Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = activated biocarbons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2394 KB  
Article
Nitrogen-Doped Biocarbon Derived from Alginate-Extraction Residues of Sargassum spp.: Towards Low-Cost Electrocatalysts for Alkaline ORR
by Aurora Caldera, Beatriz Escobar, Juan Briceño, José M. Baas-López, Romeli Barbosa and Jorge Uribe
Chemistry 2025, 7(5), 144; https://doi.org/10.3390/chemistry7050144 - 3 Sep 2025
Viewed by 157
Abstract
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, [...] Read more.
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, Raman spectroscopy, BET surface area analysis, XPS, and CHNS elemental analysis were used to characterize the materials. The doped and activated biocarbon (BDA) demonstrated excellent physicochemical properties, including a specific surface area of 1790 m2 g−1 and a mesoporous structure. Electrochemical evaluation in alkaline media revealed a current density of −4.37 mA cm−2, an onset potential of 0.922 E vs. RHE, and a half-wave potential of 0.775 E vs. RHE. Koutecky–Levich analysis indicated a two-electron reduction pathway. The superior performance was attributed to the synergistic effects of high surface area, nitrogen functionalities (pyridinic-N and pyrrolic-N), and enhanced accessibility of active sites. These results highlight the potential of waste-derived, nitrogen-doped biocarbon as a sustainable and low-cost alternative for ORR electrocatalysis in alkaline fuel cells. Full article
(This article belongs to the Section Catalysis)
Show Figures

Figure 1

22 pages, 2179 KB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 717
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

16 pages, 3298 KB  
Article
High-Performance Catalytic Oxygen Evolution with Nanocellulose-Derived Biocarbon and Fe/Zeolite/Carbon Nanotubes
by Javier Hernandez-Ortega, Chamak Ahmed, Andre Molina, Ronald C. Sabo, Lorena E. Sánchez Cadena, Bonifacio Alvarado Tenorio, Carlos R. Cabrera and Juan C. Noveron
Catalysts 2025, 15(8), 719; https://doi.org/10.3390/catal15080719 - 28 Jul 2025
Viewed by 587
Abstract
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 [...] Read more.
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 are recognized as reference OER electrocatalysts with reasonably high activity; however, their widespread use in practical devices has been severely hindered by their high cost and scarcity. It is essential to design alternative OER electrocatalysts made of low-cost and abundant earth elements with significant activity and robustness. We report four new nanocellulose-derived Fe–zeolite nanocomposites, namely Fe/Zeolite@CCNC (1), Fe/Zeolite@CCNF (2), Fe/Zeolite/CNT@CCNC (3), and Fe/Zeolite/CNT@CCNF (4). Two different types of nanocellulose were investigated: nanocellulose nanofibrils and nanocellulose nanocrystals. Characterization with TEM, SEM-EDS, PXRD, and XPS is reported. The nanocomposites exhibited electrocatalytic activity for OER that varies based on the origin of biocarbon and the composition content. The effect of adding carbon nanotubes to the nanocomposites was studied, and an improvement in OER catalysis was observed. The electrochemical double-layer capacitance and electrochemical impedance spectroscopy of the nanocomposites are reported. The nanocomposite 3 exhibited the highest performance, with an onset potential value of 1.654 V and an overpotential of 551 mV, which exceeds the activity of RuO2 for OER catalysis at 10 mA/cm2 in the glassy carbon electrode. A 24 h chronoamperometry study revealed that the catalyst is active for ~2 h under continuous operating conditions. BET surface analysis showed that the crystalline nanocellulose-derived composite exhibited 301.47 m2/g, and the fibril nanocellulose-derived composite exhibited 120.39 m2/g, indicating that the increased nanoporosity of the former contributes to the increase in OER catalysis. Full article
Show Figures

Graphical abstract

23 pages, 5464 KB  
Article
A Coffee-Based Bioadsorbent for CO2 Capture from Flue Gas Using VSA: TG-Vacuum Tests
by Marcelina Sołtysik, Izabela Majchrzak-Kucęba and Dariusz Wawrzyńczak
Energies 2025, 18(15), 3965; https://doi.org/10.3390/en18153965 - 24 Jul 2025
Viewed by 444
Abstract
In the energy sector and in other types of industries (cement, iron/steel, chemical and petrochemical), highly roasted coffee ground residue can be used as a source material for producing bioadsorbents suitable for CO2 capture. In this study, a bioadsorbent was produced in [...] Read more.
In the energy sector and in other types of industries (cement, iron/steel, chemical and petrochemical), highly roasted coffee ground residue can be used as a source material for producing bioadsorbents suitable for CO2 capture. In this study, a bioadsorbent was produced in a two-step process involving biowaste carbonization and biocarbon activation within a KOH solution. The physicochemical properties of the bioadsorbent were assessed using LECO, TG, SEM, BET and FT-IR methods. Investigating the CO2, O2 and N2 equilibrium adsorption capacity using an IGA analyzer allowed us to calculate CO2 selectivity factors. We assessed the influence of exhaust gas carbon dioxide concentration (16%, 30%, 81.5% and 100% vol.) and adsorption step temperature (25 °C, 50 °C and 75 °C) on the CO2 adsorption capacity of the bioadsorbent. We also investigated its stability and regenerability in multi-step adsorption–desorption using a TG-Vacuum system, simulating the VSA process and applying different pressures in the regeneration step (30, 60 and 100 mbarabs). The tests conducted assessed the possibility of using a produced bioadsorbent for capturing CO2 using the VSA technique. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

28 pages, 4509 KB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 448
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

17 pages, 4389 KB  
Article
Winery Residues Transformed into Biochar and Co-Applied with Trichoderma Increase Grape Productivity and Soil Quality
by Elisiane Martins de Lima, Argemiro Pereira Martins Filho, Diogo Paes da Costa, Jamilly Alves de Barros, Rafaela Felix da França, José Romualdo de Sousa Lima, Gustavo Pereira Duda, Mairon Moura da Silva, Ademir Sérgio Ferreira Araujo and Erika Valente de Medeiros
Sustainability 2025, 17(9), 4150; https://doi.org/10.3390/su17094150 - 4 May 2025
Cited by 2 | Viewed by 849
Abstract
The application of biochar is extensively recognized as an effective strategy to enhance soil ecosystem services. However, its combined effect with beneficial microorganisms, such as Trichoderma, still requires further investigation to understand its impact on soil microbiota and nutrient cycling processes. To [...] Read more.
The application of biochar is extensively recognized as an effective strategy to enhance soil ecosystem services. However, its combined effect with beneficial microorganisms, such as Trichoderma, still requires further investigation to understand its impact on soil microbiota and nutrient cycling processes. To address this gap, this study aimed to evaluate the effect of biochar produced from on-farm winery waste, specifically grape stalks (GSB) and grape fermentation residues (GFB), generated after wine production, when co-applied with Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 in soil cultivated with Malbec grapevines. Our findings reveal that both types of biochar and Trichoderma promoted changes in soil properties. The application of GSB biochar combined with T. hamatum increased grape productivity, while GFB biochar enhanced soil enzymatic activities, particularly those expressed per unit of microbial biomass carbon. Additionally, biochar applications increased pH, phosphorus, potassium, organic carbon, and microbial biomass carbon of the soil. Soils treated with the GFB + T. hamatum treatment exhibited an increase of 569.23% in microbial biomass carbon compared to the control. The results of this study provide substantial evidence that biochar and Trichoderma can be used to improve the chemical and biological properties of vineyard soils, increasing nutrient availability, especially carbon. These effects may contribute to soil fertility by promoting a more favorable environment for microbiota development and grapevine growth. This is the first field study to investigate the impact of on-farm winery waste transformed into biochar, combined with Trichoderma isolates, on Malbec grapevines. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

19 pages, 2869 KB  
Article
Low-Cost Chestnut-Based Biocarbons Physically Activated via CO2 or Steam: Evaluation of the Structural and Adsorption Properties
by Barbara Charmas, Barbara Wawrzaszek, Katarzyna Jedynak and Agata Jawtoszuk
Materials 2025, 18(7), 1497; https://doi.org/10.3390/ma18071497 - 27 Mar 2025
Cited by 1 | Viewed by 605
Abstract
The aim of this paper was to obtain activated biocarbons from the natural biomass of horse chestnut seeds (Aesculus hippocastanum) by physical activation with two different activating agents, carbon dioxide and water vapor, and to evaluate their structural and adsorption properties. [...] Read more.
The aim of this paper was to obtain activated biocarbons from the natural biomass of horse chestnut seeds (Aesculus hippocastanum) by physical activation with two different activating agents, carbon dioxide and water vapor, and to evaluate their structural and adsorption properties. The effect of the pyrolysis atmosphere on the surface development and porosity as well as the structure and adsorption properties of the materials in relation to the selected organic adsorbates (tetracycline (TC), naproxen (NPX), and methyl orange (MO)), which may constitute a potential contamination of the aquatic environment, was evaluated. Activated biocarbons were characterized using N2 low-temperature adsorption/desorption, Raman and FT-IR spectroscopy, and thermogravimetric analysis (TGA). The nature of the surface (pHpzc and Boehm titration) was also studied. Micro/mesoporous biocarbons were obtained with an SBET area in the range of ~534 to 646 m2/g, in which micropores constituted ~70%. It was proved that the obtained materials are characterized by high adsorption values (~120 mg/g, ~150 mg/g, and ~252 mg/g) and removal rates %R (~80%, ~95%, and ~75%) for TC, NPX, and MO, respectively. The results indicate that chestnut-derived activated biocarbons are a promising, cost-effective and environmentally friendly alternative for removing organic contaminants from aqueous solutions. Future research should focus on optimizing activation parameters and assessing the long-term performance of adsorbents. Full article
Show Figures

Graphical abstract

12 pages, 2998 KB  
Article
Functional Sulfur-Doped Biocarbon for Hydrogen Storage: Development of Nanomaterials for Energy Applications
by David Rosas, B. Escobar, Karina Suarez-Alcantara, Carlos Pacheco and Romeli Barbosa
Processes 2024, 12(12), 2715; https://doi.org/10.3390/pr12122715 - 1 Dec 2024
Viewed by 1410
Abstract
This research focuses on the synthesis and characterization of advanced materials for hydrogen storage. Two biocarbon samples were synthesized from Sargassum spp. The first was activated with KOH (SKPT) and the second was doped with sulfur (SSKTP); both were obtained through pyrolysis at [...] Read more.
This research focuses on the synthesis and characterization of advanced materials for hydrogen storage. Two biocarbon samples were synthesized from Sargassum spp. The first was activated with KOH (SKPT) and the second was doped with sulfur (SSKTP); both were obtained through pyrolysis at 900 °C. The sulfur-doped biocarbon (SSKTP), with its high specific surface area (2377 m2 gࢤ1), exhibited enhanced electrocatalytic properties, making it an efficient candidate for hydrogen storage applications. Various characterization techniques were employed to study the relationship between physicochemical properties and hydrogen uptake. The presence of micropores and sulfur doping significantly improved hydrogen uptake at 45 °C and 50 bar, where SSKTP achieved 0.40 wt%. In comparison, the non-doped biocarbon (SKPT) showed a lower hydrogen storage capacity of 0.33 wt%, with a specific surface area of 1620 m2 gࢤ1. The results highlight the potential of sulfur-doped activated biocarbon as a functional material in energy conversion systems, specifically for electrocatalytic hydrogen storage processes. This study demonstrates a sustainable approach to utilizing biomass waste for advanced electrocatalysts, contributing to renewable energy solutions. Full article
Show Figures

Figure 1

18 pages, 2444 KB  
Review
Opportunities and Threats for Supercapacitor Technology Based on Biochar—A Review
by Radosław Kwarciany, Marcin Fiedur and Bogdan Saletnik
Energies 2024, 17(18), 4617; https://doi.org/10.3390/en17184617 - 14 Sep 2024
Cited by 8 | Viewed by 2892
Abstract
This review analyzes in detail the topic of supercapacitors based on biochar technologies, including their advantages, disadvantages, and development potential. The main topic is the formation of precursors in the process of pyrolysis and activation, and the possibility of the application of biochar [...] Read more.
This review analyzes in detail the topic of supercapacitors based on biochar technologies, including their advantages, disadvantages, and development potential. The main topic is the formation of precursors in the process of pyrolysis and activation, and the possibility of the application of biochar itself in various fields is brought closer. The structure, division, and principle of operation of supercondensates are discussed, where their good and bad sides are pointed out. The current state of the scientific and legal knowledge on the topic of biocarbon and its applications is verified, and the results of many authors are compared to examine the current level of the research on supercapacitors based on biochar electrodes created from lignocellulosic biomass. Current application sites for supercapacitors in transportation, electronics, and power generation (conventional and unconventional) are also examined, as is the potential for further development of the technology under discussion. Full article
(This article belongs to the Special Issue Current Developments in the Biochar Sector)
Show Figures

Figure 1

17 pages, 9318 KB  
Article
Impact of Mechanochemical Activation (MChA) on Characteristics and Dye Adsorption Behavior of Sawdust-Based Biocarbons
by Barbara Wawrzaszek, Barbara Charmas, Katarzyna Jedynak and Ewa Skwarek
Materials 2024, 17(18), 4458; https://doi.org/10.3390/ma17184458 - 11 Sep 2024
Cited by 2 | Viewed by 1077
Abstract
The increase in environmental pollution due to the development of industry and human activity has resulted in intensive development of research on the possibility of its purification. A very effective method is the pollutants’ adsorption from the air and water environment. For adsorption [...] Read more.
The increase in environmental pollution due to the development of industry and human activity has resulted in intensive development of research on the possibility of its purification. A very effective method is the pollutants’ adsorption from the air and water environment. For adsorption to be effective, materials with a specific structure and a well-developed surface decorated with numerous functionalities, e.g., biocarbons (BC), are necessary. An effective method of activating biocarbons is mechanochemical milling, an environmentally friendly procedure. This paper describes the possibility of using mechanochemical activation (MChA) of non-porous biocarbons to develop surface and porosity for their use in processes of pollutant adsorption. BC was characterized based on N2 adsorption, thermogravimetry (TGA), SEM/EDS imaging, Fourier (ATR-FTIR) and Raman spectroscopies, as well as titration using the Boehm method and determination of zeta potential. The adsorption capacity of BC for methylene blue (MB) was studied. It was proven that the solvent-free MChA made it possible to obtain microporous biocarbons, causing an intensive increase in the surface area and pore volume and the generation of oxygen functionalities. The biocarbons had predominantly acidic (mainly carboxylic) or basic functionalities and exhibited an amorphous structure. BC proved to be effective in adsorbing MB from aqueous solutions. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications)
Show Figures

Figure 1

19 pages, 4055 KB  
Article
Carbon Dioxide Adsorption over Activated Biocarbons Derived from Lemon Peel
by Karolina Kiełbasa, Joanna Siemak, Joanna Sreńscek-Nazzal, Bestani Benaouda, Banasri Roy and Beata Michalkiewicz
Molecules 2024, 29(17), 4183; https://doi.org/10.3390/molecules29174183 - 4 Sep 2024
Cited by 7 | Viewed by 2414
Abstract
The rising concentration of CO2 in the atmosphere is approaching critical levels, posing a significant threat to life on Earth. Porous carbons derived from biobased materials, particularly waste byproducts, offer a viable solution for selective CO2 adsorption from large-scale industrial sources, [...] Read more.
The rising concentration of CO2 in the atmosphere is approaching critical levels, posing a significant threat to life on Earth. Porous carbons derived from biobased materials, particularly waste byproducts, offer a viable solution for selective CO2 adsorption from large-scale industrial sources, potentially mitigating atmospheric CO2 emissions. In this study, we developed highly porous carbons from lemon peel waste through a two-step process, consisting of temperature pretreatment (500 °C) followed by chemical activation by KOH at 850 °C. The largest specific surface area (2821 m2/g), total pore volume (1.39 cm3/g), and micropore volume (0.70 cm3/g) were obtained at the highest KOH-to-carbon ratio of 4. In contrast, the sample activated with a KOH-to-carbon ratio of 2 demonstrated the greatest micropore distribution. This activated biocarbon exhibited superior CO2 adsorption capacity, reaching 5.69 mmol/g at 0 °C and 100 kPa. The remarkable adsorption performance can be attributed to the significant volume of micropores with diameters smaller than 0.859 nm. The Radke–Prausnitz equation, traditionally employed to model the adsorption equilibrium of organic compounds from liquid solutions, has been shown to be equally applicable for describing the gas–solid adsorption equilibrium. Furthermore, equations describing the temperature dependence of the Radke–Prausnitz equation’s parameters have been developed. Full article
(This article belongs to the Special Issue Advances in Innovative Adsorbents)
Show Figures

Figure 1

20 pages, 6815 KB  
Article
Tracking Land-use Trajectory and Other Potential Drivers to Uncover the Dynamics of Carbon Stocks of Terrestrial Ecosystem in the Songnen Plain
by Lei Chang, Han Luo, Huijia Liu, Wenxin Xu, Lixin Zhang and Yuefen Li
Land 2024, 13(5), 618; https://doi.org/10.3390/land13050618 - 3 May 2024
Viewed by 1308
Abstract
Land-use change is an important factor affecting terrestrial carbon balance, and it is crucial to explore the response of terrestrial carbon stocks to land-use change, especially in the Songnen Plain, which faces a fierce conflict between the rapid growth of production activities and [...] Read more.
Land-use change is an important factor affecting terrestrial carbon balance, and it is crucial to explore the response of terrestrial carbon stocks to land-use change, especially in the Songnen Plain, which faces a fierce conflict between the rapid growth of production activities and ecosystem degradation. In this study, we measured soil organic carbon and vegetation biocarbon stocks in the Songnen Plain based on IPCC-recommended methodologies, and explored the characteristics of carbon stock changes in land-use trajectories, land-use drivers, and specific land-use change scenarios (cropland cultivation, returning cropland to forests, the expansion of land for construction, deforestation, greening, and land degradation). The results showed that soil organic carbon stock in the Songnen Plain decreased by 1.63 × 105 t, and vegetation biocarbon stock increased by 2.10 × 107 t from 2005 to 2020. Human factors and natural factors jointly contributed to the land-use change, but the extent of the role of human factors was greater than that of natural factors. The increase in land-use trajectory led to the decrease in soil organic carbon stock and the increase in vegetation biocarbon stock. There was no difference in the effects of human-induced and natural-induced land-use changes on vegetation biocarbon stocks, but the effects on soil organic carbon stocks were diametrically opposite, increasing by 43.27 t/km2 and decreasing by 182.02 t/km2, respectively. The reclamation of arable land, returning cropland to forests, and greening led to a net increase in terrestrial carbon stocks (+813,291.84 t), whereas land degradation, deforestation, and land-use expansion led to a decrease in terrestrial carbon stocks (−460,710.2 t). The results of this study can provide a reference for the adjustment of land-use structure and the increase in terrestrial carbon stock in the Songnen Plain. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
Show Figures

Figure 1

21 pages, 3918 KB  
Article
Removal of Organic Dyes, Polymers and Surfactants Using Carbonaceous Materials Derived from Walnut Shells
by Małgorzata Wiśniewska, Teresa Urban, Karina Tokarska, Paulina Marciniak, Anna Giel and Piotr Nowicki
Materials 2024, 17(9), 1987; https://doi.org/10.3390/ma17091987 - 25 Apr 2024
Cited by 5 | Viewed by 1402
Abstract
A series of new granular carbonaceous adsorbents was prepared via single-stage physical and chemical activation of walnut shells. Their suitability for removing various types of organic pollutants (represented by dyes, surfactants and water-soluble polymers) from the liquid phase was assessed. The activation of [...] Read more.
A series of new granular carbonaceous adsorbents was prepared via single-stage physical and chemical activation of walnut shells. Their suitability for removing various types of organic pollutants (represented by dyes, surfactants and water-soluble polymers) from the liquid phase was assessed. The activation of the precursor was carried out with CO2 and H3PO4 using conventional heating. Activated biocarbons were characterized in terms of chemical composition, acidic–basic nature of the surface, textural and electrokinetic properties as well as thermal stability. Depending on the type of activating agent used during the activation procedure, the obtained biocarbons differed in terms of specific surface area (from 401 to 1361 m2/g) and the type of porous structure produced (microporosity contribution in the range of 45–75%). Adsorption tests proved that the effectiveness of removing organic pollutants from the liquid phase depended to a large extent on the type of prepared adsorbent as well as the chemical nature and the molecular size of the adsorbate used. The chemically activated sample showed greater removal efficiency in relation to all tested pollutants. Its maximum adsorption capacity for methylene blue, poly(acrylic acid), poly(ethylene glycol) and Triton X-100 reached the levels of 247.1, 680.9, 38.5 and 61.8 mg/g, respectively. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications)
Show Figures

Figure 1

22 pages, 10440 KB  
Article
Characterization of Bioadsorbents from Organic Municipal Waste
by Marcelina Sołtysik, Izabela Majchrzak-Kucęba and Dariusz Wawrzyńczak
Materials 2024, 17(9), 1954; https://doi.org/10.3390/ma17091954 - 23 Apr 2024
Viewed by 1185
Abstract
This article describes the production of bioadsorbents coming from seven different kinds of organic waste, produced in huge quantities in households, in a two-stage process. In order to determine the influence of the process parameters of carbonization (I stage) and activation with potassium [...] Read more.
This article describes the production of bioadsorbents coming from seven different kinds of organic waste, produced in huge quantities in households, in a two-stage process. In order to determine the influence of the process parameters of carbonization (I stage) and activation with potassium hydroxide solution (II stage), the following analysis of the physicochemical properties of each sample at each stage processing was performed: base elemental composition, structure properties, surface morphology, thermal stability, crystallinity, and transmittance spectra characteristic bands. There was a lack of research on samples after each stage of waste processing in the literature. Addressing this allowed us to evaluate the transformative potential of each kind of organic waste included in the research and select the best waste for the production of bioadsorbents commonly used in environmental protection. Moreover, the results were compared with the ones in the literature. The utilization of particular kinds of organic waste seems to be especially important taking into account the strategy of waste management and sustainable development. Full article
Show Figures

Graphical abstract

14 pages, 7656 KB  
Article
Cobalt Oxide-Decorated on Carbon Derived from Onion Skin Biomass for Li-Ion Storage Application
by Yunan Liu, Ting Sun, Duygu Ege and Ali Reza Kamali
Metals 2024, 14(2), 191; https://doi.org/10.3390/met14020191 - 2 Feb 2024
Cited by 5 | Viewed by 2091
Abstract
Onion waste, particularly onion skin, is a widely generated waste material, and harnessing its potential for energy storage aligns with sustainable development goals. Despite the high specific surface area exhibited by biocarbon derived from onion skin, its Li-ion storage performance is not desirable. [...] Read more.
Onion waste, particularly onion skin, is a widely generated waste material, and harnessing its potential for energy storage aligns with sustainable development goals. Despite the high specific surface area exhibited by biocarbon derived from onion skin, its Li-ion storage performance is not desirable. In this study, biocarbon derived from purple onion skin serves as the substrate for accommodating cobalt oxide (Co3O4) through a hydrothermal method, employing Co(NO3)2·6H2O at various concentrations, and with and without prior activation using KOH treatment. The resulting samples undergo comprehensive analyses, including phase, morphological, surface, and electrochemical characterizations. The Co3O4 decoration on activated carbon derived from onion skin, synthesized using Co(NO3)2·6H2O at a concentration of 1 M, reveals a porous structure with a surface area of 702 m2/g, featuring predominant pore sizes of less than 5 nm. Significantly, the Li-ion storage performance of this sample surpasses that of alternative samples, demonstrating a remarkable reversible capacity of 451 mAh/g even after 500 cycles at an elevated current density of 2000 mAh/g. The charge transfer resistance of the sample (110.3 Ω) is found to be substantially lower than that of the sample prepared using carbonized onion skin biomass without activation. This research introduces an innovative approach leveraging onion skin waste as a template for Co3O4 decoration, thereby fabricating high-performance anodes for lithium-ion batteries. Full article
(This article belongs to the Special Issue Feature Papers in Metallic Functional Materials)
Show Figures

Figure 1

Back to TopTop