Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (643)

Search Parameters:
Keywords = UE27

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1527 KB  
Article
Gene-Level Shift in Response to Synthetic Nitrogen Addition Promotes Larix olgensis (Ussurian Larch) Growth in a Short-Term Field Trial
by Muhammad Jamal Ameer, Yushan Liu, Siyu Yan and Tongbao Qu
Life 2025, 15(9), 1403; https://doi.org/10.3390/life15091403 - 4 Sep 2025
Abstract
Climate change and injudicious nitrogen addition alter the soil physico-chemical properties and microbial activity in oligotrophic forest soil, which disrupts the nitrogen cycle balance. Nevertheless, recommended fertilizer forms and levels are considered to be crucial for stable nitrogen application. We established a short-term [...] Read more.
Climate change and injudicious nitrogen addition alter the soil physico-chemical properties and microbial activity in oligotrophic forest soil, which disrupts the nitrogen cycle balance. Nevertheless, recommended fertilizer forms and levels are considered to be crucial for stable nitrogen application. We established a short-term field trial for the first time using a randomized complete block design under the yellow larch forest, with six treatments applied, including urea CO(NH2)2, ammonium chloride NH4Cl, and sodium nitrate NaNO3 at concentrations of 10 and 20 kg N hm−2 yr−1, each extended by three replicates. The gene abundances were measured using quantitative PCR (qPCR), in which the abundance levels of AOA (amoA) and nirS were higher under high CO(NH2)2 2.87 × 1010 copies g−1 dry soil and low NO3 8.82 × 109 copies g−1 dry soil, compared to CK, representing 2.8-fold and 1.5-fold increases, respectively. We found niche partitioning as revealed despite AOA (amoA) increasing in number, AOB (amoA) contributing more to ammonia oxidation while nirS proved opportunistic under stress conditions. This was supported by distinct significant correlations among factors, in which soil urease enzymatic activity (S-UE) was associated with AOA (amoA) and nirK, while AOB (amoA) and nirS positively correlated with NH4+ content and soil potential of hydrogen (pH), respectively. Among the applied treatments, high-level NO3 increased total nitrogen content and had a significant effect on soil N-acetyl-β-d-glucosaminidase (S-NAG) and soil acid protease (S-ACPT) activity. In summary, we observed an increase in Larix olgensis growth with high nitrogen retention. Full article
(This article belongs to the Special Issue Carbon and Nitrogen Cycles in Terrestrial Ecosystems)
Show Figures

Figure 1

11 pages, 848 KB  
Article
Trends in Sports-Related Upper Extremity Injuries Presenting to United States Emergency Departments: A Retrospective Analysis of National Injury Data
by Matthew D. Ramey, Srivatsan J. Swaminathan, Auston R. Locke, Niklas H. Koehne, Christoph A. Schroen, Visweshwar G. Swaminathan, John J. Corvi, Salvatore Capotosto, Paul J. Cagle and Michael R. Hausman
J. Clin. Med. 2025, 14(17), 6208; https://doi.org/10.3390/jcm14176208 - 2 Sep 2025
Abstract
Background: Across many sports, injuries to the upper extremity (UE) are prevalent due to falls on an outstretched hand (FOOSH) and overuse. This retrospective analysis aimed to characterize sports-related UE injuries in the United States (US) over the past decade, examining injury frequency, [...] Read more.
Background: Across many sports, injuries to the upper extremity (UE) are prevalent due to falls on an outstretched hand (FOOSH) and overuse. This retrospective analysis aimed to characterize sports-related UE injuries in the United States (US) over the past decade, examining injury frequency, affected body part, diagnosis, and hospital disposition across age, sex, and sport. Methods: The National Electronic Injury Surveillance System (NEISS) was queried for sports injuries presented to US emergency departments (EDs) from 1 January 2014 to 31 December 2023. Patient demographics, injury site, diagnosis, and disposition were recorded. Annual injury trends were evaluated by linear regression. All statistical analysis was conducted using SPSS (version 30.0) software. Results: There were 1,330,108 nationally estimated (NE) UE sports injuries (47,371 NEISS Cases) that were presented to US EDs from 2014 to 2023. Linear regression revealed a significant decrease in annual injuries across the study period (β = −0.63, R2 = 0.40 p = 0.05). For many sports, including football, basketball, soccer, baseball, softball, wrestling, volleyball, hockey, and rugby, rates of UE injury decreased significantly during the study period. Fractures were the predominant diagnosis across all age groups, observed among 99.3% of patients. Football was the most common sport associated with UE injury in elementary to high school-age children, with basketball becoming more common in patients from 19 to 50 years old. Tennis-related injuries were the most common for patients above 50 years old. Across all sports, the most commonly injured body parts were fingers (33.5%), wrists (20.3%), and lower arms (17.3%). Notably, shoulder injuries accounted for 99.1% of all wrestling cases and 71.5% of all lacrosse injuries included in this study. Conclusions: Sports-related UE injuries decreased significantly from 2014 to 2023, with notable declines during the COVID-19 pandemic. The injuries included in this study varied depending on sport, age, and sex, allowing for the recommendation of specific interventions. While few injuries led to hospitalization, those that did typically involved lower arm injuries; further efforts to reduce these injuries will reduce the burden placed on US hospitals. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

16 pages, 2071 KB  
Article
Potential Protective Role of Amphibian Skin Bacteria Against Water Mold Saprolegnia spp.
by Sara Costa, Diogo Neves Proença, Artur Alves, Paula V. Morais and Isabel Lopes
J. Fungi 2025, 11(9), 649; https://doi.org/10.3390/jof11090649 - 2 Sep 2025
Viewed by 124
Abstract
Amphibian populations have experienced a severe decline over the past 40 years, driven primarily by environmental pollution, habitat destruction, climate change, and disease. This work reports, for the first time, saprolegniosis in Pelophylax perezi egg masses and saprolegniosis in amphibians in Portugal. After [...] Read more.
Amphibian populations have experienced a severe decline over the past 40 years, driven primarily by environmental pollution, habitat destruction, climate change, and disease. This work reports, for the first time, saprolegniosis in Pelophylax perezi egg masses and saprolegniosis in amphibians in Portugal. After isolation and phylogenetic analysis, the pathogen was identified as Saprolegnia australis. Following this, the present work intended to screen a collection of P. perezi skin bacteria for the existence of bacterial strains with inhibitory action against the newly identified S. australis SC1 and two other species, Saprolegnia diclina SAP 1010 UE and Saprolegnia australis SAP 1581 UE. The results showed that various bacterial species could inhibit the growth of these three species of oomycetes. Bacteria with the most significant antagonistic action against Saprolegnia spp. predominantly belonged to the genus Bacillus, followed by Serratia, Pseudomonas, and Aeromonas. Despite variations in bacterial diversity among frog populations, the present study also demonstrated the presence of bacteria on frogs’ skin that were capable of inhibiting Saprolegnia spp., as evidenced by in vitro challenge assays. These findings highlight the protective function of bacteria present in amphibian skin. The observed bacterial diversity may contribute to the metabolic redundancy of the frog skin microbiome, helping to maintain its functional capacity despite shifts in the community composition. Additionally, the study found that, when providing a more advantageous environment for pathogen growth—in this case a peptone–glucose (PG) medium instead of R2A—the percentage of bacteria with moderate-to-strong antagonistic activity dropped by 13% to 4%. In conclusion, the presence of bacteria capable of inhibiting Saprolegnia spp. in adult individuals and across different environmental conditions may contribute to lowering the susceptibility of frog adults towards Saprolegnia spp., compared with that in the early stages of development, like the tadpole or egg stages. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

12 pages, 2172 KB  
Article
Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2
by Ze Chen, Yangpeng Ji, Xiaodong Du, Shaokang Zhao, Zhenfei Huo and Xia Fang
Sensors 2025, 25(17), 5318; https://doi.org/10.3390/s25175318 - 27 Aug 2025
Viewed by 413
Abstract
To precisely delineate the contours of insulators in complex transmission line images obtained from Unmanned Aerial Vehicle (UAV) inspections and thereby facilitate subsequent defect analysis, this study proposes an instance segmentation framework predicated upon an enhanced SOLOv2 model. The proposed framework integrates a [...] Read more.
To precisely delineate the contours of insulators in complex transmission line images obtained from Unmanned Aerial Vehicle (UAV) inspections and thereby facilitate subsequent defect analysis, this study proposes an instance segmentation framework predicated upon an enhanced SOLOv2 model. The proposed framework integrates a preprocessed edge channel, generated through the Non-Subsampled Contourlet Transform (NSCT), which augments the model’s capability to accurately capture the edges of insulators. Moreover, the input image resolution to the network is heightened to 1200 × 1600, permitting more detailed extraction of edges. Rather than the original ResNet + FPN architecture, the improved HRNet is utilized as the backbone to effectively harness multi-scale feature information, thereby enhancing the model’s overall efficacy. In response to the increased input size, there is a reduction in the network’s channel count, concurrent with an increase in the number of layers, ensuring an adequate receptive field without substantially escalating network parameters. Additionally, a Convolutional Block Attention Module (CBAM) is incorporated to refine mask quality and augment object detection precision. Furthermore, to bolster the model’s robustness and minimize annotation demands, a virtual dataset is crafted utilizing the fourth-generation Unreal Engine (UE4). Empirical results reveal that the proposed framework exhibits superior performance, with AP0.50 (90.21%), AP0.75 (83.34%), and AP[0.50:0.95] (67.26%) on a test set consisting of images supplied by the power grid. This framework surpasses existing methodologies and contributes significantly to the advancement of intelligent transmission line inspection. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Intelligent Fault Diagnostics)
Show Figures

Figure 1

21 pages, 9378 KB  
Article
Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia
by Giuliana S. Seling, Roy C. Rivero, Camila V. Sisi, Verónica M. Busch and M. Pilar Buera
Foods 2025, 14(17), 2927; https://doi.org/10.3390/foods14172927 - 22 Aug 2025
Viewed by 386
Abstract
The pods from Neltuma ruscifolia (vinal), an underutilized species, are rich in bioactive functional compounds. However, the extraction procedures to obtain the highest proportion of these compounds, considering sustainability aspects, have not been optimized. This study aimed to optimize and compare [...] Read more.
The pods from Neltuma ruscifolia (vinal), an underutilized species, are rich in bioactive functional compounds. However, the extraction procedures to obtain the highest proportion of these compounds, considering sustainability aspects, have not been optimized. This study aimed to optimize and compare three affordable extraction methods—dynamic maceration (DME), ultrasound-assisted extraction (UE), and microwave-assisted extraction (ME)—to obtain enriched extracts. The effects of temperature, ethanol-to-water ratio in the solvent, extraction time, and frequency (for ME) were evaluated using a Box–Behnken design and response surface methodology to optimize total polyphenolic content (TPC), total flavonoids (TF), and antioxidant capacity (DPPH). Energy consumption and carbon footprints were also assessed, and phenolic compounds in the optimized extracts were identified by HPLC. The ethanol-to-water ratio emerged as the most influential factor, showing synergistic effects with both time and temperature, enabling optimal yields at intermediate ethanol concentrations. Gallic acid, rutin, and theobromine were found to be the most abundant components, followed by cinnamic, caffeic, and chlorogenic acids. Although UE exhibited the lowest energy consumption (0.64 ± 0.03 Wh/mg of TPC), the simple and easily implementable DME—optimized at 40 min, 50 °C, and 42% ethanol—proved to be the most efficient method, combining high extractive performance (TPC 1432 mg GAE/100 g Dw), reduced solvent use, and intermediate energy efficiency (1.84 Wh/mg of TPC). These findings highlight the potential of vinal as a natural source of bioactive ingredients obtained through simple and cost-effective techniques adaptable to small producers while underscoring the value of experimental design in optimizing sustainable extraction technologies and elucidating the interactions between key processing factors. Full article
Show Figures

Graphical abstract

9 pages, 1385 KB  
Article
The Effects of Chronic Opioid Therapy on Achalasia and the Upper Esophageal Sphincter
by Joshua Kalapala, Promila Banerjee, Emma Schnittka, Christine Son, Jeff Leya, Stephen Sontag, Thomas Schnell and Bani Chander-Roland
Med. Sci. 2025, 13(3), 150; https://doi.org/10.3390/medsci13030150 - 22 Aug 2025
Viewed by 282
Abstract
Background: The rise of opioid drug usage in the U.S. correlates with increasing recognition of gastrointestinal side effects, especially in the esophagus. The literature has recently noted that abnormalities in the upper esophageal sphincter (UES) are a poor prognostic factor in Achalasia treatment [...] Read more.
Background: The rise of opioid drug usage in the U.S. correlates with increasing recognition of gastrointestinal side effects, especially in the esophagus. The literature has recently noted that abnormalities in the upper esophageal sphincter (UES) are a poor prognostic factor in Achalasia treatment response. A better understanding of the relationship between opioid therapy and esophageal motility and sphincter function may shape our management guidelines for esophageal dysmotilities. This study aimed to evaluate dysmotility patterns, specifically UES function, among the veteran population, where opioid use is reportedly high. Methods: We performed a retrospective search of all the veterans at a large urban veteran affairs hospital who had undergone esophageal manometry from 2013 to 2022, collecting data on patient demographics, indication for procedure, diagnosis, sphincter pressure values, and presence of chronic opioid use. Results: Of 395 patients, 29% had a history of chronic opioid therapy. Notably, patients that were diagnosed with Achalasia had a greater proportion of chronic opioid use as compared to those who were not. Additionally, there was a statistically significant lower average upper esophageal resting pressure in opioid patients compared to non-opioid patients. Conclusions: Veteran patients with Achalasia have a greater proportion of chronic opioid use as compared to those without. There are significant manometric pressure differences at the upper esophageal sphincter among chronic opioid users when compared to non-opioid users. Full article
(This article belongs to the Section Hepatic and Gastroenterology Diseases)
Show Figures

Figure 1

19 pages, 1904 KB  
Article
Feasibility of Wearable Devices for Motivating Post-Stroke Patients
by Klaudia Marek, Jan Górski, Piotr Karolczyk, Justyna Redlicka, Igor Zubrycki and Elżbieta Miller
Sensors 2025, 25(16), 5204; https://doi.org/10.3390/s25165204 - 21 Aug 2025
Viewed by 706
Abstract
The effectiveness of upper extremity rehabilitation in post-stroke patients significantly depends on patient motivation and adherence to therapeutic regimens. Rehabilitation-assistive technologies, including wearable sensors, have been adopted to facilitate intensive and repetitive exercises aimed at reducing hand dysfunction and enhancing quality of life. [...] Read more.
The effectiveness of upper extremity rehabilitation in post-stroke patients significantly depends on patient motivation and adherence to therapeutic regimens. Rehabilitation-assistive technologies, including wearable sensors, have been adopted to facilitate intensive and repetitive exercises aimed at reducing hand dysfunction and enhancing quality of life. Building upon the previously introduced Przypominajka (reminder) system reported in this journal—a wearable sensory glove coupled with a mobile application providing exercise guidance and monitoring—we conducted a feasibility study to evaluate its effectiveness in supporting upper limb rehabilitation. Sixteen post-stroke patients with hemiparesis were equally randomized into experimental and control groups. Both groups performed upper limb exercises for 45 min daily for over two weeks. The experimental group utilized the sensor-equipped glove and tablet-based exercises, whereas the control group followed printed exercise instructions. Clinical improvements were measured using the Fugl–Meyer Assessment–Upper Extremity (FMA-UE), Functional Independence Measure (FIM), and MORE scales. The experimental group demonstrated a minimal clinically important difference (MCID) on the FMA-UE and reported greater overall improvement than the control group. This study confirms the feasibility and potential clinical benefit of supplementing post-stroke rehabilitation with sensor-augmented exercises provided by the previously described Przypominajka device. Full article
(This article belongs to the Special Issue Sensors-Based Healthcare Diagnostics, Monitoring and Medical Devices)
Show Figures

Figure 1

22 pages, 7314 KB  
Article
Multi-Scenario Response of Ecosystem Service Value in High-Groundwater-Level Coal–Grain Overlapping Areas Under Dual Objective Constraints
by Qian Niu, Di Zhu, Yinghong Wang, Zhongyi Ding and Guoqiang Qiu
Appl. Sci. 2025, 15(16), 9172; https://doi.org/10.3390/app15169172 - 20 Aug 2025
Viewed by 263
Abstract
Ecosystem services (ES) are a key bridge connecting natural ecosystems with human social development. The core significance of ecosystem service value (ESV) is to quantify the contribution of ecosystems to human well-being. The mining of mineral resources causes disturbance to the structure, function, [...] Read more.
Ecosystem services (ES) are a key bridge connecting natural ecosystems with human social development. The core significance of ecosystem service value (ESV) is to quantify the contribution of ecosystems to human well-being. The mining of mineral resources causes disturbance to the structure, function, and value of ecosystems. This study focuses on the high groundwater level coal–grain overlapping areas in eastern China, the mining of mineral resources has led to widespread loss of cropland and carbon sinks in the region. Considering the particularity of ecosystem evolution caused by coal mining subsidence, we developed multiple land use demand scenarios under dual objective constraints based on PIM and Markov chain, including Inertial Development (ID), Food Security (FS), Urban Expansion (UE), Ecological Restoration (ER). The PLUS model was used to simulate the spatial changes of land use and the equivalent factor method was used to calculate the changes in ESV, exploring the best path to improve the ecological benefits of the coal–grain overlapping areas. The results indicate that: (1) By 2030, the study area will add 54,249.09 ha of coal mining subsidence, mainly mild and moderate subsidence, and cropland being the most affected by subsidence among all land types. (2) In the multi-scenarios, the total ESV is ranked as follows: ecological governance scenario (CNY 51.21199 billion) > ID scenario (CNY 51.0898 billion) > food security scenario (CNY 48.4767 billion) > UE scenario (CNY 48.27157 billion). Among them, the ER scenario achieves all individual ESV gains and has the highest overall ESV. (3) Spatial analysis shows that in the ER scenario, the ESV of mining townships significantly increases and the ESV gap between other townships has decreased. However, the FS scenario and UE scenario have led to widespread degradation of ESV between various townships in eastern mountainous areas, and severe degradation of ESV in some urban townships. This study validated the accuracy and applicability of the PLUS model in medium scale and plain regions. The study has confirmed our hypothesis that reasonable land use and ecological restoration methods can achieve Pareto improvement in regional ESV, provided a holistic and local dialectical perspective for related research, and a scientific basis for the sustainable development of coal grain overlapping areas. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Environmental Monitoring)
Show Figures

Figure 1

38 pages, 6706 KB  
Article
Intelligent Method for Generating Criminal Community Influence Risk Parameters Using Neural Networks and Regional Economic Analysis
by Serhii Vladov, Lyubomyr Chyrun, Eduard Muzychuk, Victoria Vysotska, Vasyl Lytvyn, Tetiana Rekunenko and Andriy Basko
Algorithms 2025, 18(8), 523; https://doi.org/10.3390/a18080523 - 18 Aug 2025
Viewed by 293
Abstract
This article develops an innovative and intelligent method for analysing the criminal community’s influence on risk-forming parameters based on an analysis of regional economic processes. The research motivation was the need to create an intelligent method for quantitative assessment and risk control arising [...] Read more.
This article develops an innovative and intelligent method for analysing the criminal community’s influence on risk-forming parameters based on an analysis of regional economic processes. The research motivation was the need to create an intelligent method for quantitative assessment and risk control arising from the interaction between regional economic processes and criminal activity. The method includes a three-level mathematical model in which the economic activity dynamics are described by a modified logistic equation, taking into account the criminal activity’s negative impact and feedback through the integral risk. The criminal activity itself is modelled by a similar logistic equation, taking into account the economic base. The risk parameter accumulates the direct impact and delayed effects through the memory core. To numerically solve the spatio-temporal optimal control problem, a neural network based on the convolutional architecture was developed: two successive convolutional layers (N1 with 3 × 3 filters and N2 with 3 × 3 filters) extract local features, after which two 1 × 1 convolutional layers (FC1 and FC2) form a three-channel output corresponding to the control actions UE, UC, and UI. The loss function combines the supervised component and the residual terms of the differential equations, which ensures the satisfaction of physical constraints. The computational experiment showed the high accuracy of the model: accuracy is 0.9907, precision is 0.9842, recall is 0.9983, and F1-score is 0.9912, with a minimum residual loss of 0.0093 and superiority over alternative architectures in key metrics (MSE is 0.0124, IoU is 0.74, and Dice is 0.83). Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

15 pages, 582 KB  
Article
Combined Effect of tDCS and GRASP for Upper Limb Rehabilitation in Stroke: A Clinical and Accelerometric Pilot Study
by Erica Grange, Rachele Di Giovanni, Fabio Giuseppe Masuccio, Virginia Tipa, Luca Dileo, Alessandra Bordino, Micaela Porta, Bruno Leban, Martina Rolla, Massimiliano Pau and Claudio Marcello Solaro
Sensors 2025, 25(16), 4907; https://doi.org/10.3390/s25164907 - 8 Aug 2025
Viewed by 428
Abstract
Upper limb (UL) impairment after stroke negatively influences stroke survivors’ quality of life (QOL). This study aims to evaluate, through clinical assessment and accelerometric measures, the efficacy of anodal Transcranial Direct Current Stimulation (a-tDCS) combined with the Graded Repetitive Arm Supplementary Program (GRASP) [...] Read more.
Upper limb (UL) impairment after stroke negatively influences stroke survivors’ quality of life (QOL). This study aims to evaluate, through clinical assessment and accelerometric measures, the efficacy of anodal Transcranial Direct Current Stimulation (a-tDCS) combined with the Graded Repetitive Arm Supplementary Program (GRASP) in post-acute stroke UL rehabilitation. Subjects were enrolled if they were aged ≥18 years and had a first stroke diagnosis, UL motor impairment and adequate trunk control. The subjects underwent combined administration of intensive a-tDCS and GRASP (15 sessions/30 min each). Before and after treatment, a subgroup of subjects was evaluated through wearable accelerometers. A total of 30 subjects were included in this study (mean age 68.34 ± 14.08 years; 19 males/11 females). Medical Research Council (MRC), Hand Grip Strength (HGS), Nine-Hole Peg Test (9HPT), Box and Block Test (BBT) and Fugl-Meyer Assessment-Upper Extremity (FMA-UE) scores significantly improved after treatment. The accelerometric-derived measurements all revealed a significant increase in the affected UL activity as indicated by the Vector Magnitude value. No side effects were reported. In conclusion, an intensive a-tDCS and GRASP application proved to be effective and safe in UL rehabilitation after stroke. The association of accelerometric monitoring might be of paramount importance for the evaluation of UL recovery. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

24 pages, 3172 KB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 - 1 Aug 2025
Viewed by 561
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

23 pages, 2248 KB  
Article
Autonomic and Neuroendocrine Reactivity to VR Game Exposure in Children and Adolescents with Obesity: A Factor Analytic Approach to Physiological Reactivity and Eating Behavior
by Cristiana Amalia Onita, Daniela-Viorelia Matei, Laura-Mihaela Trandafir, Diana Petrescu-Miron, Calin Corciova, Robert Fuior, Lorena-Mihaela Manole, Bogdan-Mircea Mihai, Cristina-Gena Dascalu, Monica Tarcea, Stéphane Bouchard and Veronica Mocanu
Nutrients 2025, 17(15), 2492; https://doi.org/10.3390/nu17152492 - 30 Jul 2025
Viewed by 568
Abstract
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with [...] Read more.
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with obesity (15 boys and 15 girls), aged 8 to 17 years. The VR protocol consisted of two consecutive phases: a 5 min relaxation phase using the Forest application and a 5 min stimulation phase using a cognitively engaging VR game designed to elicit social-emotional stress. Physiological responses were measured using heart rate variability (HRV) indices and salivary stress biomarkers, including cortisol and alpha amylase. Subjective stress and eating responses were assessed via visual analogue scales (VAS) administered immediately post-exposure. The Three-Factor Eating Questionnaire (TFEQ-R21C) was used to evaluate cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE). Results: The cortisol reactivity was blunted and may reflect both the attenuated HPA axis responsiveness characteristic of pediatric obesity and the moderate psychological challenge of the VR stressor used in this study. Two distinct autonomic response patterns were identified via exploratory factor analysis: (1) parasympathetic reactivity, associated with increased RMSSD and SDNN and decreased LF/HF, and (2) sympathetic activation, associated with increased heart rate and alpha-amylase levels and reduced RR intervals. Parasympathetic reactivity was correlated with lower perceived stress and anxiety, but also paradoxically with higher uncontrolled eating (UE). In contrast, sympathetic activation was associated with greater cognitive restraint (CR) and higher anxiety ratings. Conclusions: This study demonstrates that immersive VR game exposure elicits measurable autonomic and subjective stress responses in children and adolescents with obesity, and that individual differences in physiological reactivity are relevantly associated with eating behavior traits. The findings suggest that parasympathetic and sympathetic profiles may represent distinct behavioral patterns with implications for targeted intervention. Full article
(This article belongs to the Special Issue A Path Towards Personalized Smart Nutrition)
Show Figures

Figure 1

19 pages, 1887 KB  
Review
Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems
by Cristina Maria Andras, Gordana Barb and Marius Otesteanu
Sensors 2025, 25(15), 4619; https://doi.org/10.3390/s25154619 - 25 Jul 2025
Viewed by 1030
Abstract
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio [...] Read more.
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio energy to a specific user equipment (UE), thereby enhancing signal quality—crucial for maximizing spectral efficiency. The work presents a classification of beamforming techniques, categorized according to the implementation within 5G New Radio (NR) architectures. Furthermore, the paper investigates beam management (BM) procedures, which are essential Layer 1 and Layer 2 mechanisms responsible for the dynamic configuration, monitoring, and maintenance of optimal beam pair links between gNodeBs and UEs. The article emphasizes the spectral spectrogram of Synchronization Signal Blocks (SSBs) generated under various deployment scenarios, illustrating how parameters such as subcarrier spacing (SCS), frequency band, and the number of SSBs influence the spectral occupancy and synchronization performance. These insights provide a technical foundation for optimizing initial access and beam tracking in high-frequency 5G deployments, particularly within Frequency Range (FR2). Additionally, the versatility of 5G’s time-frequency structure is demonstrated by the spectrogram analysis of SSBs in a variety of deployment scenarios. These results provide insight into how different configurations affect the synchronization signals’ temporal and spectral occupancy, which directly affects initial access, cell identification, and energy efficiency. Full article
Show Figures

Figure 1

18 pages, 1643 KB  
Communication
A Localization Enhancement Method Based on Direct-Path Identification and Tracking for Future Networks
by Yuhong Huang and Youping Zhao
Sensors 2025, 25(15), 4538; https://doi.org/10.3390/s25154538 - 22 Jul 2025
Viewed by 345
Abstract
Localization is one of the essential problems in the Internet of Things (IoT). Dynamic changes in the radio environment may lead to poor localization accuracy or discontinuous localization in non-line-of-sight (NLOS) scenarios. To address this problem, this paper proposes a localization enhancement method [...] Read more.
Localization is one of the essential problems in the Internet of Things (IoT). Dynamic changes in the radio environment may lead to poor localization accuracy or discontinuous localization in non-line-of-sight (NLOS) scenarios. To address this problem, this paper proposes a localization enhancement method based on direct-path identification and tracking. More specifically, the proposed method significantly reduces the range error and localization error by quickly identifying the line-of-sight (LOS) to NLOS transition and effectively tracking the direct path. In a large testing hall, localization experiments based on the ultra-wideband (UWB) signal have been carried out. Experimental results show that the proposed method achieves a root mean square localization error of less than 0.3 m along the user equipment (UE) movement trajectory with serious NLOS propagation conditions. Compared with conventional methods, the proposed method significantly improves localization accuracy while ensuring continuous localization. Full article
Show Figures

Figure 1

12 pages, 459 KB  
Article
Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients
by Ana Isabel Useros-Olmo, Roberto Cano-de-la-Cuerda, Jesús Rodríguez-Herranz, Alfonso Gil-Martínez and Alicia Hernando-Rosado
J. Clin. Med. 2025, 14(15), 5185; https://doi.org/10.3390/jcm14155185 - 22 Jul 2025
Viewed by 368
Abstract
Background: The present study aimed to determine whether the protocolized use of pneumatic splints within neurodevelopmental therapeutic approaches produces a positive effect on sensorimotor impairments of the hemiplegic upper extremity in patients. Methods: A randomized clinical single-blind trial was conducted. Stroke patients were [...] Read more.
Background: The present study aimed to determine whether the protocolized use of pneumatic splints within neurodevelopmental therapeutic approaches produces a positive effect on sensorimotor impairments of the hemiplegic upper extremity in patients. Methods: A randomized clinical single-blind trial was conducted. Stroke patients were recruited and randomized into an experimental group, which completed a treatment protocol of splinting plus physiotherapy for 45 min per session, two sessions per week for four weeks; or a control group, which received the same type of conventional physiotherapy treatment for the same period of time. The patients were evaluated by Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) and the Trunk Control Scale. Secondary variables were Mini-BEStest, the modified Ashworth scale for ankle flexors, and computerized measurements of upper limb functional parameters performed by Armeo Spring® robotic systems and Amadeo®. All variables were measured pre- and post-treatment. Results: Twenty stroke patients with subacute and chronic stroke completed the protocol. Mann–Whitney U tests showed statistically significant differences between groups for the FM sensation variable (Z = −2.19; p = 0.03). The rest of the variables studied in the comparison between the two study groups did not present statistically significant differences (p > 0.05). Conclusions: The use of air splints in combination with physiotherapy treatment produced improvements in exteroceptive and proprioceptive sensitivity in post-stroke adult patients in the subacute and chronic phases. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

Back to TopTop