Biotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides—2nd Edition

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Enzymology".

Deadline for manuscript submissions: 20 August 2024 | Viewed by 3555

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain
Interests: biocatalysis; nucleoside analogues; bioinformatics; protein structure; enzyme immobilization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Purine and pyrimidine nucleotides are involved in a multitude of biochemical processes, but they are particularly important as building blocks for RNA and DNA synthesis. Biosynthesis of nucleotides is performed through two different metabolic routes: de novo and salvage pathways. In the de novo pathway, purine nucleotides are synthesized from simple precursors such as glycine, glutamine, or aspartate. By contrast, the salvage pathway employs nucleobases to generate the corresponding nucleoside-5´-monophosphates (NMPs). This requirement for nucleobases is satisfied by means of different endogenous and/or exogenous sources of preformed nitrogen bases. Both metabolic routes, de novo and salvage pathways, lead to the synthesis of NMPs, which are subsequently phosphorylated to obtain the corresponding nucleoside-5’-di (NMPs) and triphosphates (NTPs). Due to the importance of the enzymes involved in the synthesis of nucleosides and nucleotides, they have been extensively studied as potential targets for chemotherapy against different diseases or as important biocatalysts for the synthesis of different nucleoside and nucleotide analogs. Given this background, this Special Issue will cover the most recent and relevant findings concerning biotechnological and biomedical applications of these enzymes, including (but not limited to) (i) articles focused exclusively on the enzymatic or chemo-enzymatic synthesis of nucleic acid derivatives (NADs), (ii) articles that cover new insights into the knowledge of these enzymes, and (iii) articles focused on the use of these enzymes as therapeutic targets. Along these lines, experimental and review articles from different areas, such as microbiology, molecular biology, biochemistry, biocatalysis, enzyme technology, genomics and proteomics, bioinformatics, and protein engineering, among others, are welcome.

Dr. Jesús Fernandez Lucas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biotransformations
  • biomedicine
  • enzyme technology
  • biochemistry
  • organic chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3884 KiB  
Article
Novel Directed Enzyme Prodrug Therapy for Cancer Treatment Based on 2′-Deoxyribosyltransferase-Conjugated Magnetic Nanoparticles
by Elena Pérez, Javier Acosta, Victor Pisabarro, Marco Cordani, José C. S. dos Santos, Jon Sanz-Landaluze, Juan Gallo, Manuel Bañobre-López and Jesús Fernández-Lucas
Biomolecules 2024, 14(8), 894; https://doi.org/10.3390/biom14080894 - 24 Jul 2024
Viewed by 754
Abstract
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. [...] Read more.
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged Leishmania mexicana type I 2′-deoxyribosyltransferase (His-LmPDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs). Among the resulting derivatives, PDT-MIONP3 displayed the most favorable catalyst load/retained activity ratio, prompting its selection for further investigation. Substrate specificity studies demonstrated that PDT-MIONP3 effectively hydrolyzed a diverse array of 6-oxo and/or 6-amino purine 2′-deoxynucleosides, including 2-fluoro-2′-deoxyadenosine (dFAdo) and 6-methylpurine-2′-deoxyribose (d6MetPRib), both well-known prodrugs commonly used in DEPT. The biophysical characterization of both MIONPs and PDT-MIONPs was conducted by TEM, DLS, and single particle ICPMS techniques, showing an ideal nanosized range and a zeta potential value of −47.9 mV and −78.2 mV for MIONPs and PDT-MIONPs, respectively. The intracellular uptake of MIONPs and PDT-MIONPs was also determined by TEM and single particle ICPMS on HeLa cancer cell lines and NIH3T3 normal cell lines, showing a higher intracellular uptake in tumor cells. Finally, the selectivity of the PDT-MIONP/dFAdo IDEPT system was tested on HeLa cells (24 h, 10 µM dFAdo), resulting in a significant reduction in tumoral cell survival (11% of viability). Based on the experimental results, PDT-MIONP/dFAdo presents a novel and alternative IDEPT strategy, providing a promising avenue for cancer treatment. Full article
Show Figures

Figure 1

21 pages, 7510 KiB  
Article
Enzymatic Transglycosylation Features in Synthesis of 8-Aza-7-Deazapurine Fleximer Nucleosides by Recombinant E. coli PNP: Synthesis and Structure Determination of Minor Products
by Barbara Z. Eletskaya, Anton F. Mironov, Ilya V. Fateev, Maria Ya. Berzina, Konstantin V. Antonov, Olga S. Smirnova, Alexandra B. Zatsepina, Alexandra O. Arnautova, Yulia A. Abramchik, Alexander S. Paramonov, Alexey L. Kayushin, Anastasia L. Khandazhinskaya, Elena S. Matyugina, Sergey N. Kochetkov, Anatoly I. Miroshnikov, Igor A. Mikhailopulo, Roman S. Esipov and Irina D. Konstantinova
Biomolecules 2024, 14(7), 798; https://doi.org/10.3390/biom14070798 - 4 Jul 2024
Viewed by 612
Abstract
Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of “non-typical” minor products of the reaction. In addition to “typical” N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole [...] Read more.
Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of “non-typical” minor products of the reaction. In addition to “typical” N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2′-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2′-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this “upside down” arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products. Full article
Show Figures

Figure 1

24 pages, 7117 KiB  
Article
Synthesis of Chiral Acyclic Pyrimidine Nucleoside Analogues from DHAP-Dependent Aldolases
by Mariano Nigro, Israél Sánchez-Moreno, Raúl Benito-Arenas, Ana L. Valino, Adolfo M. Iribarren, Nicolás Veiga, Eduardo García-Junceda and Elizabeth S. Lewkowicz
Biomolecules 2024, 14(7), 750; https://doi.org/10.3390/biom14070750 - 25 Jun 2024
Viewed by 536
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, [...] Read more.
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed. Full article
Show Figures

Figure 1

15 pages, 2312 KiB  
Article
Synthesis of Substituted 1,2,4-Triazole-3-Thione Nucleosides Using E. coli Purine Nucleoside Phosphorylase
by Ilya V. Fateev, Sobirdjan A. Sasmakov, Jaloliddin M. Abdurakhmanov, Abdukhakim A. Ziyaev, Shukhrat Sh. Khasanov, Farkhod B. Eshboev, Oybek N. Ashirov, Valeriya D. Frolova, Barbara Z. Eletskaya, Olga S. Smirnova, Maria Ya. Berzina, Alexandra O. Arnautova, Yulia A. Abramchik, Maria A. Kostromina, Alexey L. Kayushin, Konstantin V. Antonov, Alexander S. Paramonov, Valeria L. Andronova, Georgiy A. Galegov, Roman S. Esipov, Shakhnoz S. Azimova, Anatoly I. Miroshnikov and Irina D. Konstantinovaadd Show full author list remove Hide full author list
Biomolecules 2024, 14(7), 745; https://doi.org/10.3390/biom14070745 - 24 Jun 2024
Viewed by 692
Abstract
1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this [...] Read more.
1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this study was to synthesize ribosides and deoxyribosides of 1,2,4-triazole-3-thione derivatives and test their antiviral activity against herpes simplex viruses. Three compounds from a series of synthesized mono- and disubstituted 1,2,4-triazole-3-thione derivatives were found to be substrates for E. coli purine nucleoside phosphorylase. Of six prepared nucleosides, the riboside and deoxyriboside of 3-phenacylthio-1,2,4-triazole were obtained at good yields. The yields of the disubstituted 1,2,4-triazol-3-thiones were low due to the effect of bulky substituents at the C3 and C5 positions on the selectivity of enzymatic glycosylation for one particular nitrogen atom in the triazole ring. The results of cytotoxic and antiviral studies on acyclovir-sensitive wild-type strain HSV-1/L2(TK+) and acyclovir-resistant strain (HSV-1/L2/RACV) in Vero E6 cell culture showed that the incorporation of a thiobutyl substituent into the C5 position of 3-phenyl-1,2,4-triazole results in a significant increase in the cytotoxicity of the base and antiviral activity. The highest antiviral activity was observed in the 3-phenacylthio-1-(β-D-ribofuranosyl)-1,2,4-triazole and 5-butylthio-1-(2-deoxy-β-D-ribofuranosyl)-3-phenyl-1,2,4-triazole nucleosides, with their selectivity indexes being significantly higher than that of ribavirin. It was also found that with the increasing lipophilicity of the nucleosides, the activity and toxicity of the tested compounds increased. Full article
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 816 KiB  
Review
Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase
by Alicja Stachelska-Wierzchowska and Jacek Wierzchowski
Biomolecules 2024, 14(6), 701; https://doi.org/10.3390/biom14060701 - 14 Jun 2024
Cited by 1 | Viewed by 621
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as [...] Read more.
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Novel directed enzyme prodrug therapy based on 2'-deoxyribosyltransferase magnetic nanoparticles
Authors: J.Acosta, V. Pisabarro, J.C.S. dos Santos , M. Bañobre-López, J. Sanz Landaluze 4, E. Pérez, J.Fernández-Lucas
Affiliation: Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
Abstract: To be determined

Title: Bacterial purine nucleoside phosphorylases from mesophilic and thermophilic sources in the synthesis of natural nucleosides and their modified analogues.
Authors: Irina A. Bychek; Anastasia A. Zenchenko; Maria A. Kostromina; Marat M. Khisamov; Pavel N. Solyev; Roman S. Esipov; Sergey N. Mikhailov; Irina V. Varizhuk
Affiliation: Engelhardt Institute of Molecular Biology
Abstract: Enzymatic synthesis of nucleoside derivatives is an important alternative to multi-step chemical methods traditionally used for this purpose. Despite a number of undeniable advantages of the enzymatic approach, there is a number of factors limiting its application, such as the limited substrate specificity of enzymes, the need to work at fairly low concentrations and the physicochemical properties of substrates – for example, low solubility. The research conducted by our group is dedicated to the advantages and limitations of using purine nucleoside phosphorylases (PNPs), the main enzymes for the metabolic reutilization of purines, in the synthesis of modified nucleoside analogues. In our work, the substrate specificity of PNP from various bacterial sources (mesophilic and thermophilic) was studied, and the effect of substrate, increased temperature, and the presence of organic solvents on the conversion rate was investigated.

Back to TopTop