Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = aldol addition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2638 KB  
Article
Efficient Conversion of Glucose into Lactic Acid over the Lewis Acidity Enhanced Sn-Beta Catalyst
by Fenfen Guo, Yuxuan Wang, Zhicheng Jiang, Youjing Tu, Ruikai Li, Xingyu Zhang, Aoyi Tang, Yuan Liang, Lishi Yan, Hu Luo, Shenggang Li and Lingzhao Kong
Molecules 2025, 30(7), 1457; https://doi.org/10.3390/molecules30071457 - 25 Mar 2025
Cited by 1 | Viewed by 934
Abstract
The catalytic production of lactic acid from carbohydrates was considered a green way to efficiently utilize renewable biomass resources. In this study, an easy post-synthesis method was used to prepare a Sn-Beta catalyst for the production of lactic acid from glucose at 180 [...] Read more.
The catalytic production of lactic acid from carbohydrates was considered a green way to efficiently utilize renewable biomass resources. In this study, an easy post-synthesis method was used to prepare a Sn-Beta catalyst for the production of lactic acid from glucose at 180 °C, 2 MPa, and 30 min. With optimized reaction time, temperature, pressure, and the ratio of raw material to catalyst, the yield of lactic acid reached an astonishingly high level of 76.0%. In addition, the catalyst characterizations were performed in-depth, revealing the intrinsic relationship between catalyst performance and structure, proving that the 2 wt% Sn was uniformly dispersed in the skeleton of Beta zeolite, which significantly increased the density of Lewis acid. Thus, the enhanced isomerization and retro-aldol condensation processes over the Lewis acid sites led to the high yield of lactic acid. This catalytic system kept stable after five cycles at mild conditions, showing high potential for industrial biomass utilization. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

11 pages, 1549 KB  
Article
Practical Preparation of (3S)-Hydroxy-5-Phenylpentanoic Acid: Asymmetric Synthesis of (S)-Daphneolone and (S)-Dihydroyashabushiketol, and Formal Synthesis of (3S,5S)-Yashabushidiol B
by So-Yeon Nam, Joungmo Cho, Simon MoonGeun Jung, Hyun-Jun Lee, Hyung Won Ryu, Sei-Ryang Oh and Kee-In Lee
Int. J. Mol. Sci. 2025, 26(4), 1476; https://doi.org/10.3390/ijms26041476 - 10 Feb 2025
Viewed by 1064
Abstract
Many linear diarylpentanoids and diarylheptanoids contain a β-hydroxy ketone or 1,3-diol functionality as the structural motif. Reported herein is the asymmetric synthesis of (S)-daphneolone, (S)-dihydroyashabushiketol, and formal synthesis of (3S,5S)-yashabushidiol B as represented examples, employing [...] Read more.
Many linear diarylpentanoids and diarylheptanoids contain a β-hydroxy ketone or 1,3-diol functionality as the structural motif. Reported herein is the asymmetric synthesis of (S)-daphneolone, (S)-dihydroyashabushiketol, and formal synthesis of (3S,5S)-yashabushidiol B as represented examples, employing readily accessible (3S)-hydroxy-5-phenylpentanoic acid. The (3S)-hydroxy-5-phenylpentanoic acid was conveniently prepared by the aldol addition of (R)-acetyloxazolidinone with 3-phenylpropanal affording two diastereomers which were cleanly separated by silica gel column chromatography, followed by the removal of Evans auxiliary of (3′R,4S)-imide. Then, the (S)-acid was converted to Weinreb amide as a privileged acylating agent. Three natural products with the uppermost optical purity were prepared by the treatment of organolithium or organomagnesium reagents, respectively, to the Weinreb amide used in common. We believe that this strategy provides a rapid and convergent method for constructing these classes of molecules of interest. Full article
(This article belongs to the Special Issue Biosynthesis and Application of Natural Compound)
Show Figures

Figure 1

11 pages, 2464 KB  
Communication
Thioureas Derived from (S)-1-(2-pyridyl)ethylamine Enantiomer: Synthesis and Selected Applications as an Organocatalyst
by Jacek Chrzanowski, Luca Sancineto, Malgorzata Deska, Michal Rachwalski and Jozef Drabowicz
Symmetry 2025, 17(2), 216; https://doi.org/10.3390/sym17020216 - 31 Jan 2025
Viewed by 1235
Abstract
In order to expand the group of chiral thiourea structures, several optically active thioureas derived from the (S)-1-(2-pyridyl)ethylamine enantiomer were prepared via its reaction with achiral or optically active isothiocyanates. To show their synthetic potential as chiral auxiliaries the isolated thioureas [...] Read more.
In order to expand the group of chiral thiourea structures, several optically active thioureas derived from the (S)-1-(2-pyridyl)ethylamine enantiomer were prepared via its reaction with achiral or optically active isothiocyanates. To show their synthetic potential as chiral auxiliaries the isolated thioureas were tested as an optically active organocatalyst in the asymmetric version of the selected aldol condensation and addition of diethylzinc to benzaldehyde. The observation of asymmetric induction in these model reactions encourages further research on the use of this group of thioureas in asymmetric versions of multicomponent reactions and cycloadditions. The mechanistic aspects of the reactions under study are also briefly discussed. Full article
Show Figures

Scheme 1

16 pages, 3553 KB  
Article
Sulfur Analogs of the Core Formose Cycle: A Free Energy Map
by Jeremy Kua, Maria T. Peña, Samantha N. Cotter and John Leca
Life 2025, 15(1), 1; https://doi.org/10.3390/life15010001 - 24 Dec 2024
Cited by 1 | Viewed by 989
Abstract
Using computational methods, we examine if the presence of H2S can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C [...] Read more.
Using computational methods, we examine if the presence of H2S can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C2 species, and feeding the cycle with CH2O, selected aldol additions and enolizations are kinetically more favorable. Thione formation is thermodynamically less favored compared to aldehydes and ketones, but all these species can be connected by enolization reactions. In some sulfur analogs, the retroaldol transformation of a C4 species back into linchpin species is thermodynamically favorable, and we have found one route incorporating where incorporating sulfur selects for a specific pathway over others. However, as CH2O diminishes, the aldol addition of larger species is less favorable for the sulfur analogs. Our results also suggest that competing Cannizzaro side reactions are kinetically less favored and thermodynamically disfavored when H2S is abundant. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life 2024)
Show Figures

Figure 1

5 pages, 836 KB  
Short Note
(E)-1-(Benzo[d][1,3]dioxol-5-yl)-5,6,6-trimethylhept-4-en-3-one
by Mario Rico-Molina, Joaquín Altarejos and Sofía Salido
Molbank 2024, 2024(4), M1938; https://doi.org/10.3390/M1938 - 11 Dec 2024
Cited by 1 | Viewed by 1869 | Correction
Abstract
The title compound (1) was obtained within a project to synthesize analogs of the antiepileptic drug stiripentol. Compound 1 was synthesized by aldol addition of the lithium enolate of 4-(benzo[d][1,3]dioxol-5-yl)butan-2-one (2) to 3,3-dimethylbutan-2-one (3), followed [...] Read more.
The title compound (1) was obtained within a project to synthesize analogs of the antiepileptic drug stiripentol. Compound 1 was synthesized by aldol addition of the lithium enolate of 4-(benzo[d][1,3]dioxol-5-yl)butan-2-one (2) to 3,3-dimethylbutan-2-one (3), followed by the dehydration of the resulting β-hydroxy-ketone under acid processing. The structure of 1 was established by 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. Full article
Show Figures

Figure 1

24 pages, 1983 KB  
Article
Synthesis and hLDHA Inhibitory Activity of New Stiripentol-Related Compounds of Potential Use in Primary Hyperoxaluria
by Mario Rico-Molina, Juan Ortega-Vidal, Juan Molina-Canteras, Justo Cobo, Joaquín Altarejos and Sofía Salido
Int. J. Mol. Sci. 2024, 25(24), 13266; https://doi.org/10.3390/ijms252413266 - 10 Dec 2024
Viewed by 1561
Abstract
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria [...] Read more.
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, hLDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet’s syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its hLDHA inhibitory activity. In this work, several new STP-related compounds have been synthesized and their hLDHA inhibitory activity has been compared to that of STP. The synthesis of these analogues to STP was accomplished using crossed-aldol condensation guided by lithium enolate chemistry and a successive regioselective reduction of the resulting α,β-unsaturated ketones. The target molecules were obtained as racemates, which were separated into their enantiomers by chiral HPLC. The absolute configurations of pure enantiomers were determined by the modified Mosher’s method and electronic circular dichroism (ECD) spectroscopy. For the inhibitory effect over the hLDHA catalytic activity, a kinetic spectrofluorometric assay was used. All the new synthesized compounds turned out to be more active at 500 μM (46–72% of inhibition percentage) than STP (10%), which opens a new line of study on the possible capacity of these analogues to reduce urinary oxalate levels in vivo more efficiently. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

13 pages, 3806 KB  
Article
Stereodivergent Synthesis of Aldol Products Using Pseudo-C2 Symmetric N-benzyl-4-(trifluoromethyl)piperidine-2,6-dione
by Rina Yada, Tomoko Kawasaki-Takasuka and Takashi Yamazaki
Molecules 2024, 29(21), 5129; https://doi.org/10.3390/molecules29215129 - 30 Oct 2024
Viewed by 1270
Abstract
The present article describes the successful performance of crossed aldol reactions of the CF3-containing pseudo-C2 symmetric cyclic imide with various aldehydes. The utilization of HMPA as an additive attained the preferential formation of the anti-products in good to excellent [...] Read more.
The present article describes the successful performance of crossed aldol reactions of the CF3-containing pseudo-C2 symmetric cyclic imide with various aldehydes. The utilization of HMPA as an additive attained the preferential formation of the anti-products in good to excellent yields, which contrasts with our previous method without this additive, proceeding to furnish the corresponding syn-isomers. The effective participation of ketones and α,β-unsaturated carbonyl compounds in reactions with this imide was also demonstrated to expand the application of this imide. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

20 pages, 2123 KB  
Article
C2-Symmetric Amino Acid Amide-Derived Organocatalysts
by Zahraa S. Al-Taie, Simon J. Coles, Aileen Congreve, Dylan Ford, Lucy Green, Peter N. Horton, Leigh F. Jones, Pippa Kett, Rolf Kraehenbuehl, Patrick J. Murphy, Graham J. Tizzard, Niles B. Willmore and Oliver T. Wright
Reactions 2024, 5(3), 567-586; https://doi.org/10.3390/reactions5030027 - 24 Aug 2024
Cited by 1 | Viewed by 1723
Abstract
N-alkylated C2-symmetric amino acid amide derivatives were shown to catalyse the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 44%. The corresponding trifluoroacetic acid salts also catalysed the aldol reaction between 4-nitrobenzaldehyde and hydroxyacetone, leading to the [...] Read more.
N-alkylated C2-symmetric amino acid amide derivatives were shown to catalyse the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 44%. The corresponding trifluoroacetic acid salts also catalysed the aldol reaction between 4-nitrobenzaldehyde and hydroxyacetone, leading to the formation of predominantly syn-aldol products in up to 55% ee. Aspects of the solvent dependence of the aldol reaction and the H-bonding of the catalyst were investigated. Full article
Show Figures

Figure 1

13 pages, 2772 KB  
Article
Low-Cost Ni-W Catalysts Supported on Glucose/Carbon Nanotube Hybrid Carbons for Sustainable Ethylene Glycol Synthesis
by Rafael G. Morais, Lucília S. Ribeiro, José J. M. Órfão and Manuel Fernando R. Pereira
Molecules 2024, 29(16), 3962; https://doi.org/10.3390/molecules29163962 - 22 Aug 2024
Cited by 4 | Viewed by 1444
Abstract
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, [...] Read more.
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, a series of low-cost Ni-W bimetallic catalysts supported on glucose/carbon nanotube hybrid carbons were synthesised for the first time and employed to transform cellulose into EG. Two different strategies were combined for the preparation of the carbons: the activation and addition of carbon nanotubes (CNTs) to obtain a hybrid material (AG-CNT). The catalytic conversion process proceeded through cellulose hydrolysis to glucose, followed by glucose retro-aldol condensation to glycolaldehyde and its subsequent hydrogenation to EG. Through the optimisation of the catalyst’s properties, particularly the metals’ content, a good synergistic effect of C-C bond cleavage and hydrogenation capabilities was assured, resulting in the highly selective production of EG. The balance between Ni and W active sites was confirmed to be a crucial parameter. Thus, total cellulose conversion (100%) was achieved with EG yields of 60–62%, which are amongst the best yields ever reported for the catalytic conversion of cellulose into EG via carbon-supported catalysts. Full article
Show Figures

Graphical abstract

47 pages, 13335 KB  
Review
Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers
by Xuemei Yin, Xihong Wang, Lei Song, Junxiong Zhang and Xiaoling Wang
Molecules 2024, 29(15), 3677; https://doi.org/10.3390/molecules29153677 - 2 Aug 2024
Cited by 4 | Viewed by 3196
Abstract
Organic fluorides are widely used in pharmaceuticals, agrochemicals, material sciences, and other fields due to the special physical and chemical properties of fluorine atoms. The synthesis of alkyl fluorinated compounds bearing multiple contiguous stereogenic centers is the most challenging research area in synthetic [...] Read more.
Organic fluorides are widely used in pharmaceuticals, agrochemicals, material sciences, and other fields due to the special physical and chemical properties of fluorine atoms. The synthesis of alkyl fluorinated compounds bearing multiple contiguous stereogenic centers is the most challenging research area in synthetic chemistry and has received extensive attention from chemists. This review summarized the important research progress in the field over the past decade, including asymmetric electrophilic fluorination and the asymmetric elaboration of fluorinated substrates (such as allylic alkylation reactions, hydrofunctionalization reactions, Mannich addition reactions, Michael addition reactions, aldol addition reactions, and miscellaneous reactions), with an emphasis on synthetic methodologies, substrate scopes, and reaction mechanisms. Full article
(This article belongs to the Special Issue Research Advances in Organofluorine Chemistry)
Show Figures

Figure 1

23 pages, 7117 KB  
Article
Synthesis of Chiral Acyclic Pyrimidine Nucleoside Analogues from DHAP-Dependent Aldolases
by Mariano Nigro, Israél Sánchez-Moreno, Raúl Benito-Arenas, Ana L. Valino, Adolfo M. Iribarren, Nicolás Veiga, Eduardo García-Junceda and Elizabeth S. Lewkowicz
Biomolecules 2024, 14(7), 750; https://doi.org/10.3390/biom14070750 - 25 Jun 2024
Viewed by 1671
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, [...] Read more.
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed. Full article
Show Figures

Figure 1

26 pages, 7873 KB  
Article
Synthesis of 4′-Thionucleoside Analogues Bearing a C2′ Stereogenic All-Carbon Quaternary Center
by Carla Eymard, Amarender Manchoju, Abir Almazloum, Starr Dostie, Michel Prévost, Mona Nemer and Yvan Guindon
Molecules 2024, 29(7), 1647; https://doi.org/10.3390/molecules29071647 - 6 Apr 2024
Cited by 1 | Viewed by 2105
Abstract
The design of novel 4′-thionucleoside analogues bearing a C2′ stereogenic all-carbon quaternary center is described. The synthesis involves a highly diastereoselective Mukaiyama aldol reaction, and a diastereoselective radical-based vinyl group transfer to generate the all-carbon stereogenic C2′ center, along with different approaches to [...] Read more.
The design of novel 4′-thionucleoside analogues bearing a C2′ stereogenic all-carbon quaternary center is described. The synthesis involves a highly diastereoselective Mukaiyama aldol reaction, and a diastereoselective radical-based vinyl group transfer to generate the all-carbon stereogenic C2′ center, along with different approaches to control the selectivity of the N-glycosidic bond. Intramolecular SN2-like cyclization of a mixture of acyclic thioaminals provided analogues with a pyrimidine nucleobase. A kinetic bias favoring cyclization of the 1′,2′-anti thioaminal furnished the desired β-D-4′-thionucleoside analogue in a 7:1 ratio. DFT calculations suggest that this kinetic resolution originates from additional steric clash in the SN2-like transition state for 1′,4′-trans isomers, causing a significant decrease in their reaction rate relative to 1′,4′-cis counterparts. N-glycosylation of cyclic glycosyl donors with a purine nucleobase enabled the formation of novel 2-chloroadenine 4′-thionucleoside analogues. These proprietary molecules and other derivatives are currently being evaluated both in vitro and in vivo to establish their biological profiles. Full article
Show Figures

Graphical abstract

12 pages, 1653 KB  
Article
Catalytic Conversion of Cyclopentanone into Dimethyl Adipate over Solid Basic Catalysts with Dimethyl Carbonate
by Irene Martínez-Salazar, Ana Orozco-Saumell, Manuel López Granados and Rafael Mariscal
Catalysts 2024, 14(1), 86; https://doi.org/10.3390/catal14010086 - 20 Jan 2024
Cited by 1 | Viewed by 3048
Abstract
The synthesis of dimethyl adipate (DAP), a stable configuration of adipic acid, from biomass-derived cyclopentanone (CPO) and dimethyl carbonate (DMC) constitutes an attractive greener route than petroleum-based industrial processes. Solid basic catalysts such as MgO, Mg5(CO3)4(OH)2 [...] Read more.
The synthesis of dimethyl adipate (DAP), a stable configuration of adipic acid, from biomass-derived cyclopentanone (CPO) and dimethyl carbonate (DMC) constitutes an attractive greener route than petroleum-based industrial processes. Solid basic catalysts such as MgO, Mg5(CO3)4(OH)2·4H2O, KOCH3 and Ca(OCH3)2 have been used achieving a DAP yield up to 30% at 533 K. In addition to the type of catalyst, other operating conditions such as the substrate, reaction time, temperature and CPO concentration have been studied. The methylation of DAP and CPO and the self-aldol condensation of CPO to form dimers and oligomers are reactions that occur in parallel with the production of DAP. It has been established that the main challenge is the self-aldol condensation of CPO. It has been identified that at short reaction times, to prevent methylation, and at dilute concentrations, to avoid CPO self-condensation, the DAP formation rate is much higher than these other competitive reactions. Finally, it should be noted that a DAP productivity up to 3.45 g·gcat−1·h−1 has been achieved under mild conditions. Full article
Show Figures

Graphical abstract

12 pages, 2060 KB  
Article
Total Synthesis and Anti-Inflammatory Evaluation of Osajin, Scandenone and Analogues
by Rui Wang, Ran Ma, Ke Feng, Hongchen Lu, Wei Zhao and Hongzhen Jin
Pharmaceuticals 2024, 17(1), 86; https://doi.org/10.3390/ph17010086 - 9 Jan 2024
Cited by 5 | Viewed by 2272
Abstract
In this study, the total synthesis of osajin, scandenone and their analogues have been accomplished. The key synthetic steps include aldol/intramolecular iodoetherification/elimination sequence reactions and a Suzuki coupling reaction to assemble the tricyclic core, chemoselective propargylation and Claisen rearrangement reactions to obtain natural [...] Read more.
In this study, the total synthesis of osajin, scandenone and their analogues have been accomplished. The key synthetic steps include aldol/intramolecular iodoetherification/elimination sequence reactions and a Suzuki coupling reaction to assemble the tricyclic core, chemoselective propargylation and Claisen rearrangement reactions to obtain natural compounds. In addition, we also designed and synthesized twenty-five natural product analogues. All synthetic compounds were screened for anti-inflammatory activity against tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Collectively, Compound 39e and 39d were considered as promising lead compounds for further development. Full article
Show Figures

Graphical abstract

53 pages, 34688 KB  
Review
Progress in Catalytic Asymmetric Reactions with 7-Azaindoline as the Directing Group
by Yan-Ping Zhang, Yong You, Jun-Qing Yin, Zhen-Hua Wang, Jian-Qiang Zhao and Wei-Cheng Yuan
Molecules 2023, 28(23), 7898; https://doi.org/10.3390/molecules28237898 - 1 Dec 2023
Cited by 1 | Viewed by 1868
Abstract
α-Substituted-7-azaindoline amides and α,β-unsaturated 7-azaindoline amides have emerged as new versatile synthons for various metal-catalyzed and organic-catalyzed asymmetric reactions, which have attracted much attention from chemists. In this review, the progress of research on 7-azaindoline amides in the asymmetric aldol reaction, the Mannich [...] Read more.
α-Substituted-7-azaindoline amides and α,β-unsaturated 7-azaindoline amides have emerged as new versatile synthons for various metal-catalyzed and organic-catalyzed asymmetric reactions, which have attracted much attention from chemists. In this review, the progress of research on 7-azaindoline amides in the asymmetric aldol reaction, the Mannich reaction, the conjugate addition, the 1,3-dipole cycloaddition, the Michael/aldol cascade reaction, aminomethylation and the Michael addition-initiated ring-closure reaction is discussed. The α-substituted-7-azaindoline amides, as nucleophiles, are classified according to the type of α-substituted group, whereas the α,β-unsaturated 7-azaindoline amides, as electrophiles, are classified according to the type of reaction. Full article
(This article belongs to the Special Issue Recent Advances of Catalytic Asymmetric Synthesis)
Show Figures

Graphical abstract

Back to TopTop