Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = Zr-MOF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2778 KB  
Article
Experimental Evaluation and Thermodynamic Analysis of Magnetic Fe3O4@La-Zr-MOFs for Highly Efficient Fluoride and Phosphate Removal
by Ziyi Zhang, Xinyun Chen, Yongyi Yu, Wenbin Pan, Ruilai Liu, Jiangyan Song and Jiapeng Hu
Nanomaterials 2025, 15(13), 1043; https://doi.org/10.3390/nano15131043 - 4 Jul 2025
Viewed by 450
Abstract
Phosphate and fluoride ions are common water pollutants whose presence and excessive discharge cause potential hazards to the environment and human health. MOF materials commonly used to remove phosphate and fluoride ions are usually in powder form, with low recovery during regeneration. Herein, [...] Read more.
Phosphate and fluoride ions are common water pollutants whose presence and excessive discharge cause potential hazards to the environment and human health. MOF materials commonly used to remove phosphate and fluoride ions are usually in powder form, with low recovery during regeneration. Herein, to address these issues, Fe3O4@La-Zr-MOFs magnetic composites for phosphate and fluoride removal were fabricated by means of the hydrothermal method. The adsorption properties of the adsorbent were systematically assessed by means of adsorption experiments. The magnetic Fe3O4@La-Zr-MOFs exhibited a magnetic recovery efficiency of 93%, and they could maintain outstanding adsorption performance at a broad range of pH values and superior selectivity for phosphate and fluoride ions. The adsorption process conformed to the Langmuir isotherm and pseudo-second-order models, indicating that it was dominated by monomolecular chemisorption. Further characterization of the Fe3O4@La-Zr-MOFs before and after adsorption and kinetic thermodynamic investigation revealed that the elimination mechanism of phosphate and fluoride ions by Fe3O4@La-Zr-MOFs includes ion exchange, electrostatic interactions, and surface complexation. This study demonstrates that magnetic reusable Fe3O4@La-Zr-MOFs composites have great promise for phosphate and fluoride removal and recovery. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 3043 KB  
Article
Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural
by Yuxuan Liu, Qiuju Fu, Weijing Niu, Yingxin Zhang, Wenpeng Xie, Huimin Jiang, Liting Yan, Guangda Li and Xuebo Zhao
Molecules 2025, 30(13), 2697; https://doi.org/10.3390/molecules30132697 - 22 Jun 2025
Cited by 1 | Viewed by 669
Abstract
As one of the most important platform chemicals, furfural (FAL) can be converted into high-value-added products such as furfuryl alcohol (FOL) through multiple pathways. Zirconium-based MOF-801 demonstrates exceptional catalytic potential for FAL conversion via catalytic transfer hydrogenation (CTH), owing to its unique crystal [...] Read more.
As one of the most important platform chemicals, furfural (FAL) can be converted into high-value-added products such as furfuryl alcohol (FOL) through multiple pathways. Zirconium-based MOF-801 demonstrates exceptional catalytic potential for FAL conversion via catalytic transfer hydrogenation (CTH), owing to its unique crystal defects generated during growth. In this study, a series of defective MOF-801 samples were efficiently synthesized using an air–liquid segmented microfluidic technique. The characterization results reveal that the air–liquid segmented flow method not only regulates the defect content of MOF-801 to expose more active sites but also adjusts the crystal size and pore structures by precisely controlling the reaction time. The enhanced defects in MOF-801 significantly improved its catalytic performance. A-MOF-801-64 exhibited the highest activity, achieving over 99% FAL conversion and 98% FOL selectivity under mild conditions (130 °C, 12 h) using isopropanol as the hydrogen donor; this performance surpassed that of other reported Zr-based catalysts. This study will facilitate the practical applications of defect-engineered MOF-801 in upgrading biomass-derived chemicals. Full article
(This article belongs to the Special Issue Modern Materials in Energy Storage and Conversion—Second Edition)
Show Figures

Graphical abstract

13 pages, 2423 KB  
Article
Optimizing the Size of Zr-Based Metal–Organic Frameworks for Enhanced Anticancer Efficacy
by Zan Cheng, Mei Yu, Yilong Wan, Huandong Xiang, Haoran Wei, Xu Zu, Xin Li, Ruiting Zhang, Fangshu Li, Shanshan Wang and Yongxin She
Nanomaterials 2025, 15(11), 826; https://doi.org/10.3390/nano15110826 - 29 May 2025
Viewed by 483
Abstract
Metal–organic frameworks (MOFs) have great potential for drug delivery systems due to their tunnel pore size, structural versatility, and high surface area. Among them, UiO-67 have recently attracted substantial attention as functional nanocarriers for effective delivery of small molecule chemical drugs. However, the [...] Read more.
Metal–organic frameworks (MOFs) have great potential for drug delivery systems due to their tunnel pore size, structural versatility, and high surface area. Among them, UiO-67 have recently attracted substantial attention as functional nanocarriers for effective delivery of small molecule chemical drugs. However, the influence of the size on cellular uptake of UiO-67 remains ambiguous. Here, we use polyvinyl pyrrolidone (PVP) as the capping agent of UiO-67 to synthesize spherical Zr-based MOFs with various diameters, including 40 nm, 60 nm, and 120 nm. The highest cellular uptake is observed in the case of Zr-based MOFs with a diameter of 40 nm (PU40 MOFs). Moreover, doxorubicin can be loaded into the inner pores of PU40 MOF via π-π and electrostatic interactions (DPU40 MOFs), with a loading capacity of 82 wt%, and gradually released under acidic conditions. In vitro, the resulting DPU40 MOFs can be internalized by cancer cells more effectively, thereby enhancing the delivery of doxorubicin into cancer cells. Ultimately, this results in enhanced antitumor efficacy toward 4T1, Hs 578T, and MCF-7 cells. Our findings indicate that approximately 40 nm may be the optimum diameter for the special Zr-based MOFs to be internalized by cells more effectively, providing potent potential nanocarriers for drug delivery. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

21 pages, 6580 KB  
Article
Probing Acidic and Defective Sites in Sulfated UiO-66 and ZrO2 via Adsorptive FTIR Spectroscopy
by Vera V. Butova, Olga A. Burachevskaia, Nikola L. Drenchev, Andrei A. Tereshchenko and Konstantin I. Hadjiivanov
Nanomaterials 2025, 15(11), 779; https://doi.org/10.3390/nano15110779 - 22 May 2025
Viewed by 728
Abstract
Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal–organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems—sulfated UiO-66 (UiO-66-SO4 [...] Read more.
Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal–organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems—sulfated UiO-66 (UiO-66-SO4) and sulfated tetragonal zirconia (S-ZrO2)—by FTIR spectroscopy with probe molecules. Isotope exchange experiments on S-ZrO2 reveal that dehydration above 250 °C induces tridentate SO4 coordination, while hydration leads to a reversible transition to a bidentate coordination mode. In UiO-66-SO4, sulfates are coordinated in a bidentate fashion to Zr6O6 clusters, significantly affecting the accessibility of Zr sites in defective pores. This coordination prevents CO adsorption but allows acetonitrile adsorption even after room temperature activation. Unlike S-ZrO2, due to its lower thermal stability, UiO-66-SO4 cannot be evacuated at high temperatures and dehydration at 250 °C does not induce tridentate coordination. The presence of H-bonded hydroxyls in UiO-66-SO4 after activation at 250 °C supports this coordination model, indicating the formation of OH-coordinated Zr sites that are inaccessible to CO but interact with stronger bases like acetonitrile. Overall, this study provides new insights into the coordination chemistry of sulfated UiO-66 and highlights that sulfation can tune acidity and adsorption in MOFs for potential catalytic and adsorption applications. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

28 pages, 2738 KB  
Review
Metal Organic Frameworks for Smart Storage and Delivery of Aromatic Volatiles and Essential Oils in Agrifood
by Giasemi K. Angeli, Marianna I. Kotzabasaki and Chrysanthos Maraveas
Appl. Sci. 2025, 15(10), 5479; https://doi.org/10.3390/app15105479 - 14 May 2025
Cited by 1 | Viewed by 1143
Abstract
Metal Organic Frameworks (MOFs) are a unique family of tailor-made porous materials that have gained significant attention for their properties and their applications in various fields, including agriculture and agrifood. The aim of this review is to explore the potential of MOFs as [...] Read more.
Metal Organic Frameworks (MOFs) are a unique family of tailor-made porous materials that have gained significant attention for their properties and their applications in various fields, including agriculture and agrifood. The aim of this review is to explore the potential of MOFs as smart carriers and delivery mediums of essential oils (EOs) and/or aromatic volatiles. Emphasis is given to their potential to be applied in crop protection and fresh food preservation. MOFs indeed present highly promising physicochemical characteristics in order to be applied in such sectors. To name a few, their high surface area, tunable porosity, and customizable functionalities, make them ideal carriers for EOs, which are established for their antimicrobial properties but their wider practical applications are limited by their volatility and chemical sensitivity. The encapsulation of EOs in MOFs enhances their stability, controlled release, and bioavailability, providing effective solutions for sustainable agriculture and food safety. Furthermore, in this review we discuss various MOF types, emphasizing the most recent literature references, including cyclodextrin-based MOFs, Cu2+ based MOFs, Zn2+ based MOFs as well as Zr4+ MOFs. In this work, we attempt to highlight the interactions and physicochemical characteristics (e.g., pore size and pore functionality), that contribute to the encapsulation of different EOs within MOFs. We focus on a detailed discussion of the external stimuli that can trigger the targeted release of EOs, such as pH changes caused by pathogenic microbial activity. Additionally, we examine the potential benefits of the EOs encapsulation in MOFs, including the reduction of premature evaporation due to their volatile nature and their improved delivery to targeted sites. These aspects are explored within the frameworks’ food safety enhancement, extended shelf life and the promotion of sustainable food preservation alternatives. Furthermore, we address MOFs’ limitations such as biocompatibility, scalability and chemical stability under field conditions to further comprehend their potential as EO carriers in agrifood applications, emphasizing food preservation and protection. Finally, this work aims to contribute to global challenges in nutrition and sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 3278 KB  
Review
Advances in Green Synthesis and Photo-/Electrocatalytic Applications of Zirconium-Based MOFs: A Review
by Tian Zhao, Shilin Peng, Jiangrong Yu, Jiayao Chen, Fuli Luo, Pengcheng Xiao, Saiqun Nie and Yi Chen
Organics 2025, 6(2), 22; https://doi.org/10.3390/org6020022 - 9 May 2025
Cited by 1 | Viewed by 1103
Abstract
Metal–organic frameworks (MOFs), particularly zirconium-based frameworks (Zr-MOFs), have gained significant attention in recent years due to their unique structural and functional properties. This review focuses on eco-friendly synthetic methods for producing Zr-MOFs, addressing the environmental impacts and costs associated with conventional synthesis, which [...] Read more.
Metal–organic frameworks (MOFs), particularly zirconium-based frameworks (Zr-MOFs), have gained significant attention in recent years due to their unique structural and functional properties. This review focuses on eco-friendly synthetic methods for producing Zr-MOFs, addressing the environmental impacts and costs associated with conventional synthesis, which often relies on hazardous reagents and harsh conditions. We explore various green synthesis strategies, including the selection of raw materials (such as using zirconium acetate), organic ligands (recycling waste materials for ligand synthesis), and synthesis methods (solvothermal, microwave-assisted, ultrasound-assisted, electrochemical, and mechanochemical approaches). Additionally, the application of Zr-MOFs in photocatalysis and electrocatalysis is examined, highlighting their potential for environmental purification and energy conversion. Despite the progress made in laboratory settings, challenges remain in achieving cost-effectiveness, material stability, and scalability for industrial applications. Future research should concentrate on enhancing synthesis efficiency, optimizing catalytic properties, investigating structure–property relationships, and expanding applications to novel catalytic reactions, thus ensuring Zr-MOFs can contribute to sustainable development in chemical science and technology. Full article
Show Figures

Figure 1

12 pages, 3280 KB  
Article
A Dual-Signal Electrochemiluminescence Sensor for Kanamycin Detection Based on a Self-Enhanced Zr MOF and Single Co-Reactant Competition Mechanism
by Yawen Zhu, Xuemei Wang, Zhiyong Yan, Feifei Zhang, Jianfei Xia, Lili Lv and Zonghua Wang
Biosensors 2025, 15(5), 291; https://doi.org/10.3390/bios15050291 - 5 May 2025
Cited by 1 | Viewed by 572
Abstract
The dual-signal output self-calibration mode reduces the false positive and negative signals of electrochemiluminescence (ECL) aptamer sensors. A competitive dual-signal ECL platform was designed for the ultrasensitive detection of kanamycin (KAN) using a zirconium metal–organic framework (Zr MOF) and Luminol as ECL emitters. [...] Read more.
The dual-signal output self-calibration mode reduces the false positive and negative signals of electrochemiluminescence (ECL) aptamer sensors. A competitive dual-signal ECL platform was designed for the ultrasensitive detection of kanamycin (KAN) using a zirconium metal–organic framework (Zr MOF) and Luminol as ECL emitters. To enhance the ECL efficiency, a co-reactant (polyethyleneimine, PEI) was covalently bound to the Zr MOF to achieve self-enhanced ECL. Based on the selective interaction between KAN and its aptamer, the Luminol/KAN/Zr MOF-PEI “sandwich” structure was immobilized on the electrode surface. The competition for PEI between emitters increased the Luminol ECL signal and decreased the Zr MOF’s ECL signal. The ratio in ECL signals between the two competitive emitters enabled the quantitative analysis of KAN, achieving a detection limit as low as 7.86 × 10−4 ng/mL. This study elucidated the synergistic mechanism between self-enhanced ECL and ECL competition, offering a novel approach for constructing dual-signal ECL sensors using a single co-reactant. Full article
(This article belongs to the Special Issue Progress in Electrochemiluminescence Biosensors)
Show Figures

Figure 1

17 pages, 1754 KB  
Article
Sustainable Semicrystalline/Nanocrystalline UiO-66-Type Zr-MOFs as Photodegraders of Rhodamine B
by Jemal M. Yassin, Abi M. Taddesse and Manuel Sánchez-Sánchez
Inorganics 2025, 13(5), 131; https://doi.org/10.3390/inorganics13050131 - 24 Apr 2025
Cited by 1 | Viewed by 1522
Abstract
UiO-type Zr-BDC MOFs have garnered the interest of the scientific community due to their exceptional diversity in composition, structure, and chemical environment, as well as their high thermal and chemical stabilities. This work demonstrates the sustainable synthesis of a series of nanocrystalline/semicrystalline UiO-66(Zr) [...] Read more.
UiO-type Zr-BDC MOFs have garnered the interest of the scientific community due to their exceptional diversity in composition, structure, and chemical environment, as well as their high thermal and chemical stabilities. This work demonstrates the sustainable synthesis of a series of nanocrystalline/semicrystalline UiO-66(Zr) metal–organic frameworks (MOFs) under facile conditions—specifically at room temperature, in water, with high yield, and without the use of modulators or toxic byproducts. The synthesis involves either deprotonating the linker or utilizing various ratios of water and DMF as solvents. The as-prepared materials obtained from both synthesis strategies share key structural features with conventional UiO-66(Zr) in their short- and medium-range physicochemical properties, while exhibiting significant differences in crystallinity and textural properties. Nonetheless, the materials generally lack long-range order (semicrystalline), in particular these synthesized following the deprotonation strategy. However, the materials prepared using mixed solvent strategy seem to exhibit characteristics of nanocrystalline UiO-66(Zr). Overall, both approaches successfully addressed various synthesis challenges related to the highly sought-after Zr-based metal–organic frameworks (MOFs). Some of these MOF materials were tested for the photodegradation of rhodamine B (RhB) under mercury light irradiation, evidencing high photocatalytic efficiency of up to 75 ± 0.078% within 120 min under the pseudo-first-order model. This suggests an interaction between the photocatalyst and the RhB dye, involving electron injection from RhB and the ability for ligand-to-metal charge transfer (LMCT), which enhances the efficient photocatalytic degradation of RhB. The trapping experiments indicated that superoxide radicals (•O2) and photogenerated holes (h+) are crucial in the photodegradation of RhB. Moreover, the materials showed good recyclability across five tested cycles. A plausible photocatalytic reaction mechanism has been proposed to explain these findings. Full article
Show Figures

Graphical abstract

19 pages, 15322 KB  
Article
Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
by Francesco Ragonese, Letizia Trovarelli, Lorenzo Monarca, Sofia Girolmoni, Flora Ballarino, Ferdinando Costantino and Bernard Fioretti
Pharmaceutics 2025, 17(4), 512; https://doi.org/10.3390/pharmaceutics17040512 - 13 Apr 2025
Cited by 1 | Viewed by 798
Abstract
Background: Nanomedicine has shown significant promise in advancing cancer diagnostics and therapeutics. In particular, nanoparticles (NPs) offer potential for overcoming limitations associated with conventional therapies, such as off-target toxicity and side effects. Among the various NPs, silver nanoparticles (AgNPs) have garnered attention [...] Read more.
Background: Nanomedicine has shown significant promise in advancing cancer diagnostics and therapeutics. In particular, nanoparticles (NPs) offer potential for overcoming limitations associated with conventional therapies, such as off-target toxicity and side effects. Among the various NPs, silver nanoparticles (AgNPs) have garnered attention due to their cytotoxic and genotoxic properties in cancer cells. However, despite their potential, the optimization of AgNPs efficacy often necessitates combination strategies with other therapeutic agents. This study explores the potential of AgNPs integrated with Zr-based metal-organic frameworks (MOFs) UiO-66 for drug delivery, to enhance cancer therapy. Methods: We decorated amino-terephthalic based UiO-66-NH2 with AgNPs and loaded it with the chemotherapeutic agent cisplatin (Cis-Pt) to make the UiO-66-NH2@AgNPs@Cis-Pt. A preliminary MTT assay was conducted to evaluate the cytotoxic effects of the nanocomposite on several glioblastoma and other tumour cell lines, including U251, U87, GL261, HeLa, RKO, and HepG2. Results: Our results demonstrate that UiO-66-NH2@AgNPs@Cis-Pt and its combinations exhibit enhanced cytotoxicity compared to individual components such as AgNPs and Cis-Pt. Conclusions: This work offers preliminary insights into the potential of AgNP-functionalized MOFs as effective drug and delivery platforms, particularly in the context of combination therapy for cancer treatment. Full article
(This article belongs to the Special Issue Application of Silver Nanoparticles in Cancer Treatment)
Show Figures

Figure 1

16 pages, 3984 KB  
Article
Highly Efficient Enrichment of Heterocyclic Aromatic Amines in Meat Products Using the Magnetic Metal—Organic Framework Fe3O4@MOF-545-AMSA
by Yang Wang, Ying Liu, Ziyan Chen and Shan Liang
Molecules 2025, 30(8), 1705; https://doi.org/10.3390/molecules30081705 - 10 Apr 2025
Viewed by 577
Abstract
Heterocyclic aromatic amines (HAAs), known for their mutagenic and carcinogenic potential, are formed during the heating of protein-rich food items. Detecting HAAs swiftly and accurately poses challenges due to complex food matrices and low HAA concentrations. In this study, a simple and efficient [...] Read more.
Heterocyclic aromatic amines (HAAs), known for their mutagenic and carcinogenic potential, are formed during the heating of protein-rich food items. Detecting HAAs swiftly and accurately poses challenges due to complex food matrices and low HAA concentrations. In this study, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed for the simultaneous isolation and enrichment of three HAAs such as 2-amino-3,4,8-trimethylimidazo [4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), and 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) in processed meats, employing the magnetic covalent organic framework Fe3O4@MOF-545-AMSA as an adsorbent. It was synthesized via a solvothermal method, with Fe3O4 as the magnetic core. Its building blocks are as follows: zirconium (Zr) as the coordination metal ion, tetrakis(4-carboxyphenyl)porphyrin and benzoic acid as organic ligands, and aminomethanesulfonic acid (AMSA). This composite captures targeted HAAs efficiently by exploiting the unique porous MOF-545-AMSA structure, specific metal–ligand coordination, and AMSA’s amino and sulfonic acid groups. The quantification of HAAs was achieved through the combination of Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) and MSPE, demonstrating satisfactory linearity (R2 ≥ 0.9917), high recovery rates (83.7–111.0%), and low detection limits (0.1–1.0 μg/kg). Moreover, an automated high-throughput detection system was developed using MSPE to assess the presence of HAAs in meat products. Full article
Show Figures

Graphical abstract

17 pages, 971 KB  
Review
University of Oslo-66: A Versatile Zr-Based MOF for Water Purification Through Adsorption and Photocatalysis
by Lei Chen, Wenbo Pan, Ke Li, Miaomiao Chen, Pan Li, Yu Liu, Zeyu Li and Hai Lu
Processes 2025, 13(4), 1133; https://doi.org/10.3390/pr13041133 - 9 Apr 2025
Viewed by 1554
Abstract
Metal–organic frameworks (MOFs) have garnered significant attention for water purification in recent years. In particular, UiO-66 (a member of the UiO-MOF family, developed at the University of Oslo) has emerged as a promising water purification material. UiO-66 exhibits excellent adsorption through electrostatic interaction, [...] Read more.
Metal–organic frameworks (MOFs) have garnered significant attention for water purification in recent years. In particular, UiO-66 (a member of the UiO-MOF family, developed at the University of Oslo) has emerged as a promising water purification material. UiO-66 exhibits excellent adsorption through electrostatic interaction, π–π stacking and Lewis acid–base coordination mechanisms. The photocatalytic degradation property was enhanced through metal doping, composite with semiconductor materials, defect engineering, etc., and the removal efficiency of pollutants was significantly improved. This review systematically describes the structure of UiO-66 and the synthesis methods of UiO-66, including solvothermal, microwave-assisted, mechanized and electrochemical methods, as well as the application of UiO-66 in the adsorption and photocatalytic degradation of various pollutants. Full article
Show Figures

Figure 1

16 pages, 3415 KB  
Article
Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins
by Rundong Cai, Heping Zheng, Hong Liang, Xiankun Chen and Jianhua Tang
Metals 2025, 15(4), 380; https://doi.org/10.3390/met15040380 - 28 Mar 2025
Viewed by 1669
Abstract
The conversion of CO2 into light olefins over bifunctional catalysts is a promising route for producing high-value-added products. This approach not only mitigates excessive CO2 emissions but also reduces the chemical industry’s reliance on fossil fuels. Among bifunctional catalysts, ZnZrOx [...] Read more.
The conversion of CO2 into light olefins over bifunctional catalysts is a promising route for producing high-value-added products. This approach not only mitigates excessive CO2 emissions but also reduces the chemical industry’s reliance on fossil fuels. Among bifunctional catalysts, ZnZrOx is widely used due to its favorable oxide composition. In this work, ZnZrOx solid solution was synthesized by calcining an MOF precursor, resulting in a large specific surface area and a small particle size. Characterization studies revealed that ZnZrOx prepared via MOF calcination exhibited an enhanced CO2 activation and H2 dissociation capacity compared to that synthesized using the co-precipitation method. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that CO2 adsorption on ZnZrOx led to the formation of carbonate species, while HCOO* and CH3O* intermediates were generated upon exposure to the reaction gas. When ZnZrOx was combined with SAPO-34 molecular sieves under reaction conditions of 380 °C, 3 MPa, and 6000 mL·g_cat−1·h−1, the CO2 conversion reached 34.37%, with a light olefin yield of 15.13%, demonstrating a superior catalytic performance compared to that of the co-precipitation method. Full article
Show Figures

Figure 1

17 pages, 5897 KB  
Article
MOF-808 as Effective Support for Cu-Based Catalyst for CO2 Hydrogenation to Methanol
by Abinavnataraj Ramakrishnan, Simmy Rathod, Wakshum Mekonnen Tucho, Sachin M. Chavan and Zhixin Yu
Catalysts 2025, 15(4), 324; https://doi.org/10.3390/catal15040324 - 28 Mar 2025
Viewed by 1301
Abstract
The thermocatalytic hydrogenation of CO2 to methanol offers a promising route for reducing greenhouse gas emissions (GHG) and producing valuable chemicals and fuels. In this study, copper–zinc bimetallic catalysts supported on a zirconium-based MOF-808 framework were synthesized via a facile deposition–precipitation method [...] Read more.
The thermocatalytic hydrogenation of CO2 to methanol offers a promising route for reducing greenhouse gas emissions (GHG) and producing valuable chemicals and fuels. In this study, copper–zinc bimetallic catalysts supported on a zirconium-based MOF-808 framework were synthesized via a facile deposition–precipitation method and compared to a conventional Cu/ZnO/Al2O3 (CZA) catalyst. MOF-808 was selected due to its high surface area and porous structure, which enhance metal dispersion. Characterization through X-ray diffraction (XRD) and N2 physisorption showed significant changes in surface area and pore structure after Cu-Zn incorporation and calcination. The 50-CuZn MOF-808 catalyst achieved the best catalytic performance at 260 °C and 40 bar, demonstrating a high STY of 193.32 gMeOH·Kgcat−1 h−1 and a turnover frequency (TOF) of 47.44 h−1, surpassing traditional CZA catalysts. The strong Cu-Zn-Zr interactions within the MOF-808 framework played a crucial role in promoting CO2 activation and methanol formation. This study underscores the potential of MOF-808-supported Cu-Zn catalysts as viable alternatives to traditional systems for CO2 hydrogenation to methanol. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3155 KB  
Article
Tailoring Catalysts for CO2 Hydrogenation: Synthesis and Characterization of NH2–MIL–125 Frameworks
by Leidy Figueroa-Quintero, Tomás Cordero-Lanzac, Enrique V. Ramos-Fernandez, Unni Olsbye and Javier Narciso
Molecules 2025, 30(7), 1458; https://doi.org/10.3390/molecules30071458 - 25 Mar 2025
Viewed by 832
Abstract
Copper nanoparticles have been integrated onto the framework of modified NH2–MIL–125(Ti), a metal–organic framework (MOF), and evaluated as catalysts for converting CO2 into valuable products. The modified MOF was achieved through a post-synthetic modification process involving the partial replacement of [...] Read more.
Copper nanoparticles have been integrated onto the framework of modified NH2–MIL–125(Ti), a metal–organic framework (MOF), and evaluated as catalysts for converting CO2 into valuable products. The modified MOF was achieved through a post-synthetic modification process involving the partial replacement of titanium with zirconium or cerium within the MOF’s structure. The objective behind this alteration is to create a synergistic effect between the MOF, serving as a support matrix, and the embedded copper nanoparticles, thereby enhancing the performance of the catalyst. The obtained catalysts were characterized and evaluated in the hydrogenation of CO2 to methanol under different experimental conditions, reaching CO2 conversions of up to 5%, with a selectivity towards methanol that reached values of up to 60%. According to the obtained results, the catalyst composed of Ti, Zr and Cu stood out for having the highest CO2 conversion and selectivity towards methanol, in addition to practically inhibiting the production of methane. These results demonstrate that the interaction of the framework with the Cu nanoparticles, and thus its catalytic properties, can be changed by modifying the properties of the MOF. Full article
(This article belongs to the Special Issue Innovative Chemical Pathways for CO2 Conversion)
Show Figures

Graphical abstract

13 pages, 12460 KB  
Article
Zr-MOF Crosslinked Hydrogel for High-Efficiency Decontamination of Chemical Warfare Agent Simulant
by Saijie Li, Lei Wang, Jiayi Zhang, Yun Liang, Min Tang, Guilong Xu and Chunyu Wang
Processes 2025, 13(4), 973; https://doi.org/10.3390/pr13040973 - 25 Mar 2025
Viewed by 570
Abstract
The decontamination of chemical warfare agents (CWAs) from contaminated surfaces is of critical importance due to the severe threats posed by CWAs to human health and the environment, particularly given the persistent threat of chemical weapons since World War I. In this study, [...] Read more.
The decontamination of chemical warfare agents (CWAs) from contaminated surfaces is of critical importance due to the severe threats posed by CWAs to human health and the environment, particularly given the persistent threat of chemical weapons since World War I. In this study, a novel UiO-66-NH2 crosslinked hyaluronic acid (HA) hydrogel was developed in the presence of polyvinyl alcohol under ambient conditions, leveraging the dual functionality of the amino-substituted zirconium-based metal–organic framework (Zr-MOF) as both a crosslinker and a catalytic site. The hydrogel demonstrated exceptional catalytic performance, achieving a degradation efficiency of over 90% for the chemical warfare agent simulant dimethyl 4-nitrophenyl phosphate (DMNP) within 1 h. Furthermore, the hydrogel demonstrated adequate mechanical and tensile strength for practical use, enabling easy peel-off from various contaminated surfaces without leaving residues. This peelable property, combined with its decontamination capabilities, highlights its significant potential for practical applications in the field of CWA decontamination. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop