-density groups in a L. vannameiS. constricta tandem-culture model by high-throughput sequencing of the 16S rRNA gene. The results show that the culture density affected the bacterial floral structure of the water columns, substrate sediment and razor-clam gut masses without making significant differences in the bacterial flora structure of the shrimp gut; the Shannon diversity indexes of the bacterial communities in the substrate sediment, shrimp gut and razor-clam gut masses were not significantly different among the density groups, and the Shannon diversity index of the bacterial communities in the water column was higher in the group with higher culture densities; at the phylum level, the dominant bacteria common to the shrimp guts, razor-clam visceral mass, water columns and substrate sediment were Proteobacteria and Bacteroidetes; Chloroflexi was the dominant bacterium specific to the substrate sediment; and Firmicutes was the dominant bacterium specific to the shrimp gut and razor-clam gut mass. We used national standards (GB 17378.4-2007, China) to evaluate the content of water-quality factors through the environmental factors and the genus-level correlation analysis of bacterial flora that follow: the dominant bacterium in the water column, uncultured_bacterium_f_Rhodobacteraceae, was negatively correlated with PO43−-P; the dominant bacteria in the substrate sediments, uncultured_bacterium_f_Anaerolineaceae and Woeseia, were significantly and negatively correlated with DO; and the dominant bacteria Lactococcus spp. in the razor-clam gut mass and the shrimp intestines were positively correlated with DO. These results show that culture density directly affects water-quality factors, which in turn affect the culture environment and the composition structure of the bacterial flora in a cultured organism. Full article
Show Figures

Figure 1

15 pages, 3564 KB  
Article
Expression and Functional Analysis of AMT1 Gene Responding to High Ammonia Stress in Razor Clam (Sinonovacula constricta)
by Chenxin Hu, Wenfang Dai, Xiaojie Zhu, Hanhan Yao, Zhihua Lin, Yinghui Dong and Liyuan Lv
Animals 2023, 13(10), 1638; https://doi.org/10.3390/ani13101638 - 14 May 2023
Cited by 4 | Viewed by 2316
Abstract
Ammonium transporter 1 (AMT1), a member of ammonia (NH3/NH4+) transport proteins, has been found to have ammonia transport activity in plants and microorganisms. However, the functional characteristics and molecular mechanisms of AMT1 in mollusks remain unclear. The razor [...] Read more.
Ammonium transporter 1 (AMT1), a member of ammonia (NH3/NH4+) transport proteins, has been found to have ammonia transport activity in plants and microorganisms. However, the functional characteristics and molecular mechanisms of AMT1 in mollusks remain unclear. The razor clam (Sinonovacula constricta) is a suitable model species to explore the molecular mechanism of ammonia excretion because of the high concentration of ambient ammonia it is exposed to in the clam–fish–shrimp polyculture system. Here, the expression of AMT1 in S. constricta (Sc-AMT1) in response to high ammonia (12.85 mmol/L NH4Cl) stress was identified by real-time quantitative PCR (qRT-PCR), Western blotting, RNA interference, and immunofluorescence analysis. Additionally, the association between the SNP_g.15211125A > T linked with Sc-AMT1 and ammonia tolerance was validated by kompetitive allele-specific PCR (KASP). A significant upregulated expression of Sc-AMT1 was observed during ammonia exposure, and Sc-AMT1 was found to be localized in the flat cells of gill. Moreover, the interference with Sc-AMT1 significantly upregulated the hemolymph ammonia levels, accompanied by the increased mRNA expression of Rhesus glycoprotein (Rh). Taken together, our findings imply that AMT1 may be a primary contributor to ammonia excretion in S. constricta, which is the basis of their ability to inhabit benthic water with high ammonia levels. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

16 pages, 3636 KB  
Article
mTOR Plays a Conserved Role in Regulation of Nutritional Metabolism in Bivalve Sinonovacula constricta
by Qian Zhang, Yanrong Li, Kai Liao, Deshui Chen, Yangyang Qiu, Xiaojun Yan and Jilin Xu
J. Mar. Sci. Eng. 2023, 11(5), 1040; https://doi.org/10.3390/jmse11051040 - 12 May 2023
Cited by 4 | Viewed by 2618
Abstract
The mammalian target of rapamycin (mTOR) has been shown to play a central role in regulating cell growth and metabolism. However, little is known about the function of mTOR in nutrient metabolism in bivalve mollusks. In this study, the role of mTOR in [...] Read more.
The mammalian target of rapamycin (mTOR) has been shown to play a central role in regulating cell growth and metabolism. However, little is known about the function of mTOR in nutrient metabolism in bivalve mollusks. In this study, the role of mTOR in the regulation of nutrient metabolism was investigated in Sinonovacula constricta. First, the activation of mTOR was assayed after starvation and refeeding. Afterwards, the role of mTOR in the regulation of nutrient metabolism was investigated using an activator (MHY1485) or inhibitor (rapamycin) of mTOR. The open reading frame of the S. constricta mTOR is 7416 bp in length and encodes a polypeptide consisting of 2471 amino acids. The mTOR amino acid sequence of S. constricta was highly conserved when compared with other species and had a close evolutionary relationship with the TOR proteins of Crassostrea gigas and Lingula anatine. mTOR was expressed in the intestine, exhalent siphon, labial palppus, muscle, inhalent siphon, gill, mantle, digestive land, and gonad tissue of S. constricta, with the highest expression in muscle. During starvation, the level of phosphorylated mTOR protein was relatively low, and the ratio of LC3II/LC3I protein and the AMPKα mRNA level significantly increased with the increase in starvation time. After feeding, the level of phosphorylated mTOR protein increased from 0.13 to 0.56, and the ratio of LC3II/I protein and AMPKα mRNA level decreased from 1.17 to 0.38. MHY1485 significantly increased the level of phosphorylated 4E-BP1 and significantly decreased the ratio of LC3II/I proteins. Furthermore, MHY1485 significantly increased the mRNA level of the glucose metabolism-related gene glucokinase (GK), significantly decreased the mRNA expression of the G6P gene, and significantly increased the mRNA expression of the lipid synthesis-related genes sterol-regulatory element-binding protein (SREBP) and stearoyl-CoA desaturase (SCD). Rapamycin significantly reduced the level of phosphorylated 4E-BP1 and the mRNA expression of mTOR, and the expression level of phosphorylated 4EBP1 decreased from 0.97 to 0.28. Meanwhile, it also significantly reduced the mRNA expression of glucose metabolism-related genes GK, pyruvate kinase (PK), glucose transporter 1 (GLUT1), and G6P, as well as lipid synthesis-related genes SCD and acetyl-CoA carboxylase (ACC). These results indicate a conserved role of mTOR in regulating nutritional metabolism, including glucose metabolism, lipid synthesis, and autophagy in S. constricta. Full article
(This article belongs to the Special Issue Marine Fish Physiology and Molecular Nutrition)
Show Figures

Figure 1

17 pages, 5374 KB  
Article
The Inhibitory Effects of RNA-Interference-Mediated Guanylate Cyclase Knockdown on Larval Metamorphosis and Early Progeny Growth of Razor Clam
by Yuting Han, Beibei Li, Yifeng Li and Donghong Niu
Genes 2023, 14(2), 459; https://doi.org/10.3390/genes14020459 - 10 Feb 2023
Cited by 1 | Viewed by 1975
Abstract
Guanylate cyclase (GC, cGMPase) is a key enzyme in organisms, catalyzing the synthesis of cGMP from GTP, thus making cGMP work. cGMP plays a vital role in the regulation of cell and biological growth as a second messenger in [...] Read more.
Guanylate cyclase (GC, cGMPase) is a key enzyme in organisms, catalyzing the synthesis of cGMP from GTP, thus making cGMP work. cGMP plays a vital role in the regulation of cell and biological growth as a second messenger in signaling pathways. In this study, we screened and identified cGMPase from the razor clam Sinonovacula constricta, which encoded 1257 amino acids and was widely expressed in different tissues, especially the gill and liver. We also screened one double-stranded RNA (dsRNA), cGMPase, which was used to knockdown cGMPase at three larval metamorphosis development stages: trochophores-veliger larve, veliger larve-umbo larve, and umbo larve-creeping larvae. We showed that interference at these stages significantly inhibited larval metamorphosis and survival rates. cGMPase knockdown resulted in an average metamorphosis rate of 60% and an average mortality rate of 50% when compared with control clams. After 50 days, shell length and body weight were inhibited to 53% and 66%, respectively. Thus, cGMPase appeared to regulate metamorphosis development and growth in S. constricta. By examining the role of the key gene in the metamorphosis development of S. constricta larvae and the growth and development period, we can provide some data reference for studying the growth and development mechanism of shellfish, and the results provided basic information for the breeding of S. constricta. Full article
(This article belongs to the Special Issue Genetic Breeding and Genomics of Marine Shellfish)
Show Figures

Figure 1

17 pages, 3430 KB  
Article
Comprehensive Analysis of Whole-Transcriptome Profiles in Response to Acute Hypersaline Challenge in Chinese Razor Clam Sinonovacula constricta
by Wei Cao, Yinghui Dong, Yusong Geng, Siqi Bi, Zhihong Liu, Liqing Zhou, Xiujun Sun, Sudong Xia, Changfeng Chi and Biao Wu
Biology 2023, 12(1), 106; https://doi.org/10.3390/biology12010106 - 10 Jan 2023
Cited by 10 | Viewed by 2857
Abstract
The Chinese razor clam (Sinonovacula constricta) is an important for Chinese aquaculture marine bivalve that naturally occurs across intertidal and estuarine areas subjected to significant changes in salinity level. However, the information on the molecular mechanisms related to high salinity stress [...] Read more.
The Chinese razor clam (Sinonovacula constricta) is an important for Chinese aquaculture marine bivalve that naturally occurs across intertidal and estuarine areas subjected to significant changes in salinity level. However, the information on the molecular mechanisms related to high salinity stress in the species remain limited. In this study, nine gill samples of S. constricta treated with 20, 30, and 40 ppt salinity for 24 h were used for whole-transcriptome RNA sequencing, and a regulatory network of competing endogenous RNAs (ceRNAs) was constructed to better understand the mechanisms responsible for adaptation of the species to high salinity. A total of 83,262 lncRNAs, 52,422 mRNAs, 2890 circRNAs, and 498 miRNAs were identified, and 4175 of them displayed differential expression pattern among the three groups examined. The KEGG analyses of differentially expressed RNAs evidenced that amino acid synthesis and membrane transport were the dominant factors involved in the adaptation of the Chinese razor clam to acute salinity increase, while lipid metabolism and signaling played only a supporting role. In addition, lncRNA/circRNA-miRNA-mRNA regulatory networks (ceRNA network) showed clearly regulatory relationships among different RNAs. Moreover, the expression of four candidate genes, including tyrosine aminotransferase (TAT), hyaluronidase 4 (HYAL4), cysteine sulfinic acid decarboxylase (CSAD), and ∆1-pyrroline-5-carboxylate synthase (P5CS) at different challenge time were detected by qRT-PCR. The expression trend of TAT and HYAL4 was consistent with that of the ceRNA network, supporting the reliability of established network. The expression of TAT, CSAD, and P5CS were upregulated in response to increased salinity. This might be associated with increased amino acid synthesis rate, which seems to play an essential role in adaptation of the species to high salinity stress. In contrast, the expression level of HYAL4 gene decreased in response to elevated salinity level, which is associated with reduction Hyaluronan hydrolysis to help maintain water in the cell. Our findings provide a very rich reference for understanding the important role of ncRNAs in the salinity adaptation of shellfish. Moreover, the acquired information may be useful for optimization of the artificial breeding of the Chinese razor clam under aquaculture conditions. Full article
(This article belongs to the Special Issue Omics Technologies Applied to Aquaculture Research)
Show Figures

Figure 1

19 pages, 6414 KB  
Article
Molecular Characterization of Aquaporins Genes from the Razor Clam Sinonovacula constricta and Their Potential Role in Salinity Tolerance
by Wenbin Ruan, Yinghui Dong, Zhihua Lin and Lin He
Fishes 2022, 7(2), 69; https://doi.org/10.3390/fishes7020069 - 18 Mar 2022
Cited by 14 | Viewed by 3292
Abstract
Aquaporins (AQPs) play crucial roles in osmoregulation, but the knowledge about the functions of AQPs in Sinonovacula constricta is unclear. In this study, Sc-AQP1, Sc-AQP8, and Sc-AQP11 were identified from S. constricta, and the three Sc-AQPs are highly [...] Read more.
Aquaporins (AQPs) play crucial roles in osmoregulation, but the knowledge about the functions of AQPs in Sinonovacula constricta is unclear. In this study, Sc-AQP1, Sc-AQP8, and Sc-AQP11 were identified from S. constricta, and the three Sc-AQPs are highly conserved compared to the known AQPs. The qRT-PCR analysis revealed that the highest mRNA expressions of Sc-AQP1, Sc-AQP8, and Sc-AQP11 were detected in the gill, digestive gland, and adductor muscle, respectively. In addition, the highest mRNA expression of Sc-AQP1 and Sc-AQP11 was detected in the D-shaped larvae stage, whereas that of SC-AQP8 was observed in the umbo larvae stage. The mRNA expression of Sc-AQP1, Sc-AQP8, and Sc-AQP11 significantly increased to 12.45-, 12.36-, and 27.44-folds post-exposure of low salinity (3.5 psu), while only Sc-AQP1 and Sc-AQP11 significantly increased post-exposure of high salinity (35 psu) (p < 0.01). The fluorescence in situ hybridization also showed that the salinity shift led to the boost of Sc-AQP1, Sc-AQP8, and Sc-AQP11 mRNA expression in gill filament, digestive gland, and adductor muscle, respectively. Knockdown of the Sc-AQP1 and Sc-AQP8 led to the decreased osmotic pressure in the hemolymph. Overall, these findings would contribute to the comprehension of the osmoregulation pattern of AQPs in S. constricta. Full article
Show Figures

Figure 1

14 pages, 6041 KB  
Article
Metagenomic Insights into the Structure of Microbial Communities Involved in Nitrogen Cycling in Two Integrated Multitrophic Aquaculture (IMTA) Ponds
by Qian Liu, Junnan Li, Hongwei Shan and Yicheng Xie
J. Mar. Sci. Eng. 2022, 10(2), 171; https://doi.org/10.3390/jmse10020171 - 27 Jan 2022
Cited by 5 | Viewed by 3233
Abstract
The microbial structure and metabolic potential, particularly with regard to nitrogen (N) cycling, in integrated multitrophic aquaculture (IMTA) ponds with shrimp remain unclear. In this study, an analysis of microbial community taxonomic diversity and a metagenomic analysis of N-related genes were performed in [...] Read more.
The microbial structure and metabolic potential, particularly with regard to nitrogen (N) cycling, in integrated multitrophic aquaculture (IMTA) ponds with shrimp remain unclear. In this study, an analysis of microbial community taxonomic diversity and a metagenomic analysis of N-related genes were performed in a shrimp-crab pond (Penaeus japonicus-Portunus trituberculatus, SC) and a shrimp-crab-clam pond (P. japonicus-P. trituberculatus-Sinonovacula constricta, SCC) to evaluate microbial structure and N transformation capacities in these two shrimp IMTA ponds. The composition of the microbial communities was similar between SC and SCC, but the water and sediments shared few common members in either pond. The relative abundances of N cycling genes were significantly higher in sediment than in water in both SC and SCC, except for assimilatory nitrate reduction genes. The main drivers of the differences in the relative abundances of N cycling genes in SC and SCC were salinity and pH in water and the NO2 and NH4+ contents of pore water in sediment. These results indicate that the coculture of S. constricta in a shrimp-crab pond may result in decreased N cycling in sediment. The reduced N flux in the shrimp IMTA ponds primarily originates within the sediment, except for assimilatory nitrate reduction. Full article
(This article belongs to the Special Issue Advances in Marine Nitrogen Cycle)
Show Figures

Figure 1

Back to TopTop