Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,389)

Search Parameters:
Keywords = activity breaks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4916 KB  
Article
The Genesis and Geological Significance of the Chaluo Granite in Yidun Magmatic Arc, Western Sichuan, China: Constraints from the Zircon U-Pb Chronology, Elemental Geochemistry and S-Pb-Hf Isotope
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Xujiang Cheng, Xingfang Duo, Hangyu Fan, Hongsheng Gao, Lipeng Tu, Meng Zhao and Weihong Dong
Minerals 2025, 15(9), 916; https://doi.org/10.3390/min15090916 - 28 Aug 2025
Abstract
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, [...] Read more.
The Chaluo granite is situated in the middle section of the Yidun magmatic arc in western Sichuan Province, China. It holds great significance for the study of the geological evolution of the Paleo-Neotethys tectonic belts. The Chaluo granite mainly consists of alkaline feldspar, quartz, and biotite, with a small amount of apatite. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of (87 ± 3) Ma for the Chaluo granite, indicating its formation in the Late Cretaceous. Elemental geochemical testing results showed that the Chaluo granite exhibits I-type granite characteristics. It has undergone significant fractional crystallization processes, with high SiO2 contents (72.83–76.63 wt%), K (K2O/Na2O = 1.33–1.53), Al2O3 (Al2O3 = 12.24–13.56 wt%, A/CNK = 0.91–1.08), and a high differentiation index (DI = 88.91–92.49). Notably, the MgO contents were low (0.10–0.26 wt%), and there were significant depletions of Nb, Sr, Ti, and Eu, while Rb, Pb, Th, U, Zr, and Hf were significantly enriched. The total rare earth element (REE) contents were relatively low (211–383 ppm), showing significant light REE (LREE) enrichment (LREE/HREE = 4.46–5.57) and a pronounced negative Eu anomaly (δEu = 0.09–0.17). In situ zircon Hf analyses, combined with 206Pb/238U ages, gave εHf(t) values ranging from −3.8 to 1.72 and two-stage Hf ages (tDM2) of 875–1160 Ma. Together with the S and Pb isotope compositions of the Chaluo granite, its magma likely originated from the partial melting of Middle–Neoproterozoic sedimentary rocks enriched in biogenic S. The tectonic-setting analysis indicates that the Chaluo granite formed in a post-orogenic intracontinental extensional environment. This environment was triggered by the northward subduction-collision of the Lhasa block, followed by slab break-off and the upwelling of the asthenosphere in the Neo-Tethys orogenic belt. We propose that the Paleo-Tethys tectonic belt was influenced by the Neo-Tethys tectonic activity, at least in the Yidun magmatic arc region during the Late Cretaceous. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 5836 KB  
Article
Smart and Mechanically Enhanced Zein–Gelatin Films Incorporating Cellulose Nanocrystals and Alizarin for Fish Spoilage Monitoring
by Leonardo Sentanin, Josemar Gonçalves de Oliveira Filho, Mariana Buranelo Egea and Luiz Henrique Capparelli Mattoso
Foods 2025, 14(17), 3015; https://doi.org/10.3390/foods14173015 - 28 Aug 2025
Abstract
The shelf life of perishable foods is traditionally determined by microbiological, chemical, and sensory analyses, which are well-established and reliable. However, these methods can be time-consuming and resource-intensive, and they may not fully account for unexpected storage deviations, such as temperature fluctuations or [...] Read more.
The shelf life of perishable foods is traditionally determined by microbiological, chemical, and sensory analyses, which are well-established and reliable. However, these methods can be time-consuming and resource-intensive, and they may not fully account for unexpected storage deviations, such as temperature fluctuations or equipment failures. Smart films emerge as a promising alternative, enabling rapid, visual, and low-cost food quality monitoring. This study developed smart films based on zein/gelatin/cellulose nanocrystals (Z/G/CNC) functionalized with alizarin (AL, 0–3% w/w), produced by casting (12.5% zein, 12.5% gelatin, and 5% CNC w/w). The films were characterized for morphological, physicochemical, thermal, and spectroscopic properties, chromatic response at pH 3–11, activity against Escherichia coli and Staphylococcus aureus, and applicability in monitoring Merluccid hake fillets. The incorporation of AL reduced water solubility, increased water vapor permeability and contact angle, imparted a more intense orange coloration, and improved thermal resistance. AL also increased thickness and elongation at break while reducing tensile strength and Young’s modulus. All films exhibited excellent UV-blocking capacity (<1% transmittance). Noticeable color changes were observed, with the Z/G/CNC/AL1 film being the most sensitive to pH variations. During Merluccid hake storage, ΔE values exceeded 3 within 72 h, with a color change from orange to purple, correlating with fillet pH (8.14) and total volatile basic nitrogen (TVB-N) (24.73 mg/100 g). These findings demonstrate the potential of the developed films as biodegradable sensors for smart packaging of perishable foods. Full article
Show Figures

Graphical abstract

19 pages, 14183 KB  
Article
The Exposure to Polypropylene Micro- and Nanoplastics Impairs Wound Healing and Tissue Regeneration in the Leech Hirudo verbana
by Camilla Bon, Alice Maretti, Laura Pulze, Nicolò Paris, Orlando Santoro, Stefania Pragliola, Lorella Izzo, Nicolò Baranzini and Annalisa Grimaldi
Microplastics 2025, 4(3), 56; https://doi.org/10.3390/microplastics4030056 - 27 Aug 2025
Abstract
Plastic pollution represents a persistent global issue, with catastrophic effects on ecosystems. Due to unique properties, these synthetic materials do not break down into biodegradable compounds when naturally dispersed, but degrade into smaller fragments, known as micro- (MPs) and nanoplastics (NPs), that easily [...] Read more.
Plastic pollution represents a persistent global issue, with catastrophic effects on ecosystems. Due to unique properties, these synthetic materials do not break down into biodegradable compounds when naturally dispersed, but degrade into smaller fragments, known as micro- (MPs) and nanoplastics (NPs), that easily enter the food chain. Among plastics, polypropylene (PP) is one of the most common, whose consumption has dramatically increased in recent years for single-use packaging and surgical masks. In this context, given the widespread detection of PP-MPs and NPs in various biological matrices, investigating their toxicity in living organisms is crucial. For these reasons, this study aims to assess how PP-MPs and NPs affect tissue regeneration following injury, proposing the freshwater leech Hirudo verbana as an established experimental model. Injured leeches were examined at different time points after plastic administration, and analyses were conducted using microscopy, immunofluorescence, and molecular biology techniques. The results demonstrate that plastic exposure induces fibrosis, disrupts tissue reorganization, delays wound repair, and activates the innate immune and oxidative stress responses. In summary, this project provides new insight into the adverse effects of PP particles on living organisms, highlighting for the first time their negative impact on proper tissue regeneration. Full article
Show Figures

Figure 1

21 pages, 2639 KB  
Article
Multiple Hazards and Economic Resilience: Sectoral Impacts and Post-Disaster Recovery in a High-Risk Brazilian State
by Jorge Luis Tonetto, Josep Miquel Pique and Carina Rapetti
Sustainability 2025, 17(17), 7711; https://doi.org/10.3390/su17177711 - 27 Aug 2025
Abstract
Rio Grande do Sul accounts for 22% of Brazil’s losses from extreme events, mainly droughts and floods. The state had the second-worst economic performance in the country between 2000 and 2022. This study quantifies the impacts of major events such as droughts, floods, [...] Read more.
Rio Grande do Sul accounts for 22% of Brazil’s losses from extreme events, mainly droughts and floods. The state had the second-worst economic performance in the country between 2000 and 2022. This study quantifies the impacts of major events such as droughts, floods, and the COVID-19 pandemic on economic sectors. Three methods were applied: structural breaks, recovery time, and sector-specific loss estimates. The analysis covers 15,365,123 observations of monthly invoice values from January 2017 to April 2025, involving 357,001 companies paying value-added tax on consumption. The results indicate that negative structural breaks occurred in a few sectors, which account for 5% of the state’s economy. The recovery time followed a similar trajectory between droughts and COVID-19. On average, sectors took 12 months to recover from COVID-19, compared with about 6 months for natural hazards. The sectors most impacted were travel, artistic activities, machinery and equipment industry, accommodation, and domestic services. Aggregated loss estimates were highest during the COVID-19 pandemic (−8%), followed by floods (−1%) and droughts (0%). The results indicate remarkable overall short-run economic resilience. Furthermore, sectors such as information technology, consulting, business services, and healthcare performed exceptionally well. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

18 pages, 1633 KB  
Article
Discrimination Between Commercial Tomato Juices from Non-Concentrate and Concentrate Based on Their Volatile Profiles
by Yoko Iijima, Katsutoshi Saisho and Taiki Maeoka
Foods 2025, 14(17), 2993; https://doi.org/10.3390/foods14172993 - 27 Aug 2025
Abstract
Commercial fruit juices are categorized into juice not from concentrate (JNFC) and juice from concentrate (JFC). Tomato juice is one of the most popular vegetable juices, and its aroma is an important factor in evaluating its quality. However, differences in the aroma characteristics [...] Read more.
Commercial fruit juices are categorized into juice not from concentrate (JNFC) and juice from concentrate (JFC). Tomato juice is one of the most popular vegetable juices, and its aroma is an important factor in evaluating its quality. However, differences in the aroma characteristics of JNFC and JFC tomato juices have not been clearly identified. This study aimed to investigate the volatile organic compounds (VOCs) involved in distinguishing between JNFC and JFC using commercially available tomato juices. Furthermore, the effect of concentration on the VOC composition was evaluated using different procedures. Twenty-three commercial tomato juices were prepared for analysis of VOCs using headspace solid phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to discriminate the samples into JNFC and JFC groups. JNFC contained 43 VOCs, which was more than twice that contained in JFC, and the quantitative variation was larger in JNFC than in JFC. In particular, the JNFC group contained significantly more alcohol and phenol compounds. On the other hand, the JFC group contained more formyl pyrrole and Strecker aldehydes. Additional GC-MS/olfactometry (GC-MS/O) and odor active value analyses indicated that (Z)-3-hexenol and 3-methylbutanal were the best VOCs to distinguish between the JNFC and JFC groups. Furthermore, different concentration procedures, including heating concentration (HC), decompression concentration (DC), and freeze drying (FD), were performed, and the corresponding VOCs were compared. HC and DC reduced the levels of most of the compounds to the levels seen in commercial JFC. These results indicate that the concentration procedure is an important processing stage, in addition to the break process, that determines the quality of tomato juice. Full article
Show Figures

Figure 1

18 pages, 33851 KB  
Article
Wheat Straw Lignin Nanoparticles as Active Filler in Thermoplastic Starch Films
by Florian Zikeli, Franco Dominici, Marco Rallini, Sebastian Serna-Loaiza, Walter Wukovits, Anton Friedl, Michael Harasek, Luigi Torre and Debora Puglia
Polymers 2025, 17(17), 2308; https://doi.org/10.3390/polym17172308 - 26 Aug 2025
Abstract
Starch and lignin are promising biopolymers for the production of biodegradable biocomposite materials. The possibility of processing starch into thermoplastic materials qualifies it as a starting material for the preparation of thermoplastic packaging films, and the combination with lignin can even out some [...] Read more.
Starch and lignin are promising biopolymers for the production of biodegradable biocomposite materials. The possibility of processing starch into thermoplastic materials qualifies it as a starting material for the preparation of thermoplastic packaging films, and the combination with lignin can even out some inherent weak points of starch, such as moisture and water sensitivity, and can add additional features like antioxidant activity. Lignins from herbaceous biomass carry building blocks that are not found in wood lignins and are known for their bioactivity, such as p-coumaric acid or ferulic acid. In this work, a protocol was developed to initially prepare hybrids of wheat starch granules and lignin nanoparticles, which were then plasticized using glycerol in an extrusion process to produce thin films. The lignin-containing thermoplastic starch films showed higher Young’s moduli and less elongation at break compared to neat thermoplastic starch films, while tensile strength remained at the level of the neat films. Thermal stability was slightly increased by lignin addition, and oxygen transmission rates were low for lignin contents as low as 1 wt%. The hydrophobicity of the lignin-containing films increased strongly, and they showed an elevated antioxidant activity over several hours, which was also maintained after 24 h. The preparation of hybrid wheat starch lignin particles was successfully tested for the extrusion of thermoplastic starch films with improved thermomechanical properties, decreased water sensitivity, and prolonged antioxidant activity. Full article
(This article belongs to the Special Issue Advanced Study on Lignin-Containing Composites)
30 pages, 9001 KB  
Article
Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing
by Anđela Gavran, Marija V. Pergal, Teodora Vićentić, Milena Rašljić Rafajilović, Igor A. Pašti, Marko V. Bošković and Marko Spasenović
Sensors 2025, 25(17), 5238; https://doi.org/10.3390/s25175238 - 22 Aug 2025
Viewed by 381
Abstract
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range [...] Read more.
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range of materials suitable as precursors for LIG, the scarcity of stretchable and biocompatible polymers amenable to laser graphenization has remained a persistent challenge. In this study, laser-induced graphene (LIG) was fabricated directly on biocompatible and flexible cross-linked PDMS/PEG (with Mn (PEG) = 400 g/mol) composites for the first time, enabling their application in wearable sensors. The addition of PEG compensates for the low carbon content in PDMS, enabling efficient laser graphenization. Laser parameters were systematically optimized to achieve high-quality graphene, and a comprehensive characterization with varying PEG content (10–40 wt.%) was conducted using multiple analytical techniques. Tensile tests revealed that incorporating PEG significantly enhanced elongation at break, reaching 237% for PDMS/40 wt.% PEG while reducing Young’s modulus to 0.25 MPa, highlighting the excellent flexibility of the substrate material. Surface analysis using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy demonstrated the formation of high-quality few-layer graphene with the fewest defects in PDMS/40 wt.% PEG composites. Nevertheless, the adhesion of electrical contacts to LIG that was directly induced on PDMS/PEG proved to be challenging. To overcome this challenge, we produced devices by means of laser induction on polyimide and transfer to PDMS/PEG. We demonstrate the practical utility of such devices by applying them to monitor limb motion in real time. The sensor showed a stable and repeatable piezoresistive response under multiple bending cycles. These results provide valuable insights into the fabrication of biocompatible LIG-based flexible sensors, paving the way for their broader implementation in medical and sports technologies. Full article
(This article belongs to the Special Issue Materials and Devices for Flexible Electronics in Sensor Applications)
Show Figures

Figure 1

11 pages, 1720 KB  
Article
Chemical Ordering in Liquid and Supercooled Ge2Sb2Te5 Phase-Change Materials
by Tae Hoon Lee
Materials 2025, 18(16), 3900; https://doi.org/10.3390/ma18163900 - 20 Aug 2025
Viewed by 344
Abstract
The origin of chemical ordering in liquid and supercooled liquid Ge2Sb2Te5 (GST) was investigated using ab initio molecular dynamics (AIMD) simulations. Bond dynamics were analyzed via continuous (τcon) and intermittent (τint [...] Read more.
The origin of chemical ordering in liquid and supercooled liquid Ge2Sb2Te5 (GST) was investigated using ab initio molecular dynamics (AIMD) simulations. Bond dynamics were analyzed via continuous (τcon) and intermittent (τint) lifetimes. The intermittent lifetime (τint) reveals that chemically ordered Ge-Te and Sb-Te bonds are the most stable, although τcon exhibits a stability anomaly. The faster increase of τint for these bonds upon cooling explains the overall chemical ordering. A novel ordering mechanism was identified through the analysis of bond separation dynamics. Te-Te ‘wrong’ bonds exhibit a unique dynamic instability, breaking and separating much faster than any other bond type, which actively drives the system towards chemical order. A correlation between lifetime and bond strength, as calculated by the Integrated Crystal Orbital Hamilton Population (ICOHP), supports these dynamic findings. Chemical ordering shows a positive correlation with medium-range structural order, evidenced by the instability of 4-fold rings containing wrong bonds. This study provides a detailed dynamic origin for ordering in liquid GST, highlighting the role of Te-Te bond relaxation. Full article
Show Figures

Figure 1

22 pages, 251 KB  
Article
Activist Burnout Among Climate Justice Activists in Austria: An Interpretative Phenomenological Analysis
by Gavin Lord, Hilda Reilly and Henriette Löffler-Stastka
Healthcare 2025, 13(16), 2045; https://doi.org/10.3390/healthcare13162045 - 19 Aug 2025
Viewed by 229
Abstract
Background/Objectives: Research shows that engaging in system-critical activism can be associated with negative mental health outcomes. This exploratory, idiographic, qualitative study seeks to develop an understanding of the experience of activist burnout among climate justice activists. It aims to answer the following [...] Read more.
Background/Objectives: Research shows that engaging in system-critical activism can be associated with negative mental health outcomes. This exploratory, idiographic, qualitative study seeks to develop an understanding of the experience of activist burnout among climate justice activists. It aims to answer the following research question: How do climate justice activists make sense of their activist burnout? Methods: An Interpretative Phenomenological Analysis was conducted using interviews with five participants (n = 5) who are part of climate justice movements in Austria. Results: Three themes were constructed: (1) “The earth is burning”—describing the sense of urgency and pressure experienced by participants; (2) “Relationships with activism, other activists, and the outside world”—describing the ways in which activism colors the participants’ relationship with themselves and others; and (3) “Burning out”—describing the experience of activist burnout at its most acute point. Discussion and Implications: A picture of activist burnout emerges that is characterized by a sense of existential crisis and lack of alternatives; activist work becomes all-consuming and the individual may become isolated. Eventually, activist work evokes stress and cynicism in the individual and may culminate in a breaking point. In many ways, this picture of activist burnout bears similarity to burnout among the helping professions. Implications and recommendations for activists, organizers, and researchers are given. Full article
14 pages, 2723 KB  
Article
Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring
by Dan-Marius Mustață, Daniel Bisorca, Ioana Ionel, Ahmed Adjal and Ramon-Mihai Balogh
Atmosphere 2025, 16(8), 972; https://doi.org/10.3390/atmos16080972 - 16 Aug 2025
Viewed by 365
Abstract
This study presents real-time measurements of particulate matter (PM1, PM2.5, PM10) and carbon dioxide (CO2) concentrations across five university indoor environments with varying occupancy levels and natural ventilation conditions. CO2 concentrations frequently exceeded the [...] Read more.
This study presents real-time measurements of particulate matter (PM1, PM2.5, PM10) and carbon dioxide (CO2) concentrations across five university indoor environments with varying occupancy levels and natural ventilation conditions. CO2 concentrations frequently exceeded the 1000 ppm guideline, with peak values reaching 3018 ppm and 2715 ppm in lecture spaces, whereas one workshop environment maintained levels well below limits (mean = 668 ppm). PM concentrations varied widely: PM10 reached 541.5 µg/m3 in a carpeted amphitheater, significantly surpassing the 50 µg/m3 legal daily limit, while a well-ventilated classroom exhibited lower levels despite moderate occupancy (PM10 max = 116.9 µg/m3). Elevated PM values were strongly associated with flooring type and occupant movement, not just activity type. Notably, window ventilation during breaks reduced CO2 concentrations by up to 305 ppm (p < 1 × 10−47) and PM10 by over 20% in rooms with favorable layouts. These findings highlight the importance of ventilation strategy, spatial orientation, and surface materials in shaping indoor air quality. The study emphasizes the need for targeted, non-invasive interventions to reduce pollutant exposure in historic university buildings where mechanical ventilation upgrades are often restricted. Full article
Show Figures

Figure 1

15 pages, 2321 KB  
Article
The Functional Characterization of an AA10 Lytic Polysaccharide Monooxygenase from Saccharophagus degradans 2-40T for Enhanced Chitin Biodegradation
by Dan Wu, Meiling Dan, Mu-Rong Kao, Yanping Li, Jiajia Song, Yuting Zheng, Guohua Zhao, Yves S. Y. Hsieh and Damao Wang
Foods 2025, 14(16), 2839; https://doi.org/10.3390/foods14162839 - 16 Aug 2025
Viewed by 327
Abstract
Lytic polysaccharide monooxygenases (LPMOs) represent copper-dependent enzymes pivotal in breaking down resilient polysaccharides like cellulose and chitin by means of oxidation, creating more accessible sites for glycoside hydrolases. To elevate the conversion efficiency of chitin, an AA10 LPMO was identified from the genome [...] Read more.
Lytic polysaccharide monooxygenases (LPMOs) represent copper-dependent enzymes pivotal in breaking down resilient polysaccharides like cellulose and chitin by means of oxidation, creating more accessible sites for glycoside hydrolases. To elevate the conversion efficiency of chitin, an AA10 LPMO was identified from the genome of Saccharophagus degradans 2-40T and heterologously expressed. The optimal pH for the activity of recombinant SdLPMO10A is 9.0, and the optimal temperature is 60 °C. Assessment of SdLPMO10A’s synergism with commercial chitinase indicated that when comparing the enzyme combination’s activity to the activity of chitinase alone, the synergistic effect was significant, and a one-pot reaction appeared superior to a two-step reaction. This discovery of a functional AA10 family LPMO presents a promising avenue for developing highly efficient catalysts for biomass conversion of chitin-rich food processing waste (e.g., shrimp shells) into bioactive chitooligosaccharides with applications in functional foods, such as prebiotics and antioxidants. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

15 pages, 1844 KB  
Article
Artificial Intelligence Agent-Enabled Predictive Maintenance: Conceptual Proposal and Basic Framework
by Wenyu Jiang and Fuwen Hu
Computers 2025, 14(8), 329; https://doi.org/10.3390/computers14080329 - 15 Aug 2025
Viewed by 739
Abstract
Predictive maintenance (PdM) represents a significant evolution in maintenance strategies. However, challenges such as system integration complexity, data quality, and data availability are intricately intertwined, collectively impacting the successful deployment of PdM systems. Recently, large model-based agents, or agentic artificial intelligence (AI), have [...] Read more.
Predictive maintenance (PdM) represents a significant evolution in maintenance strategies. However, challenges such as system integration complexity, data quality, and data availability are intricately intertwined, collectively impacting the successful deployment of PdM systems. Recently, large model-based agents, or agentic artificial intelligence (AI), have evolved from simple task automation to active problem-solving and strategic decision-making. As such, we propose an AI agent-enabled PdM method that leverages an agentic AI development platform to streamline the development of a multimodal data-based fault detection agent, a RAG (retrieval-augmented generation)-based fault classification agent, a large model-based fault diagnosis agent, and a digital twin-based fault handling simulation agent. This approach breaks through the limitations of traditional PdM, which relies heavily on single models. This combination of “AI workflow + large reasoning models + operational knowledge base + digital twin” integrates the concepts of BaaS (backend as a service) and LLMOps (large language model operations), constructing an end-to-end intelligent closed loop from data perception to decision execution. Furthermore, a tentative prototype is demonstrated to show the technology stack and the system integration methods of the agentic AI-based PdM. Full article
Show Figures

Figure 1

18 pages, 4336 KB  
Article
Development of an Antibacterial Poly(Lactic Acid)/Poly(ε-Caprolactone)/Tributyl Citrate Film Loaded with Staphylococcus aureus Bacteriophages Using a Sodium Alginate Coating
by Seulgi Imm, Jaewoo Bai and Yoonjee Chang
Int. J. Mol. Sci. 2025, 26(16), 7793; https://doi.org/10.3390/ijms26167793 - 12 Aug 2025
Viewed by 367
Abstract
Biodegradable poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) composite films were prepared with a compatibilizer (tributyl citrate, TBC) using a solvent casting method. Incorporation of 5% TBC (w/v, of PCL weight) improved tensile strength and elongation at break (21.93 ± 2.33 MPa [...] Read more.
Biodegradable poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) composite films were prepared with a compatibilizer (tributyl citrate, TBC) using a solvent casting method. Incorporation of 5% TBC (w/v, of PCL weight) improved tensile strength and elongation at break (21.93 ± 2.33 MPa and 21.02 ± 1.54%, respectively) and reduced water vapor permeability (from 0.12 ± 0.01 to 0.098 ± 0.01 g·mm·m2·h·kPa), indicating improved compatibility between PLA and PCL. Staphylococcus aureus phage PBSA08 demonstrated rapid and persistent bacteriolytic activity for up to 24 h, suggesting its potential as a promising antibacterial biological agent. To impart antibacterial properties to the developed PLA/PCL/TBC film, PBSA08 was loaded into sodium alginate (SA) and coated on the film surface. The optimal composition was 3% (w/v) SA and 3% (w/v) glycerol, which exhibited suitable dynamic behavior as a coating solution and excellent adhesion to the film surface. The phage-coated antibacterial films demonstrated progressive and significant inhibition against S. aureus starting from 10 to 24 h, with controlled phage-release properties. Overall, the developed active film might exert sustained and remarkable antibacterial effects through controlled release of biological agents (phage) under realistic packaging conditions. Full article
Show Figures

Graphical abstract

24 pages, 1394 KB  
Review
Non-Canonical, Strongly Selective Protein Disulfide Isomerases as Anticancer Therapeutic Targets
by Mary E. Law, Zaafir M. Dulloo, Brian Hardy, Ania Kelegama, Reagan Clark, Mariana Rivas Montbrun, Gabriella Antmann, Srihith Nooka, Ronald K. Castellano and Brian K. Law
Biomolecules 2025, 15(8), 1146; https://doi.org/10.3390/biom15081146 - 8 Aug 2025
Viewed by 668
Abstract
Protein Disulfide Isomerases (PDIs) are emerging targets in anticancer therapy, with several PDI inhibitors demonstrating anticancer efficacy in preclinical models. Research has largely focused on “canonical” PDIs, such as PDIA1, which contain CXXC active site motifs where C represents Cysteine. Canonical PDIs have [...] Read more.
Protein Disulfide Isomerases (PDIs) are emerging targets in anticancer therapy, with several PDI inhibitors demonstrating anticancer efficacy in preclinical models. Research has largely focused on “canonical” PDIs, such as PDIA1, which contain CXXC active site motifs where C represents Cysteine. Canonical PDIs have well-studied, critical roles in forming, breaking, and exchanging/scrambling disulfide bonds during protein folding. In contrast, non-canonical PDIs, which harbor CXXS active site motifs, remain less well-studied despite their role as sensors or effectors of protein folding quality control during protein trafficking in the secretory pathway. Here, we provide a review of the literature relating to the non-canonical PDIs ERp44, AGR2, and AGR3, which have been identified as strong dependencies in specific cancer subtypes according to the DepMap database. The biological and biochemical functions of ERp44, AGR2, and AGR3 are discussed, highlighting the role of ERp44 in two mechanisms of protein folding quality control, AGR2 as a selective sensor of mucin protein misfolding, and a unique role for AGR3 in cilia. Finally, we discuss recent efforts to develop small molecule inhibitors of ERp44, AGR2, and AGR3 as tool compounds and experimental therapeutics. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

13 pages, 3203 KB  
Article
Evaluation and Verification of Starch Decomposition by Microbial Hydrolytic Enzymes
by Makoto Takaya, Manzo Uchigasaki, Koji Itonaga and Koichi Ara
Water 2025, 17(15), 2354; https://doi.org/10.3390/w17152354 - 7 Aug 2025
Viewed by 298
Abstract
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These [...] Read more.
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These compounds enhance the growth of native microorganisms, promoting biofilm formation on carriers and improving treatment efficiency. Over the past decade, EBM has been practically applied in food factory wastewater facilities handling high organic loads. The enzyme groups used in EBM are derived from cultures of Bacillus mojavensis, Saccharomyces cariocanus, and Lacticaseibacillus paracasei. To clarify the system’s mechanism and ensure its practical viability, this study focused on starch—a prevalent and recalcitrant component of food wastewater—using two evaluation approaches. Verification 1: Field testing at a starch factory showed that adding enzyme groups to the equalization tank effectively reduced biological oxygen demand (BOD) through starch degradation. Verification 2: Laboratory experiments confirmed that the enzyme groups possess both amylase and maltase activities, sequentially breaking down starch into glucose. The resulting glucose supports microbial growth, facilitating biofilm formation and BOD reduction. These findings confirm EBM’s potential as a sustainable and effective solution for treating high-strength food industry wastewater. Full article
(This article belongs to the Special Issue Advanced Biological Wastewater Treatment and Nutrient Removal)
Show Figures

Figure 1

Back to TopTop