Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = UV lithography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2211 KB  
Communication
Large-Area Nanostructure Fabrication with a 75 nm Half-Pitch Using Deep-UV Flat-Top Laser Interference Lithography
by Kexin Jiang, Mingliang Xie, Zhe Tang, Xiren Zhang and Dongxu Yang
Sensors 2025, 25(18), 5906; https://doi.org/10.3390/s25185906 - 21 Sep 2025
Viewed by 296
Abstract
Micro- and nanopatterning is crucial for advanced photonic, electronic, and sensing devices. Yet achieving large-area periodic nanostructures with a 75 nm half-pitch on low-cost laboratory systems remains difficult, because conventional near-ultraviolet laser interference lithography (LIL) suffers from Gaussian-beam non-uniformity and a narrow exposure [...] Read more.
Micro- and nanopatterning is crucial for advanced photonic, electronic, and sensing devices. Yet achieving large-area periodic nanostructures with a 75 nm half-pitch on low-cost laboratory systems remains difficult, because conventional near-ultraviolet laser interference lithography (LIL) suffers from Gaussian-beam non-uniformity and a narrow exposure latitude. Here, we report a cost-effective deep-ultraviolet (DUV) dual-beam LIL system based on a 266 nm laser and diffractive flat-top beam shaping, enabling large-area patterning of periodical nanostructures. At this wavelength, a moderate half-angle can be chosen to preserve a large beam-overlap region while still delivering 150 nm period (75 nm half-pitch) structures. By independently tuning the incident angle and beam uniformity, we pattern one-dimensional (1D) gratings and two-dimensional (2D) arrays over a Ø 1.0 cm field with critical-dimension variation < 5 nm (1σ), smooth edges, and near-vertical sidewalls. As a proof of concept, we transfer a 2D pattern into Si to create non-metal-coated nanodot arrays that serve as surface-enhanced Raman spectroscopy (SERS) substrates. The arrays deliver an average enhancement factor of ~1.12 × 104 with 11% intensity relative standard deviation (RSD) over 65 sampling points, a performance near the upper limit of all-dielectric SERS substrates. The proposed method overcomes the uneven hotspot distribution and complex fabrication procedures in conventional SERS substrates, enabling reliable and large-area chemical sensing. Compared to electron-beam lithography, the flat-top DUV-LIL approach offers orders-of-magnitude higher throughput at a fraction of the cost, while its centimeter-scale uniformity can be scaled to full wafers with larger beam-shaping optics. These attributes position the method as a versatile and economical route to large-area photonic metasurfaces and sensing devices. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

23 pages, 30393 KB  
Article
An Acid-Cleavable Lamellar Block Copolymer for Sub-30-nm Line Spacing Patterning via Graphoepitaxial Directed Self-Assembly and Direct Wet Etching
by Jianghao Zhan, Caiwei Shang, Muqiao Niu, Jiacheng Luo, Shengguang Gao, Zhiyong Wu, Shengru Niu, Yiming Xu, Xingmiao Zhang, Zili Li and Shisheng Xiong
Polymers 2025, 17(18), 2435; https://doi.org/10.3390/polym17182435 - 9 Sep 2025
Viewed by 715
Abstract
Graphoepitaxial directed self-assembly (DSA) of block copolymers (BCPs) has emerged as a promising strategy for sub-30 nm line spacing patterning in semiconductor nanofabrication. Among the available BCP systems, polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) has been extensively utilized due to its well-characterized phase [...] Read more.
Graphoepitaxial directed self-assembly (DSA) of block copolymers (BCPs) has emerged as a promising strategy for sub-30 nm line spacing patterning in semiconductor nanofabrication. Among the available BCP systems, polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) has been extensively utilized due to its well-characterized phase behavior and compatibility with standard lithographic processes. However, achieving a high-fidelity pattern with PS-b-PMMA remains challenging, owing to its limited etch contrast and reliance on UV-assisted degradation for PMMA removal. In this study, we report the synthesis of an acid-cleavable lamellar BCP, PS-N=CH-PMMA, incorporating a dynamic Schiff base (-N=CH-) linkage at the junction. This functional design enables UV-free wet etching, allowing selective removal of PMMA domains using glacial acetic acid. The synthesized copolymers retain the self-assembly characteristics of PS-b-PMMA and form vertically aligned lamellar nanostructures, with domain spacings tunable from 36.1 to 40.2 nm by varying the PMMA block length. When confined within 193i-defined trench templates with a critical dimension (CD) of 55 nm (trench width), these materials produced well-ordered one-space-per-trench patterns with interline spacings tunable from 15 to 25 nm, demonstrating significant line spacing shrinkage relative to the original template CD. SEM and FIB-TEM analyses confirmed that PS-N=CH-PMMA exhibits markedly improved vertical etch profiles and reduced PMMA residue compared to PS-b-PMMA, even without UV exposure. Furthermore, Ohta–Kawasaki simulations revealed that trench sidewall angle critically influences PS distribution and residual morphology. Collectively, this work demonstrates the potential of dynamic covalent chemistry to enhance the wet development fidelity of BCP lithography and offers a thermally compatible, UV-free strategy for sub-30 nm nanopatterning. Full article
Show Figures

Figure 1

4 pages, 831 KB  
Proceeding Paper
Rapid, Low-Cost Production of Multilayer Molds for PDMS Lab-on-Chip Devices
by Eldas M. Maesela, Mandla Msimanga, Masibulele Kakaza and Manfred R. Scriba
Eng. Proc. 2025, 109(1), 3; https://doi.org/10.3390/engproc2025109003 - 8 Sep 2025
Viewed by 179
Abstract
We present a simple, rapid and low-cost multi-layer mold fabrication method for production of polydimethylsiloxane (PDMS) lab-on-chip (LOC) devices. The new approach offers resource-strained researchers access to microfluidic lab-on-chip fabrication for medical diagnostics, food security and environmental monitoring applications. In this work, photomasks [...] Read more.
We present a simple, rapid and low-cost multi-layer mold fabrication method for production of polydimethylsiloxane (PDMS) lab-on-chip (LOC) devices. The new approach offers resource-strained researchers access to microfluidic lab-on-chip fabrication for medical diagnostics, food security and environmental monitoring applications. In this work, photomasks were designed on PowerPoint (2021) and printed on Pelikan transparency sheets using a Canon PIXMA iX6840 Inkjet printer. The photomasks were then tested for ultraviolet (UV) transmission and compared to the masks produced for circuit board manufacture. Another low-cost approach for the alignment of multi-exposure masks was also developed and tested by producing three-layer photoresist pyramid-like structures on silicon (Si) wafer using the soft lithography process. Full article
(This article belongs to the Proceedings of Micro Manufacturing Convergence Conference)
Show Figures

Figure 1

12 pages, 4156 KB  
Article
Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning
by Yu Ju Han, Myung Seo Kim, Seong Min Yoon, Seo Na Yoon, Woo Young Kim, Seok Kim and Young Tae Cho
Molecules 2025, 30(15), 3146; https://doi.org/10.3390/molecules30153146 - 27 Jul 2025
Viewed by 745
Abstract
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability [...] Read more.
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability via integrated nanoporous and hexagonal microstructures. Four distinct surface types were fabricated using UV nanoimprint lithography: planar, porous planar, hexagonal wall, and porous hexagonal wall. The evaporation behavior of colloidal droplets and subsequent particle aggregation were analyzed through contact angle measurements and confocal microscopy. Results demonstrated that nanoscale porosity significantly increased surface wettability and accelerated evaporation, while the hexagonal pattern enhanced droplet stability and suppressed contact line movement. The porous hexagonal surface, in particular, enabled the formation of connected dual-ring patterns with higher particle accumulation near the contact edge. This synergistic design facilitated both stable evaporation and improved localization of particles. The findings provide a quantitative basis for applying patterned porous surfaces in evaporation-driven platforms, with implications for enhanced sensitivity and reproducibility in surface-enhanced Raman scattering (SERS) and other biosensing applications. Full article
(This article belongs to the Special Issue Novel Porous Materials for Environmental Applications)
Show Figures

Graphical abstract

21 pages, 2081 KB  
Article
Translation of COVID-19 Serology Test on Foil-Based Lateral Flow Chips: A Journey from Injection Molding to Scalable Roll-to-Roll Nanoimprint Lithography
by Pakapreud Khumwan, Stephan Ruttloff, Johannes Götz, Dieter Nees, Conor O’Sullivan, Alvaro Conde, Mirko Lohse, Christian Wolf, Nastasia Okulova, Janine Brommert, Richard Benauer, Ingo Katzmayr, Nikolaus Ladenhauf, Wilfried Weigel, Maciej Skolimowski, Max Sonnleitner, Martin Smolka, Anja Haase, Barbara Stadlober and Jan Hesse
Biosensors 2025, 15(4), 229; https://doi.org/10.3390/bios15040229 - 4 Apr 2025
Viewed by 991
Abstract
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions [...] Read more.
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions of devices has already been extensively demonstrated. Nevertheless, the assay option in an LFT format is largely restricted to qualitative detection of the target antigens. In this research, we surveyed the potential of UV nanoimprint lithography (UV-NIL) and extrusion coating (EC) for the high-throughput production of disposable capillary-driven, foil-based tests that allow multistep assays to be implemented for quantitative readout to address the inherent lack of on-demand fluid control and sensitivity of paper-based devices. Both manufacturing technologies operate on the principle of imprinting that enables high-volume, continuous structuring of microfluidic patterns in a roll-to-roll (R2R) production scheme. To demonstrate the feasibility of R2R-fabricated foil chips in a point-of-care biosensing application, we adapted a commercial chemiluminescence multiplex test for COVID-19 antibody detection originally developed for a capillary-driven microfluidic chip manufactured with injection molding (IM). In an effort to build a complete ecosystem for the R2R manufacturing of foil chips, we also recruited additional processes to streamline chip production: R2R biofunctionalization and R2R lamination. Compared to conventional fabrication techniques for microfluidic devices, the R2R techniques highlighted in this work offer unparalleled advantages concerning improved scalability, dexterity of seamless handling, and significant cost reduction. Our preliminary evaluation indicated that the foil chips exhibited comparable performance characteristics to the original IM-fabricated devices. This early success in assay translation highlights the promise of implementing biochemical assays on R2R-manufactured foil chips. Most importantly, it underscores the potential utilization of UV-NIL and EC as an alternative to conventional technologies for the future development in vitro diagnostics (IVD) in response to emerging point-of-care testing demands. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Graphical abstract

15 pages, 6277 KB  
Article
High-Performance Ferroelectric Capacitors Based on Pt/BaTiO3/SrRuO3/SrTiO3 Heterostructures for Nonvolatile Memory Applications
by Zengyuan Fang, Yiming Peng, Haiou Li, Xingpeng Liu and Jianghui Zhai
Crystals 2025, 15(4), 337; https://doi.org/10.3390/cryst15040337 - 2 Apr 2025
Cited by 1 | Viewed by 1016
Abstract
BaTiO3 (BTO), a lead-free chalcogenide ferroelectric material, has emerged as a promising candidate for ferroelectric memories due to its advantageous ferroelectric properties, notable flexibility, and mechanical stability, along with a high dielectric constant and minimal leakage. These attributes lay a crucial foundation [...] Read more.
BaTiO3 (BTO), a lead-free chalcogenide ferroelectric material, has emerged as a promising candidate for ferroelectric memories due to its advantageous ferroelectric properties, notable flexibility, and mechanical stability, along with a high dielectric constant and minimal leakage. These attributes lay a crucial foundation for multi-value storage. In this study, high-quality BaTiO3 ferroelectric thin films have been successfully prepared on STO substrates by pulsed laser deposition (PLD), and Pt/BaTiO3/SrRuO3/SrTiO3 ferroelectric heterojunctions were finally prepared by a combination of UV lithography and magnetron sputtering. Characterization and performance tests were carried out by AFM, XRD, and a semiconductor analyzer. The results demonstrate that the ferroelectric heterojunction prepared in this study exhibits excellent ferroelectric properties. Furthermore, the device demonstrates fatigue-free operation after 107 bipolar switching cycle tests, and the polarization value exhibits no significant decrease in the holding characteristic test at 104 s, thereby further substantiating its exceptional reliability and durability. These findings underscore the considerable promise of BTO ferroelectric memories for nonvolatile storage applications and lay the foundation for the development in the fields of both in-memory computing systems and neuromorphic computing. Full article
(This article belongs to the Special Issue Recent Research on Electronic Materials and Packaging Technology)
Show Figures

Graphical abstract

60 pages, 13122 KB  
Review
Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication
by Prithvi Basu, Jyoti Verma, Vishnuram Abhinav, Ratneshwar Kumar Ratnesh, Yogesh Kumar Singla and Vibhor Kumar
Int. J. Mol. Sci. 2025, 26(7), 3027; https://doi.org/10.3390/ijms26073027 - 26 Mar 2025
Cited by 9 | Viewed by 7990
Abstract
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), [...] Read more.
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), and nanoimprint lithography (NIL). Each method is analyzed based on its working principles, resolution, resist materials, and applications. EUV lithography, with sub-10 nm resolution, is vital for extending Moore’s Law, leveraging high-NA optics and chemically amplified resists. EBL and IBL enable high-precision maskless patterning for prototyping but suffer from low throughput. XRL, using synchrotron radiation, achieves deep, high-resolution features, while NIL provides a cost-effective, high-throughput method for replicating nanostructures. Alignment marks play a key role in precise layer-to-layer registration, with innovations enhancing accuracy in advanced systems. The mask fabrication process is also examined, highlighting materials like molybdenum silicide for EUV and defect mitigation strategies such as automated inspection and repair. Despite challenges in resolution, defect control, and material innovation, lithography remains indispensable in semiconductor scaling, supporting applications in integrated circuits, photonics, and MEMS/NEMS devices. Various molecular strategies, mechanisms, and molecular dynamic simulations to overcome the fundamental lithographic limits are also highlighted in detail. This review offers insights into lithography’s present and future, aiding researchers in nanoscale manufacturing advancements. Full article
Show Figures

Figure 1

40 pages, 11565 KB  
Review
Advancements in the Preparation and Application of Ni-Co System (Alloys, Composites, and Coatings): A Review
by Liyan Lai, Feng Qian, Yuxiao Bi, Bing Niu, Guanliang Yu, Yigui Li and Guifu Ding
Nanomaterials 2025, 15(4), 312; https://doi.org/10.3390/nano15040312 - 18 Feb 2025
Cited by 3 | Viewed by 2029
Abstract
In the field of non-silicon MEMSs (micro-electro-mechanical systems), nickel, with its mature preparation method, good compatibility with non-silicon MEMS processes, and excellent mechanical properties, is one of the commonly used structural materials. By effectively combining it with non-silicon MEMS processes, nickel is widely [...] Read more.
In the field of non-silicon MEMSs (micro-electro-mechanical systems), nickel, with its mature preparation method, good compatibility with non-silicon MEMS processes, and excellent mechanical properties, is one of the commonly used structural materials. By effectively combining it with non-silicon MEMS processes, nickel is widely used in typical process systems such as LIGA (Lithography, Galvanoformung, Abformung)/UV-LIGA (Ultraviolet Lithography, Galvanoformung, Abformung). However, with the rapid development of the non-silicon MEMS field, pure nickel materials are no longer able to meet current material demands. Alternatively, nickel–cobalt composite materials have excellent mechanical properties, thermal stability, corrosion resistance, and good adaptability to processing technology because cobalt has unique advantages as a reinforcing phase, including excellent wear resistance, corrosion resistance, and high hardness. This article examines the current methods for preparing nickel–cobalt alloys by focusing on composite electrodeposition of coatings and analyzing their advantages and disadvantages. Based on this, the effect of the composite electrodeposition conditions on the formation mechanism of nickel–cobalt alloy coatings is discussed. Then, the research status of composite electrodeposition methods mainly based on nickel–cobalt nanocomposites is discussed. Finally, a new direction for future work on nickel–cobalt composite materials mainly composed of nickel–cobalt nanomaterials prepared by composite electrodeposition is proposed, and its application prospects in non-silicon MEMS fields are discussed. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 5122 KB  
Article
A Sub-Pixel Measurement Platform Using Twist-Angle Analysis in Two-Dimensional Planes
by Jiangbo Lyu, Wenchao Kong, Yan Zhou, Yazhi Pi and Zizheng Cao
Sensors 2025, 25(4), 1081; https://doi.org/10.3390/s25041081 - 11 Feb 2025
Cited by 1 | Viewed by 718
Abstract
Arrayed ultraviolet (UV) LED light sources have been widely applied in various semiconductor processes, ranging from photopolymerization to lithography. In practical cases, based on data provided by manufacturers, calibration of individual UV LEDs is often needed before their real usage in high-precision applications. [...] Read more.
Arrayed ultraviolet (UV) LED light sources have been widely applied in various semiconductor processes, ranging from photopolymerization to lithography. In practical cases, based on data provided by manufacturers, calibration of individual UV LEDs is often needed before their real usage in high-precision applications. In this paper, we present a high-precision, automated light source measurement platform, which can be applied to the performance evaluation of various types of light sources. In order to minimize errors introduced by the automated measurement system, the platform employs a sub-pixel measurement technique, along with a twist-angle method, to perform multiple measurements and analyses of the spatial intensity distribution of the light source on a given plane. Through noise analysis of repeated measurements, the platform’s effectiveness and reliability are validated within a certain tolerance range. The high-precision automated light source measurement platform demonstrates excellent performance in the precise control and data acquisition of complex light sources. The light source dataset derived from the test results can provide guidance for the optimization of light sources in fields such as lighting, imaging, and lithography. Full article
Show Figures

Figure 1

12 pages, 3107 KB  
Article
High-Aspect-Ratio Shape Replica Mold Fabrication Using Nanoimprinting and Silver Ink as Etching Mask
by Keisuke Enomoto and Jun Taniguchi
Nanomanufacturing 2025, 5(1), 2; https://doi.org/10.3390/nanomanufacturing5010002 - 15 Jan 2025
Viewed by 1356
Abstract
Effective high-aspect-ratio molds that minimize vacuum processes are becoming increasingly important for producing metalenses and other devices. To fabricate a high-aspect-ratio structure, a metal film must be used as a mask for dry etching, typically achieved via vacuum deposition. To avoid this vacuum [...] Read more.
Effective high-aspect-ratio molds that minimize vacuum processes are becoming increasingly important for producing metalenses and other devices. To fabricate a high-aspect-ratio structure, a metal film must be used as a mask for dry etching, typically achieved via vacuum deposition. To avoid this vacuum process, we devised a method to develop an etching mask in the air using silver ink. The manufacturing method involved filling the mold with silver ink, baking it, removing silver from the convex parts of the mold with a polyethylene terephthalate film, and placing silver from the concave parts of the mold on top of the ultraviolet (UV)-cured resin using ultraviolet-nanoimprint lithography. The transferred pattern had silver on the convex parts, which was used as a mask for the oxygen dry etching of the UV-curable resin. Consequently, high-aspect-ratio resin shapes were obtained from three types of nano- and micromolds. Additionally, a high-aspect-ratio resin with silver was used as a replica mold to form a silver pattern. This process is effective and allows high-aspect-ratio patterns to be obtained from master molds. Full article
(This article belongs to the Special Issue Nanoimprinting and Sustainability)
Show Figures

Figure 1

17 pages, 6624 KB  
Article
Laser-Induced Silver Nanowires/Polymer Composites for Flexible Electronics and Electromagnetic Compatibility Application
by Il’ya Bril’, Anton Voronin, Yuri Fadeev, Alexander Pavlikov, Ilya Govorun, Ivan Podshivalov, Bogdan Parshin, Mstislav Makeev, Pavel Mikhalev, Kseniya Afanasova, Mikhail Simunin and Stanislav Khartov
Polymers 2024, 16(22), 3174; https://doi.org/10.3390/polym16223174 - 14 Nov 2024
Cited by 4 | Viewed by 2172
Abstract
Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an integral part of our life. These technologies place unprecedentedly high demands on materials in terms of their mechanical and electrical properties. There are several strategies for forming conductive layers in [...] Read more.
Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an integral part of our life. These technologies place unprecedentedly high demands on materials in terms of their mechanical and electrical properties. There are several strategies for forming conductive layers in such composites, e.g., volume blending to achieve a percolation threshold, inkjet printing, lithography, and laser processing. The latter is a low-cost, environmentally friendly, scalable way to produce composites. In our work, we synthesized AgNW and characterized them using Ultraviolet-visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), and Selective area electron diffraction (SAED). We found that our AgNW absorbed in the UV-vis range of 345 to 410 nm. This is due to the plasmon resonance phenomenon of AgNW. Then, we applied the dispersion of AgNW on the surface of the polymer substrate, dried them and we got the films of AgNW.. We irradiated these films with a 432 nm laser. As a result of the treatment, we observed two processes. The first one was the sintering and partial melting of nanowires under the influence of laser radiation, as a consequence of which, the sheet resistance dropped more than twice. The second was the melting of the polymer at the interface and the subsequent integration of AgNW into the substrate. This allowed us to improve the adhesion from 0–1 B to 5 B, and to obtain a composite capable of bending, with radius of 0.5 mm. We also evaluated the shielding efficiency of the obtained composites. The shielding efficiency for 500–600 nm thick porous film samples were 40 dB, and for 3.1–4.1 µm porous films the shielding efficiency was about 85–90 dB in a frequency range of 0.01–40 GHz. The data obtained by us are the basis for producing flexible electronic components based on AgNW/PET composite for various applications using laser processing methods. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials)
Show Figures

Graphical abstract

11 pages, 2309 KB  
Article
Glass Surface Nanostructuring by Soft Lithography and Chemical Etching
by Luciano Bravo, Martín Ampuero, Jonathan Correa-Puerta, Tomás P. Corrales, Sofía Flores, Benjamín Schleyer, Natalia Hassan, Patricio Häberle, Ricardo Henríquez and Valeria del Campo
Nanomaterials 2024, 14(21), 1714; https://doi.org/10.3390/nano14211714 - 27 Oct 2024
Cited by 2 | Viewed by 4318
Abstract
Due to its high durability and transparency, soda lime glass holds a huge potential for several applications such as photovoltaics, optical instrumentation and biomedical devices, among others. The different technologies request specific properties, which can be enhanced through the modification of the surface [...] Read more.
Due to its high durability and transparency, soda lime glass holds a huge potential for several applications such as photovoltaics, optical instrumentation and biomedical devices, among others. The different technologies request specific properties, which can be enhanced through the modification of the surface morphology with a nanopattern. Here, we report a simple method to nanostructure a glass surface with soft lithography and wet-chemical etching in potassium hydroxide (KOH) solutions. Glass samples etched with a polymeric mask showed a nanopattern with stripes of widths between 220 and 450 nm and modulated heights between 50 and 200 nm. For different solution concentrations or etching times, the obtained nanopatterns led to an increase or reduction of the water contact angle. The largest increment, ~20 degrees, was achieved by etching the glass for 180 min with 30% KOH concentration, while a super-hydrophilic glass (~9° contact angle) was achieved when etching for 90 min with the same concentration. Optical characterization showed a very low influence of the nanostructured pattern on glass transparency and an increment in UV transmittance for some cases. Full article
Show Figures

Figure 1

9 pages, 3136 KB  
Communication
Off-Stoichiometry Thiol-Ene (OSTE) Micro Mushroom Forest: A Superhydrophobic Substrate
by Haonan Li, Muyang Zhang, Yeqian Liu, Shangneng Yu, Xionghui Li, Zejingqiu Chen, Zitao Feng, Jie Zhou, Qinghao He, Xinyi Chen, Huiru Zhang, Jiaen Zhang, Xingwei Zhang and Weijin Guo
Micromachines 2024, 15(9), 1088; https://doi.org/10.3390/mi15091088 - 28 Aug 2024
Cited by 2 | Viewed by 1351
Abstract
Superhydrophobic surfaces have been used in various fields of engineering due to their resistance to corrosion and fouling and their ability to control fluid movement. Traditionally, superhydrophobic surfaces are fabricated via chemical methods of changing the surface energy or mechanical methods of controlling [...] Read more.
Superhydrophobic surfaces have been used in various fields of engineering due to their resistance to corrosion and fouling and their ability to control fluid movement. Traditionally, superhydrophobic surfaces are fabricated via chemical methods of changing the surface energy or mechanical methods of controlling the surface topology. Many of the conventional mechanical methods use a top-to-bottom scheme to control the surface topolopy. Here, we develop a novel fabrication method of superhydrophobic substrates using a bottom-to-top scheme via polymer OSTE, which is a prototyping polymer material developed for the fabrication of microchips due to its superior photocuring ability, mechanical properties, and surface modification ability. We fabricate a superhydrophobic substrate by OSTE–OSTE micro mushroom forest via a two-step lithography process. At first, we fabricate an OSTE pillar forest as the mushroom stems; then, we fabricate the mushroom heads via backside lithography with diffused UV light. Such topology and surface properties of OSTE render these structures superhydrophobic, with water droplets reaching a contact angle of 152.9 ± 0.2°, a sliding angle of 4.1°, and a contact angle hysteresis of less than 0.5°. These characteristics indicate the promising potential of this substrate for superhydrophobic applications. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

13 pages, 2502 KB  
Article
Facile Fabrication of Hierarchical Structured Anodic Aluminum Oxide Molds for Large-Scale Production of Superhydrophobic Polymer Films
by Athinarayanan Balasankar, Raja Venkatesan, Dae-Yeong Jeong, Tae Hwan Oh, Seong-Cheol Kim, Alexandre A. Vetcher and Subramaniyan Ramasundaram
Polymers 2024, 16(16), 2344; https://doi.org/10.3390/polym16162344 - 19 Aug 2024
Cited by 3 | Viewed by 1655
Abstract
Anodized aluminum oxide (AAO) molds were used for the production of large-area and inexpensive superhydrophobic polymer films. A controlled anodization methodology was developed for the fabrication of hierarchical micro–nanoporous (HMN) AAO imprint molds (HMN-AAO), where phosphoric acid was used as both an electrolyte [...] Read more.
Anodized aluminum oxide (AAO) molds were used for the production of large-area and inexpensive superhydrophobic polymer films. A controlled anodization methodology was developed for the fabrication of hierarchical micro–nanoporous (HMN) AAO imprint molds (HMN-AAO), where phosphoric acid was used as both an electrolyte and a widening agent. Heat generated upon repetitive high-voltage (195 V) anodization steps is effectively dissipated by establishing a cooling channel. On the HMN-AAO, within the hemispherical micropores, arrays of hexagonal nanopores are formed. The diameter and depth of the micro- and nanopores are 18/8 and 0.3/1.25 µm, respectively. The gradual removal of micropatterns during etching in both the vertical and horizontal directions is crucial for fabricating HMN-AAO with a high aspect ratio. HMN-AAO rendered polycarbonate (PC) and polymethyl methacrylate (PMMA) films with respective water contact angles (WCAs) of 153° and 151°, respectively. The increase in the WCA is 80% for PC (85°) and 89% for PMMA (80°). On the PC and PMMA films, mechanically robust arrays of nanopillars are observed within the hemispherical micropillars. The micro–nanopillars on these polymer films are mechanically robust and durable. Regular nanoporous AAO molds resulted in only a hydrophobic polymer film (WCA = 113–118°). Collectively, the phosphoric acid-based controlled anodization strategy can be effectively utilized for the manufacturing of HMN-AAO molds and roll-to-roll production of durable superhydrophobic surfaces. Full article
Show Figures

Figure 1

15 pages, 7617 KB  
Article
Design, Fabrication and Testing of a Multifrequency Microstrip RFID Tag Antenna on Si
by Timothea Korfiati, Christos N. Vazouras, Christos Bolakis, Antonis Stavrinidis, Giorgos Stavrinidis and Aggeliki Arapogianni
Computation 2024, 12(6), 122; https://doi.org/10.3390/computation12060122 - 13 Jun 2024
Viewed by 1616
Abstract
A configurable design of a microstrip square spiral RFID tag antenna, for a wide range of microwave frequencies in the S- and C-band, is presented. The design is parameterized in dimensions, and hence changing the design frequency (or frequencies) is easy, by changing [...] Read more.
A configurable design of a microstrip square spiral RFID tag antenna, for a wide range of microwave frequencies in the S- and C-band, is presented. The design is parameterized in dimensions, and hence changing the design frequency (or frequencies) is easy, by changing only an initial value for the spiral geometry. A tag specimen was fabricated using a Cu electroplating technique according to the design for frequencies of interest in the areas of 2.4 and 5.8 GHz. The substrate material is 320 μm high-resistivity Si and the bridge dielectric is 15 μm polyimide PI2525. The steps of the microfabrication process involve metallic structure pattern transfer techniques with optical UV lithography procedures. The reflection coefficient and antenna gain of the specimen were measured inside an anechoic enclosure using a vector network analyzer (VNA) and a TEM horn test antenna over a frequency range of up to 6 GHz. Simulated and measured results, exhibiting reasonable agreement, are presented and discussed. Full article
Show Figures

Figure 1

Back to TopTop