Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = ThT fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2506 KB  
Article
Light Regulation Under Equivalent Cumulative Light Integral: Impacts on Growth, Quality, and Energy Efficiency of Lettuce (Lactuca sativa L.) in Plant Factories
by Jianwen Chen, Cuifang Zhu, Ruifang Li, Zihan Zhou, Chen Miao, Hong Wang, Rongguang Li, Shaofang Wu, Yongxue Zhang, Jiawei Cui, Xiaotao Ding and Yuping Jiang
Plants 2025, 14(22), 3469; https://doi.org/10.3390/plants14223469 (registering DOI) - 13 Nov 2025
Abstract
Facing the significant challenges posed by global population growth and urbanization, plant factories, as an efficient closed cultivation system capable of precise environmental control, have become a key direction in the development of modern agriculture. However, high energy consumption, particularly lighting (which accounts [...] Read more.
Facing the significant challenges posed by global population growth and urbanization, plant factories, as an efficient closed cultivation system capable of precise environmental control, have become a key direction in the development of modern agriculture. However, high energy consumption, particularly lighting (which accounts for over 50%), remains a major bottleneck limiting their large-scale application. This study systematically explored the effects of dynamic light regulation strategies on lettuce (Lactuca sativa L.) growth, physiological and biochemical indicators (such as chlorophyll, photosynthetic, and fluorescence parameters), nutritional quality, energy utilization efficiency, and post-harvest shelf life. Four different light treatments were designed: a stepwise increasing photosynthetic photon flux density (PPFD) from 160 to 340 μmol·m−2·s−1 (T1), a constant light intensity of 250 μmol·m−2·s−1 (T2), a three-stage strategy with high light intensity in the middle phase (T3), and a three-stage strategy with sequentially increasing light (T4). The results showed that the T4 treatment exhibited the best overall performance. Compared with the T2 treatment, the T4 treatment increased biomass by 23.4%, significantly improved the net photosynthetic rate by 50.32% at the final measurement, and increased ascorbic acid (AsA) and protein content by 33.36% and 33.19%, respectively. Additionally, this treatment showed the highest energy use efficiency. On the 30th day of treatment, the light energy use efficiency (LUE) and electrical energy use efficiency (EUE) of the T4 treatment were significantly increased, by 23.41% and 23.9%, respectively, compared with the T2 treatment. In summary, dynamic light regulation can synergistically improve crop yield, chlorophyll content, photosynthetic efficiency, nutritional quality, and energy utilization efficiency, providing a theoretical basis and solution for precise light regulation and energy consumption reduction in plant factories. Full article
Show Figures

Figure 1

16 pages, 7666 KB  
Article
In-Situ Self-Assembling Oligomeric Collagen Scaffold Enhances Vaccine Retention and Vaccine-Induced Humoral Immunity
by Juan F. Hernandez-Franco, Sushma Gude, Rachel A. Morrison, Daniela Castillo Perez, Sherry L. Voytik-Harbin and Harm HogenEsch
Vaccines 2025, 13(11), 1146; https://doi.org/10.3390/vaccines13111146 - 8 Nov 2025
Viewed by 370
Abstract
Background/Objectives: Subunit vaccines composed of purified proteins and adjuvants offer excellent safety, but often generate short-lived immunity due to rapid antigen clearance and limited antigen-presenting cell engagement. Sustained, localized delivery of antigen and adjuvant may improve the magnitude and durability of the [...] Read more.
Background/Objectives: Subunit vaccines composed of purified proteins and adjuvants offer excellent safety, but often generate short-lived immunity due to rapid antigen clearance and limited antigen-presenting cell engagement. Sustained, localized delivery of antigen and adjuvant may improve the magnitude and durability of the immune response without compromising safety. This study evaluated an in-situ polymerizing type I oligomeric collagen (Oligomer) scaffold to localize antigen/adjuvant at the injection site and prolong antigen presentation. Methods: Mice were immunized intramuscularly with ovalbumin (OVA) and CpG oligonucleotide adjuvant delivered alone or co-formulated with Oligomer. Antibody response and inflammation at the injection site were assessed post-booster at early (Day 32) and late (Day 68) time points. Antigen retention and dendritic cell trafficking to draining lymph nodes were evaluated using fluorescently labeled OVA. Results: The Oligomer scaffold retained vaccine antigen at the injection site without eliciting a material-mediated foreign body response. Co-delivery of OVA and CpG within the scaffold enhanced germinal center activity, increased follicular helper T cells and germinal center B cells, and skewed CD4+ T cells toward a Th1 phenotype. Humoral responses were greater and more durable, with higher OVA-specific IgG, IgG1, and IgG2a titers and an increased number of bone marrow antibody-secreting cells persisting through Day 68. Antigen-positive dendritic cells, including both resident and migratory subsets, were elevated in draining lymph nodes, indicating enhanced antigen transport. No anti-mouse collagen I antibodies were detected, confirming the maintenance of collagen self-tolerance. Conclusions: The Oligomer delivery platform functioned as a localized, immunotolerant vaccine depot, sustaining antigen availability and immune cell engagement. This spatiotemporal control enhanced germinal center responses and generated a more robust, durable humoral immune response, supporting its potential to improve subunit vaccine efficacy while maintaining an excellent safety profile. Full article
(This article belongs to the Special Issue Vaccine Design and Development)
Show Figures

Figure 1

18 pages, 2667 KB  
Article
Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn
by Priyanka Swaminathan, Karsten Sættem Godø, Eline Bærøe Bjørn, Therése Klingstedt, Debdeep Chatterjee, Per Hammarström, Rajeevkumar Raveendran Nair and Mikael Lindgren
Cells 2025, 14(19), 1542; https://doi.org/10.3390/cells14191542 - 2 Oct 2025
Viewed by 931
Abstract
Alpha-synuclein (αsyn) misfolding and aggregation underlie several neurodegenerative disorders, including Parkinson’s disease. Early oligomeric intermediates are particularly toxic yet remain challenging to detect and characterize within cellular systems. Here, we employed the luminescent conjugated oligothiophene h-FTAA to investigate early aggregation events of human [...] Read more.
Alpha-synuclein (αsyn) misfolding and aggregation underlie several neurodegenerative disorders, including Parkinson’s disease. Early oligomeric intermediates are particularly toxic yet remain challenging to detect and characterize within cellular systems. Here, we employed the luminescent conjugated oligothiophene h-FTAA to investigate early aggregation events of human wildtype (huWT) and A53T-mutated αsyn (huA53T) both in vitro and in HEK293 cells stably expressing native human-αsyn. Comparative fibrillation assays revealed that h-FTAA detected αsyn aggregation with higher sensitivity and earlier onset than Thioflavin T, with the A53T variant displaying accelerated fibrillation. HEK293 cells stably expressing huWT- or huA53T-αsyn were exposed to respective pre-formed fibrils (PFFs), assessed via immunocytochemistry, h-FTAA staining, spectral emission profiling, and fluorescence lifetime imaging microscopy (FLIM). Notably, huA53T PFFs promoted earlier aggregation patterns and yielded narrower fluorescence lifetime distributions compared with huWT PFFs. Spectral imaging showed h-FTAA emission maxima (~550–580 nm) red-shifted and broadened in cells along with variable lifetimes (0.68–0.87 ns), indicating heterogeneous aggregate conformations influenced by cellular milieu. These findings demonstrate that h-FTAA is useful for distinguishing early αsyn conformers in living systems and, together with stable αsyn-expressing HEK293 cells, offers a platform for probing early αsyn morphotypes. Taken together, this opens for further discovery of biomarkers and drugs that can interfere with αsyn aggregation. Full article
(This article belongs to the Special Issue Applications of Proteomics in Human Diseases and Treatments)
Show Figures

Figure 1

14 pages, 4942 KB  
Article
The Identification of Gyrophoric Acid, a Phytochemical Derived from Lichen, as a Potent Inhibitor for Aggregation of Amyloid Beta Peptide: In Silico and Biochemical Evaluation
by Meixia Yang, Haitao Hu, Jin Gao, Queenie Wing Sze Lai, Farkhod Eshboev, Ka Wing Leung, Tina Tingxia Dong, Qin Xu and Karl Wah Keung Tsim
Int. J. Mol. Sci. 2025, 26(17), 8500; https://doi.org/10.3390/ijms26178500 - 1 Sep 2025
Viewed by 754
Abstract
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) plaque accumulation and neurodegeneration. This study identified gyrophoric acid, a lichen-derived phenolic metabolite, as a dual-action Aβ42 inhibitor preventing aggregation and disassembling of mature Aβ42 fibrils. Integrated in silico studies revealed that gyrophoric acid was [...] Read more.
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) plaque accumulation and neurodegeneration. This study identified gyrophoric acid, a lichen-derived phenolic metabolite, as a dual-action Aβ42 inhibitor preventing aggregation and disassembling of mature Aβ42 fibrils. Integrated in silico studies revealed that gyrophoric acid was a strong thermodynamic stabilizer of Aβ42 (MM–GBSA: −27.3 kcal/mol) via entropically driven hydrophobic interactions and disruption of aggregation-prone conformations (100 ns MD simulations). Through biochemical analysis of the fluorescent dye thioflavin T (ThT), gyrophoric acid induced rapid Aβ42 fibril disassembly within 5 h, with time-lapse confocal microscopy quantitatively confirming the near-complete dissolution of large aggregates by 24 h. ADMET profiling revealed favorable pharmacokinetics (moderate oral absorption: 48.5–57.3%; low toxicity) and Lipinski’s rule compliance. These results establish gyrophoric acid as a promising natural bioactive compound for anti-AD therapeutics with a unique hydrophobic-stabilization mechanism. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 3014 KB  
Article
Investigation of the Effect of NaCl Concentrations on the Formation of Amyloid Fibrils During the Cooking of Wheat Noodles
by Ying Liang, Chunlei Zheng, Liu Yang, Minqian Huang, Jiajia Liu, Hao Liu, Baoshan He and Jinshui Wang
Foods 2025, 14(16), 2892; https://doi.org/10.3390/foods14162892 - 20 Aug 2025
Viewed by 826
Abstract
In our previous study, we observed that sodium chloride (NaCl) influences the formation of amyloid fibrils (AFs) by gluten in cooked wheat noodles. However, the underlying mechanisms of NaCl’s effect on AF formation during the cooking process remain unclear. This study systematically investigates [...] Read more.
In our previous study, we observed that sodium chloride (NaCl) influences the formation of amyloid fibrils (AFs) by gluten in cooked wheat noodles. However, the underlying mechanisms of NaCl’s effect on AF formation during the cooking process remain unclear. This study systematically investigates the impact of NaCl concentration (0–2.0%, w/w) and cooking time (0–7 min) on AF formation. ThT fluorescence and Congo red confirmed AF formation across all NaCl concentration levels. At low NaCl concentrations, Na+/Cl shielding reduced electrostatic repulsion, enabling ordered β-sheet stacking, yielding long fibrils (1193 nm) with high β-sheet content (41.5%), dense cross-β structures, and elevated hydrophobicity (H0 = 9980). Stable zeta potential and gradual particle growth (376 to 1193 nm) supported controlled elongation. Conversely, high NaCl concentrations disrupted hydrogen bonding, forming shorter fibrils (820 nm) with reduced β-sheets (28.9%) and lower hydrophobicity (H0 = 5923). Rapid ThT kinetics (df/dt = 77,535 FU/min) and SE-HPLC profiles suggest that elevated concentrations of NaCl inhibit AF formation while inducing the generation of amorphous aggregates. These findings clarify the balance between ionic shielding and hydrophobic interactions in AF assembly, offering strategies to optimize noodle texture. Future studies should address the digestibility and health implications of salt-modulated AFs for functional food applications. Full article
Show Figures

Graphical abstract

17 pages, 2429 KB  
Article
BCG Vaccine-Induced Innate and Adaptive Pulmonary Immunity Correlating with Protective Efficacy Against Mycobacterium tuberculosis in the Lungs
by Mayank Khanna and Alistair J. Ramsay
Vaccines 2025, 13(8), 876; https://doi.org/10.3390/vaccines13080876 - 19 Aug 2025
Viewed by 1359
Abstract
Background/Objectives: Effective prophylaxis for Mycobacterium tuberculosis (Mtb) requires greater understanding of immune correlates of protection. With renewed interest in BCG as an Mtb vaccine, particularly via the intravenous (IV) route, our objective was to characterize both innate and adaptive immune correlates of vaccine-induced [...] Read more.
Background/Objectives: Effective prophylaxis for Mycobacterium tuberculosis (Mtb) requires greater understanding of immune correlates of protection. With renewed interest in BCG as an Mtb vaccine, particularly via the intravenous (IV) route, our objective was to characterize both innate and adaptive immune correlates of vaccine-induced pulmonary immunity as potential biomarkers for protective efficacy in a murine model of Mtb infection. Methods: Mice were given BCG via different routes and some boosted with recombinant virus constructs encoding Mtb Ag85B. Responding innate lymphoid cell (ILC) populations, T cells and B cells were analyzed by fluorescence activated cell sorting (FACS) for surface markers and by intracellular cytokine staining or antibody ELISPOT. Some immunized mice were challenged with aerosolized Mtb and monitored for bacterial growth in the lungs and spleen. Results: BCG given IV, but not intranasally or subcutaneously, resulted in marked increases in IFNγ expression at 72 h by pulmonary CD49+ NK cells, CD69+ ILC1, and two ILC3 populations, NCR-ILC3 and LTi cells, the latter also producing IL-22. Pulmonary ILC2 populations in these mice had significantly increased IL-13 expression at 24 h compared to the other routes. Interestingly, high levels of NK cells and ILC1 expressing IFNγ and/or TNFα were sustained at 8 wk, with sustained expression of IL-17A by pulmonary NCR-ILC3 and pronounced tissue-resident and effector memory CD4+ and CD8+ T cell responses. Intranasal boosting with Ad-Ag85B enhanced these T cell responses and generated Mtb-specific pulmonary IgA and IgG B cells, correlating with significantly reduced bacterial loads following Mtb challenge. Conclusions: BCG given IV primed for both early and persistent pulmonary ILC1/ILC3 responses of a predominantly Th1/Th17-type profile along with local Mtb-specific memory T cell and B cell populations, correlating with enhanced protective efficacy. These are worthy of further study as compartmentalized biomarkers for effective vaccine-induced local immunity against Mtb. Full article
Show Figures

Figure 1

19 pages, 9689 KB  
Article
Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers
by Jhinuk Saha, Audrey Wolszczak, Navneet Kaur, Malitha C. Dickwella Widanage, Samuel D. McCalpin, Riqiang Fu, Jamel Ali and Ayyalusamy Ramamoorthy
Biomolecules 2025, 15(7), 994; https://doi.org/10.3390/biom15070994 - 11 Jul 2025
Viewed by 607
Abstract
The misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection [...] Read more.
The misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy. Furthermore, decreased responsiveness to insulin in type 2 diabetic (T2D) patients may lead to its overproduction and accumulation as aggregates. Earlier reports have reported that various factors such as pH, temperature, agitation, and the presence of lipids or other proteins influence insulin aggregation. Our present study aims to elucidate the effects of non–micellar anionic DMPG (1,2–dimyristoyl–sn–glycero–3–phosphoglycerol) lipids on insulin aggregation. Distinct pathways of insulin aggregation and intermediate formation were observed in the presence of DMPG using a ThT fluorescence assay. The formation of soluble intermediates alongside large insulin fibrils was observed in insulin incubated with DMPG via TEM, DLS, and NMR as opposed to insulin aggregates generated without lipids. 13C magic angle spinning solid–state NMR and FTIR experiments indicated that lipids do not alter the conformation of insulin fibrils but do alter the time scale of motion of aromatic and aliphatic side chains. Furthermore, the soluble intermediates were found to be more cytotoxic than fibrils generated with or without lipids. Overall, our study elucidates the importance of anionic lipids in dictating the pathways and intermediates associated with insulin aggregation. These findings could be useful in determining various approaches to avoid toxicity and enhance the effectiveness of insulin in therapeutic applications. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

17 pages, 8301 KB  
Article
Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity
by Hailing Zhang, Yangxuan Yang, Yuting Fan and Jiang Yi
Foods 2025, 14(14), 2418; https://doi.org/10.3390/foods14142418 - 9 Jul 2025
Viewed by 702
Abstract
The EGCG/PPN composite, prepared by combining pea protein nanofibrils (PPNs) with epigallocatechin gallate (EGCG), could be used as a multifunctional nanocarrier. Compared to pea protein isolate (PPI), EGCG/PPN composites exhibited remarkably higher turbidity and zeta potential, along with similar UV spectra. Intrinsic fluorescence [...] Read more.
The EGCG/PPN composite, prepared by combining pea protein nanofibrils (PPNs) with epigallocatechin gallate (EGCG), could be used as a multifunctional nanocarrier. Compared to pea protein isolate (PPI), EGCG/PPN composites exhibited remarkably higher turbidity and zeta potential, along with similar UV spectra. Intrinsic fluorescence spectroscopy, ThT fluorescence spectroscopy, and surface hydrophobicity analysis suggested that the interactions between EGCG and PPN were primarily driven by hydrophobic forces. UV spectra indicated that the microenvironment of amino acid residues in the tertiary structure of the protein changes upon complexation, and circular dichroism (CD) revealed that the incorporation of EGCG increases the β-sheet content in the protein’s secondary structure. Analyses of DPPH and ABTS radical scavenging activity, as well as reducing power, demonstrated that the synergistic effect between EGCG and PPN did not hinder the inherent antioxidant properties of EGCG but rather enhanced them significantly. Transmission electron microscopy (TEM) images showed that the addition of EGCG reconstructed the fibril morphology, thereby affecting the properties of PPNs. Overall, the composite fabricated through the interaction between PPN and EGCG shows great potential as a nanocarrier in the processing of functional foods. Full article
Show Figures

Figure 1

15 pages, 1268 KB  
Article
Strategies for Signal Amplification of Thyroid Hormones via Electromigration Techniques Coupled with UV Detection and Laser-Induced Fluorescence
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(8), 3708; https://doi.org/10.3390/ijms26083708 - 14 Apr 2025
Cited by 1 | Viewed by 731
Abstract
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) [...] Read more.
Several strategies, including UV detection with a diode array detector (DAD), laser-induced fluorescence (LIF), derivatization reactions, the use of micelles in the separation buffer, as well as online preconcentration techniques based on pressure-assisted electrokinetic injection (PAEKI), and offline preconcentration using solid-phase extraction (SPE) columns containing quaternary amine groups with a chloride counterion, were investigated for the simultaneous separation and signal amplification of free thyroid hormones (THs) in biological samples. Moreover, a sensitive method for the quantification of THs in selected biological samples using micellar electrokinetic capillary chromatography with LIF detection (MEKC-LIF) was developed. The THs present in biological samples (L-tyrosine, T2, T3, rT3, T4, and DIT) were successfully separated in less than 10 min. The analytes were separated following a derivatization procedure with fluorescein isothiocyanate isomer I (FITC). A background electrolyte (BGE) composed of 20 mM sodium tetraborate (Na2B4O7) and 20 mM sodium dodecyl sulphate (SDS) was employed. Key validation parameters such as linearity, precision, limits of detection (LOD), and limits of quantification (LOQ) were determined. The use of PAEKI for the electrophoretic determination of free THs demonstrates significant potential for monitoring these hormones in real urine samples due to its high sensitivity and efficiency. Full article
Show Figures

Graphical abstract

16 pages, 5630 KB  
Article
Identifying a Role for the Sodium Hydrogen Exchanger Isoform 1 in Idiopathic Pulmonary Fibrosis: A Potential Strategy to Modulate Profibrotic Pathways
by Trina T. Nguyentu, Danielle G. Vigilante, Mishika Manchanda, Meera S. Iyer, Sara Desalegne and Joseph J. Provost
Biomedicines 2025, 13(4), 959; https://doi.org/10.3390/biomedicines13040959 - 14 Apr 2025
Viewed by 880
Abstract
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) production and tissue stiffening, resulting in impaired lung function. Sodium hydrogen exchanger isoform 1 (NHE1) is a key mediator of intracellular and extracellular pH regulation, influencing [...] Read more.
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) production and tissue stiffening, resulting in impaired lung function. Sodium hydrogen exchanger isoform 1 (NHE1) is a key mediator of intracellular and extracellular pH regulation, influencing fibroblast activation, motility, and proliferative pathways. This study investigates the role of NHE1 in actin stress fiber formation, fibroblast-to-myofibroblast differentiation, and cytokine secretion in IPF progression. Methods: Fibroblasts were treated with profibrotic agonists, including transforming growth factor-beta (TGFβ), lysophosphatidic acid (LPA), and serotonin (THT), in the presence or absence of the NHE1-specific inhibitor, EIPA. Actin stress fibers were visualized using phalloidin staining, while α-smooth muscle actin (α-SMA) expression and cytokine secretion (TGFβ, IL-6, and IL-8) were quantified using immunostaining and ELISA. Intracellular pH changes were measured using BCECF-AM fluorescence. Results: Profibrotic agonists induced significant actin stress fiber formation and α-SMA expression in fibroblasts, both of which were abolished by EIPA. NHE1 activity was shown to mediate intracellular alkalization, a critical factor for fibroblast activation. Cytokine secretion, including TGFβ, IL-6, and IL-8, was enhanced by agonist treatments but reduced with NHE1 inhibition. Chronic TGFβ exposure increased intracellular pH and sustained myofibroblast differentiation, which was partially reversed by EIPA. Conclusions: NHE1 is indicated to play a novel and potential role in processes supporting profibrotic agonists driving fibroblast activation and IPF progression. Targeting NHE1 could present a potential therapeutic approach to disrupt profibrotic pathways and mitigate IPF severity. Full article
Show Figures

Figure 1

11 pages, 1759 KB  
Article
A Label-Free CRISPR/Cas12a-G4 Biosensor Integrated with FTA Card for Detection of Foodborne Pathogens
by Anqi Chao, Qinqin Hu and Kun Yin
Biosensors 2025, 15(4), 230; https://doi.org/10.3390/bios15040230 - 5 Apr 2025
Cited by 2 | Viewed by 1298
Abstract
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)–Thioflavin T (ThT) signal [...] Read more.
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)–Thioflavin T (ThT) signal reporter. This system eliminates costly fluorescent labeling by leveraging G4-ThT structural binding for visible fluorescence output, while FTA cards streamline nucleic acid isolation without centrifugation. Achieving a limit of detection (LOD) to 101 CFU/mL for Escherichia coli O157:H7 in spiked food samples, the platform demonstrated 100% concordance with qPCR and standard fluorescent probe-based CRISPR/Cas12a system. Its simplicity, minimal equipment (portable heating/imaging), and cost-effectiveness make it a revolutionary tool for detecting foodborne pathogens in resource-limited environments. Full article
Show Figures

Figure 1

12 pages, 4942 KB  
Article
Intermolecular Structure Conversion-Based G4-TDF Nanostructures Functionalized μPADs for Fluorescent Determination of Potassium Ion in Serum
by Mengqi Wang, Xiuli Fu, Yixuan Liu, Zhiyang Zhang, Chenyu Jiang and Dean Song
Biosensors 2025, 15(4), 223; https://doi.org/10.3390/bios15040223 - 31 Mar 2025
Viewed by 623
Abstract
Herein, we proposed a versatile G-quadruplex (G4)-tetrahedral DNA framework (G4-TDF) nanostructure functionalized origami microfluidic paper-based device (μPADs) for fluorescence detection of K+ by lighting up thioflavin T (ThT). In this work, TDF provided robust structural support for G-rich sequence in well-defined orientation [...] Read more.
Herein, we proposed a versatile G-quadruplex (G4)-tetrahedral DNA framework (G4-TDF) nanostructure functionalized origami microfluidic paper-based device (μPADs) for fluorescence detection of K+ by lighting up thioflavin T (ThT). In this work, TDF provided robust structural support for G-rich sequence in well-defined orientation and spacing to ensure high recognition efficiency, enabling sensitive fluorescence sensing on origami μPAD. After introducing ThT, the G-rich sequences extended from TDF vertices formed a parallel G4 structure, showing weak fluorescence signal output. Upon the presence of target K+, this parallel G4 structure transitioned to antiparallel G4 structure, leading to a significantly increase in fluorescence signal of ThT. Benefiting from the outstanding fluorescence enhancement characteristic of the G4 structure for ThT and excellent specificity of the G4 structure to K+ plus satisfactory recognition efficiency with the aid of TDF, this origami paper-based fluorescence sensing strategy exhibited an impressive detection limit as low as 0.2 mM with a wide range of 0.5–5.5 mM. This innovative G4-TDF fluorescence sensing was applied for the first time on μPAD, providing a simple, effective, and rapid method for K+ detection in human serum with significant potential for clinical diagnostics. Full article
Show Figures

Figure 1

16 pages, 2142 KB  
Article
PD-L1+ Regulatory B Cells from Rheumatoid Arthritis Patients Have Impaired Function in Suppressing IFN-ү and IL-21 Production
by Mustafa Talib, Balázs Gyebrovszki, Anna Fodor, Anna Mészáros, Kata Balog Virág, Leila Gloria Barta, Bernadette Rojkovich, György Nagy and Gabriella Sármay
Int. J. Mol. Sci. 2025, 26(7), 2998; https://doi.org/10.3390/ijms26072998 - 25 Mar 2025
Cited by 1 | Viewed by 1449
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease. The pathomechanism of RA depends on both B and T cells. Regulatory B cells (Breg) have been shown to suppress T-cell immune responses and play a key role in modulating autoimmune processes. We aimed [...] Read more.
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease. The pathomechanism of RA depends on both B and T cells. Regulatory B cells (Breg) have been shown to suppress T-cell immune responses and play a key role in modulating autoimmune processes. We aimed to investigate the possibility of utilizing PD-L1+ Breg cells in downregulating the Th cells’ immune response in healthy individuals and RA patients. We hypothesized that the PD-1/PD-1L interaction plays a key role in this process, which may be defective in autoimmune diseases. We separated T and B cells from the peripheral blood of healthy volunteers and RA patients by magnetic cell sorting, and Th cells and Treg cells were isolated by fluorescence-activated cell sorting. The cytokine production by CD4+ Th cells was detected by intracellular flow cytometry. CpG and CD40L stimulations were applied to induce PD-L1hi expressing Breg cells. We found that the frequency of PD-L1hi cells is significantly lower in all B-cell subsets in RA compared to healthy controls. Functional analysis of induced PD-L1+ Breg cells in coculture with activated autologous Th cells has shown that healthy control samples containing higher levels of PD-L1hi Breg cells significantly inhibit IFN-ү and IL-21 production by Th cells. In contrast, RA patients’ samples with lower levels of PD-L1hi Breg cells failed to do so. Since the expression of PD-L1 on B cells can be modulated in vitro to induce Breg cell suppressive capacity, these data may provide new perspectives for future therapy for RA. Full article
(This article belongs to the Special Issue Rheumatoid Arthritis: From Molecular Basis to Therapies)
Show Figures

Figure 1

17 pages, 3202 KB  
Article
Ruthenium(II)–Arene Complexes with a 2,2′-Bipyridine Ligand as Anti-Aβ Agents
by Ryan M. Hacker, Jacob J. Smith, David C. Platt, William W. Brennessel, Marjorie A. Jones and Michael I. Webb
Biomolecules 2025, 15(4), 475; https://doi.org/10.3390/biom15040475 - 25 Mar 2025
Cited by 1 | Viewed by 1598
Abstract
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer’s disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several [...] Read more.
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer’s disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several ruthenium–arene complexes containing 2,2-bipyridine (bpy) ligands were prepared and evaluated for their respective ability to modulate the aggregation of Aβ. This was carried out using the three sequential methods of thioflavin T (ThT) fluorescence, dynamic ligand scattering (DLS), and transmission electron microscopy (TEM). Overall, it was observed that RuBA, the complex with a 4,4-diamino-2,2-bipyridine ligand, had the greatest impact on Aβ aggregation. Further evaluation of the complexes was performed to determine their relative affinity for serum albumin and biocompatibility towards two neuronal cell lines. Ultimately, RuBA outperformed the other Ru complexes, where the structure–activity relationship codified the importance of the amino groups on the bpy for anti-Aβ activity. Full article
(This article belongs to the Special Issue Amyloid-Beta and Alzheimer’s Disease)
Show Figures

Graphical abstract

13 pages, 1771 KB  
Article
Tau Oligomers Resist Phase Separation
by Lathan Lucas, Phoebe S. Tsoi, Josephine C. Ferreon and Allan Chris M. Ferreon
Biomolecules 2025, 15(3), 336; https://doi.org/10.3390/biom15030336 - 26 Feb 2025
Cited by 1 | Viewed by 1686
Abstract
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is [...] Read more.
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is known to promote Tau aggregation, the relationship between Tau’s structural states and its phase separation behavior remains poorly defined. Here, we examine how oligomerization modulates Tau LLPS and uncover key distinctions between monomeric, oligomeric, and amyloidogenic Tau species. Using dynamic light scattering and fluorescence microscopy, we monitored oligomer formation over time and assessed oligomeric Tau’s ability to undergo LLPS. We found that Tau monomers readily phase separate and form condensates. As oligomerization progresses, Tau’s propensity to undergo LLPS diminishes, with oligomers still being able to phase separate, albeit with reduced efficiency. Interestingly, oligomeric Tau is recruited into condensates formed with 0-day-aged Tau, with this recruitment depending on the oligomer state of maturation. Early-stage, Thioflavin T (ThT)-negative oligomers co-localize with 0-day-aged Tau condensates, whereas ThT-positive oligomers resist condensate recruitment entirely. This study highlights a dynamic interplay between Tau LLPS and aggregation, providing insight into how Tau’s structural and oligomeric states influence its pathological and functional roles. These findings underscore the need to further explore LLPS as a likely modulator of Tau pathogenesis and distinct pathogenic oligomers as viable therapeutic targets in tauopathies. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

Back to TopTop