Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,153)

Search Parameters:
Keywords = anticancer compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 624 KB  
Review
Postbiotics of Marine Origin and Their Therapeutic Application
by Isabel M. Cerezo, Olivia Pérez-Gómez, Sonia Rohra-Benítez, Marta Domínguez-Maqueda, Jorge García-Márquez and Salvador Arijo
Mar. Drugs 2025, 23(9), 335; https://doi.org/10.3390/md23090335 - 24 Aug 2025
Abstract
The increase in antibiotic-resistant pathogens has prompted the search for alternative therapies. One such alternative is the use of probiotic microorganisms. However, growing interest is now turning toward postbiotics—non-viable microbial cells and/or their components or metabolites—that can confer health benefits without the risks [...] Read more.
The increase in antibiotic-resistant pathogens has prompted the search for alternative therapies. One such alternative is the use of probiotic microorganisms. However, growing interest is now turning toward postbiotics—non-viable microbial cells and/or their components or metabolites—that can confer health benefits without the risks associated with administering live microbes. Marine ecosystems, characterized by extreme and diverse environmental conditions, are a promising yet underexplored source of microorganisms capable of producing unique postbiotic compounds. These include bioactive peptides, polysaccharides, lipoteichoic acids, and short-chain fatty acids produced by marine bacteria. Such compounds often exhibit enhanced stability and potent biological activity, offering therapeutic potential across a wide range of applications. This review explores the current knowledge on postbiotics of marine origin, highlighting their antimicrobial, anti-inflammatory, immunomodulatory, and anticancer properties. We also examine recent in vitro and in vivo studies that demonstrate their efficacy in human and animal health. Some marine bacteria that have been studied for use as postbiotics belong to the genera Bacillus, Halobacillus, Halomonas, Mameliella, Shewanella, Streptomyces, Pseudoalteromonas, Ruegeria, Vibrio, and Weissella. In conclusion, although the use of the marine environment as a source of postbiotics is currently limited compared to other environments, studies conducted to date demonstrate its potential. Full article
Show Figures

Figure 1

13 pages, 2086 KB  
Article
Bioactivity-Guided Fractionation and Mechanistic Insights into Aristolochia ringens Root Extract-Induced G1 Phase Arrest and Mitochondria-Mediated Apoptosis in Human Colon Adenocarcinoma Cells
by Saheed O. Anifowose, Abdalrhaman M. Salih, Musa K. Oladejo, Ahmad Rady, Mobarak S. Al Mosallam, Hasan A. Aljohi, Mansour I. Almansour, Saad Hussin Alkahtani, Ibrahim O. Alanazi and Badr A. Al-Dahmash
Pharmaceuticals 2025, 18(9), 1250; https://doi.org/10.3390/ph18091250 - 23 Aug 2025
Viewed by 74
Abstract
Background/Objectives: Aristolochia ringens, a medicinal plant widely used in traditional medicine, has shown potential therapeutic applications. This study aimed to investigate the anticancer mechanism of action of its crude extract against human colorectal adenocarcinoma cells (Caco-2 and HT-29). Methods: Cell [...] Read more.
Background/Objectives: Aristolochia ringens, a medicinal plant widely used in traditional medicine, has shown potential therapeutic applications. This study aimed to investigate the anticancer mechanism of action of its crude extract against human colorectal adenocarcinoma cells (Caco-2 and HT-29). Methods: Cell viability was assessed using the MTT assay to determine IC50 values. Immunofluorescence microscopy was used to examine nuclear morphology and microtubule integrity. Flow cytometry with PI staining was used for cell cycle analysis and Annexin V-FITC/PI staining for apoptosis detection. Mitochondrial membrane potential was evaluated using JC-1 dye. Bioactivity-guided fractionation was performed via HPLC, and GC–MS was used to profile active constituents. Results: The extract exhibited dose-dependent cytotoxicity with IC50 values below 30 µg/mL in colon adenocarcinoma cell lines. Treated Caco-2 cells showed nuclear shrinkage and disrupted microtubules. PI-based flow cytometry revealed G1 phase arrest, and Annexin V-FITC/PI staining indicated enhanced late apoptosis. JC-1 staining demonstrated mitochondrial depolarization. HPLC fractionation identified fractions 2 and 3 as active, and preliminary GC–MS analysis tentatively annotated the presence of alkaloids, sesquiterpenes/diterpenes, and steroidal compounds. Conclusions: A. ringens exerts anticancer effects through a mitochondria-mediated apoptotic pathway, involving G1 checkpoint arrest and cytoskeletal disruption. These findings provide the first integrated cellular and mechanistic evidence of its anticancer potential in colorectal cancer, supporting its promise as a source of novel therapeutic lead compounds. Full article
Show Figures

Graphical abstract

21 pages, 2057 KB  
Review
A Comprehensive Review of Niosomes: Composition, Structure, Formation, Characterization, and Applications in Bioactive Molecule Delivery Systems
by Alfredo Amaury Bautista-Solano, Gloria Dávila-Ortiz, María de Jesús Perea-Flores and Alma Leticia Martínez-Ayala
Molecules 2025, 30(17), 3467; https://doi.org/10.3390/molecules30173467 - 23 Aug 2025
Viewed by 84
Abstract
Niosomes are nanocarriers with a bilayer structure, consisting of a polar region and a non-polar region. This unique structure allows them to encapsulate compounds with varying polarities, addressing solubility challenges in the transport and delivery of bioactive molecules. The formation of niosomes involves [...] Read more.
Niosomes are nanocarriers with a bilayer structure, consisting of a polar region and a non-polar region. This unique structure allows them to encapsulate compounds with varying polarities, addressing solubility challenges in the transport and delivery of bioactive molecules. The formation of niosomes involves key structural, geometric, and thermodynamic factors influenced by the choice of surfactants and preparation methods. These factors, including the critical packing factor and the hydrophilic–lipophilic balance (HLB), play a crucial role in determining the properties of the final niosomes. Additionally, the use of Tandford’s equations allows for the calculation of geometric parameters. These factors determine the structural integrity and functional properties of niosomes, making it possible to design functional niosomes with characteristics tailored for specific applications. This ability to design niosomes with desired properties is especially valuable in biomedical fields, where precise control over drug delivery and targeting is essential. This review highlights the importance of niosome formulation and presents examples of niosomes that have been functionalized for specific applications, including anticancer treatments, immunological treatments, and their action in the central nervous system. Full article
Show Figures

Graphical abstract

11 pages, 1368 KB  
Article
Ionizing Radiation-Induced Structural Modification of Isoegomaketone and Its Anti-Inflammatory Activity
by Euna Choi, Chang Hyun Jin, Trung Huy Ngo, Jisu Park, Joo-Won Nam and Ah-Reum Han
Molecules 2025, 30(17), 3466; https://doi.org/10.3390/molecules30173466 - 23 Aug 2025
Viewed by 71
Abstract
Isoegomaketone [(E)-1-(furan-3-yl)-4-methylpent-2-en-1-one; 1] is abundant in the essential oil of Perilla species and exhibits various biological activities, such as anticancer and anti-inflammatory effects. In order to discover compounds with reduced toxicity or enhanced biological activity through structural modification of natural [...] Read more.
Isoegomaketone [(E)-1-(furan-3-yl)-4-methylpent-2-en-1-one; 1] is abundant in the essential oil of Perilla species and exhibits various biological activities, such as anticancer and anti-inflammatory effects. In order to discover compounds with reduced toxicity or enhanced biological activity through structural modification of natural product-derived components, isoegomaketone was irradiated with an electron beam at five different doses, and (±)-8-methoxy-perilla ketone (2) was obtained with the highest yield of 3.8% (w/w) at 80 kGy. Its structure was identified by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution chemical ionization mass spectrometry. Compound 2 inhibited nitric oxide production and inducible nitric oxide synthase mRNA expression in a dose-dependent manner in lipopolysaccharide-stimulated RAW 264.7 cells. It also dose-dependently suppressed the mRNA expression of pro-inflammatory mediators such as IL-1β, IFN-β, and MCP-1, while having no significant effect on IL-6 mRNA levels. Furthermore, ELISA analysis demonstrated that 2 reduced MCP-1 protein expression but did not affect the protein level of TNF-α or IL-6. This study provides a reference for the structural analysis of compounds related to 2 by presenting NMR data acquired with chloroform-d, and is the first to report the anti-inflammatory properties of 2. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Food Chemistry)
Show Figures

Figure 1

63 pages, 2516 KB  
Review
Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives
by Anita A. Śliwińska and Karolina Tomiczak
Molecules 2025, 30(17), 3460; https://doi.org/10.3390/molecules30173460 - 22 Aug 2025
Viewed by 258
Abstract
Polyscias fruticosa (L.) Harms, a Southeast Asian medicinal plant of the Araliaceae family, has gained increasing attention due to its rich phytochemical profile and potential pharmacological applications. This review provides an up-to-date synthesis of biotechnological strategies and chemical investigations related to this species. [...] Read more.
Polyscias fruticosa (L.) Harms, a Southeast Asian medicinal plant of the Araliaceae family, has gained increasing attention due to its rich phytochemical profile and potential pharmacological applications. This review provides an up-to-date synthesis of biotechnological strategies and chemical investigations related to this species. In vitro propagation methods, including somatic embryogenesis, adventitious root, and cell suspension cultures, are discussed with emphasis on elicitation and bioreactor systems to enhance the production of secondary metabolites. Phytochemical analyses using gas chromatography–mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) have identified over 120 metabolites, including triterpenoid saponins, polyphenols, sterols, volatile terpenoids, polyacetylenes, and fatty acids. Several compounds, such as tocopherols, conjugated linoleic acids, and alismol, were identified for the first time in the genus. These constituents exhibit antioxidant, anti-inflammatory, antimicrobial, antidiabetic, anticancer, and neuroprotective activities, with selected saponins (e.g., chikusetsusaponin IVa, Polyscias fruticosa saponin [PFS], zingibroside R1) showing confirmed molecular mechanisms of action. The combination of biotechnological tools with phytochemical and pharmacological evaluation supports P. fruticosa as a promising candidate for further functional, therapeutic, and nutraceutical development. This review also identifies knowledge gaps related to compound characterization and mechanistic studies, suggesting future directions for interdisciplinary research. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

14 pages, 2929 KB  
Article
Isolation, Characterization, Antioxidant and Anticancer Activities of Compounds from Erythrina caffra Stem Bark Extract
by Femi Olawale, Olusola Bodede, Mario Ariatti and Moganavelli Singh
Antioxidants 2025, 14(9), 1035; https://doi.org/10.3390/antiox14091035 - 22 Aug 2025
Viewed by 107
Abstract
Erythrina caffra is a traditional plant used to treat cancer and inflammation. The study aimed to assess and isolate anticancer compounds from E. caffra bark. The plant material was extracted sequentially in n-hexane, dichloromethane, ethyl acetate and methanol. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging [...] Read more.
Erythrina caffra is a traditional plant used to treat cancer and inflammation. The study aimed to assess and isolate anticancer compounds from E. caffra bark. The plant material was extracted sequentially in n-hexane, dichloromethane, ethyl acetate and methanol. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 3-(4,5-di methyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to evaluate the crude extracts’ antioxidant and anticancer activities, respectively. Column chromatography was used to purify the potent extracts of the stem bark in order to isolate the bioactive compounds. The crude extracts of the E. caffra bark demonstrated antioxidant and anticancer activity, with the dichloromethane (DCM) extract producing the most favorable activity. Three compounds, namely Hexacosanyl isoferulate, Tetradecyl isoferulate, and 1-Heneicosanol, were detected in fractions from the DCM extract. All the isolated compounds showed significant anticancer potential, with the hydroxycinnamic acid compounds showing better anticancer effects in the cervical (HeLa) and breast cancer (MCF-7) cells. The compounds showed greater activity than even the standard drug, 5-fluorouracil, in the MCF-7 cells, with the tetradecyl isoferulate and hexacosanyl isoferulate fractions having IC50 values of 123.62 and 58.84 µg/mL, respectively. The compounds were observed to be capable of triggering caspase cascade events, leading to apoptotic cell death. Overall, E. caffra extracts contained important bioactive compounds that induced apoptotic cell death in HeLa and MCF-7 tumor cells, warranting further investigations in vitro and in vivo. Full article
Show Figures

Figure 1

39 pages, 5729 KB  
Review
Metabolism, a Blossoming Target for Small-Molecule Anticancer Drugs
by Michela Puxeddu, Romano Silvestri and Giuseppe La Regina
Molecules 2025, 30(17), 3457; https://doi.org/10.3390/molecules30173457 - 22 Aug 2025
Viewed by 266
Abstract
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to [...] Read more.
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to modulate these hallmarks of cancer are gaining increasing attention in drug discovery. In this context, the present review explores recent progress in the development of small molecule inhibitors of key metabolic pathways, such as glycolysis, glutamine metabolism and fatty acid synthesis. In particular, different mechanisms of action of these compounds are analyzed, which can target distinct enzymes, including LDH, HK2, PKM2, GLS and FASN. The findings underscore the relevance of metabolism-based strategies in developing next-generation anticancer agents with potential for improved efficacy and reduced systemic toxicity. Full article
(This article belongs to the Special Issue Small-Molecule Drug Design and Discovery)
Show Figures

Graphical abstract

12 pages, 996 KB  
Article
Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line
by Ruitong Sun, Aina Yano, Ayano Satoh, Shintaro Munemasa, Yoshiyuki Murata, Toshiyuki Nakamura and Yoshimasa Nakamura
Int. J. Mol. Sci. 2025, 26(17), 8145; https://doi.org/10.3390/ijms26178145 - 22 Aug 2025
Viewed by 112
Abstract
Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we [...] Read more.
Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC–glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC–GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses. Full article
(This article belongs to the Special Issue Fundamental and Translational Insights into Colorectal Cancer)
Show Figures

Figure 1

22 pages, 9293 KB  
Article
Synthesis, Characterization, and In Vitro Cytotoxic Evaluation of Neodymium-Doped Cobalt Ferrite Nanoparticles on Human Cancer Cell Lines
by Slaviţa Rotunjanu, Armand Gogulescu, Narcisa Laura Marangoci, Andrei-Ioan Dascălu, Marius Mioc, Roxana Racoviceanu, Alexandra Mioc, Tamara Maksimović, Oana Eșanu, Gabriela Antal and Codruţa Șoica
Materials 2025, 18(16), 3911; https://doi.org/10.3390/ma18163911 - 21 Aug 2025
Viewed by 243
Abstract
Cancer is still the world’s most prevalent cause of death, and the limited efficacy of current treatments highlights the requirement for new therapeutic approaches. In this study, neodymium (Nd)-doped cobalt ferrite (CoFe2₋zNdzO4, z = 0; 0.01; 0.02; [...] Read more.
Cancer is still the world’s most prevalent cause of death, and the limited efficacy of current treatments highlights the requirement for new therapeutic approaches. In this study, neodymium (Nd)-doped cobalt ferrite (CoFe2₋zNdzO4, z = 0; 0.01; 0.02; 0.03; 0.05; 0.1) nanoparticles (Nd0-Nd5) were synthesized via the combustion method. The structural, morphological, and magnetic properties were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), and scanning transmission electron microscopy (STEM) analysis. The synthesized compounds demonstrated single-phase spinel structures, with morphological differences observed between undoped and Nd-doped samples. The biological activity of the nanoparticles was evaluated on immortalized human keratinocytes (HaCaT) and on cancer cell lines: melanoma (A375), breast adenocarcinoma (MCF-7), and pancreatic carcinoma (PANC-1). The cytotoxic effects of Nd0-Nd5 (50–1000 μg∙mL−1) were assessed through Alamar Blue and lactate dehydrogenase (LDH) release assays. The results indicated a dose-dependent cytotoxic effect in cancer cell lines. Changes in cell morphology, suggesting the induction of the apoptotic processes, were observed through immunofluorescence staining of F-actin and nuclei. These findings highlight the potential of Nd-doped cobalt ferrite nanoparticles as selective anticancer agents, warranting further investigation to fully elucidate their mechanisms of action and therapeutic applicability. Full article
(This article belongs to the Special Issue New Functional Materials for Biomedical Applications)
Show Figures

Figure 1

12 pages, 821 KB  
Article
Antiparasitic Effect of Polyphenols and Terpenes from Natural Products Against Trypanosoma cruzi and Leishmania mexicana
by Diana V. Navarrete-Carriola, Gildardo Rivera, Eyra Ortiz-Pérez, Alma D. Paz-González, Ana Verónica Martínez-Vázquez, Laura Victoria Aquino-González, Liliana Argueta-Figueroa, Michael P. Doyle and Adriana Moreno-Rodríguez
Metabolites 2025, 15(8), 560; https://doi.org/10.3390/metabo15080560 - 21 Aug 2025
Viewed by 169
Abstract
Background: Worldwide, the number of cases of parasitic diseases has been increasing; however, available treatments have variable adverse effects and low efficacy, mainly in Neglected Tropical Diseases such as Chagas disease and Leishmaniasis. Therefore, the development of new and more effective antiparasitic [...] Read more.
Background: Worldwide, the number of cases of parasitic diseases has been increasing; however, available treatments have variable adverse effects and low efficacy, mainly in Neglected Tropical Diseases such as Chagas disease and Leishmaniasis. Therefore, the development of new and more effective antiparasitic drugs is important. Natural products are the source of secondary metabolites with different biological activities, such as antibacterial, anticancer, anti-inflammatory, and antiparasitic. Objectives: In this work, secondary metabolites (phenols and terpenes) from natural products were selected to be evaluated against the epimastigotes of NINOA and A1 strains of Trypanosoma cruzi and the promastigotes of M379 strain and FCQEPS native isolate of Leishmania mexicana. Additionally, their cytotoxicity and selectivity index were determined. Methods: Eighteen secondary metabolites were evaluated in vitro against T. cruzi epimastigotes and L. mexicana promastigotes; additionally, their cytotoxicity on the J774.2 macrophage cell line was determined. Results: The compounds l-(-)-menthol (14, IC50 = 24.52 µM) and β-citronellol (11, IC50 = 21.54 µM) had higher trypanocidal activity than the reference drug (benznidazole) against NINOA and A1 strains of T. cruzi, respectively. On the other hand, para-anisyl alcohol (4, IC50 = 34.89 µM) had higher leishmanicidal activity than the reference drug (glucantime®) against M379 and the FCQEPS native isolate of L. mexicana. Finally, in silico, the determination of their pharmacokinetic and toxicological properties showed that they are promising candidates for oral and topical uses. Conclusions: This study opens the possibility of using secondary metabolites as scaffolds for access to the development of new molecules for the treatment of parasite diseases. Full article
Show Figures

Figure 1

22 pages, 2638 KB  
Article
Identification of Bioactive Compounds in Warburgia salutaris Leaf Extracts and Their Pro-Apoptotic Effects on MCF-7 Breast Cancer Cells
by Lebogang Valentia Monama, Daniel Lefa Tswaledi, Tshisikhawe Masala Hadzhi, Makgwale Sharon Mphahlele, Mopeledi Blandina Madihlaba, Matlou Phineas Mokgotho, Leshweni Jeremia Shai and Emelinah Hluphekile Mathe
Int. J. Mol. Sci. 2025, 26(16), 8065; https://doi.org/10.3390/ijms26168065 - 20 Aug 2025
Viewed by 304
Abstract
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use [...] Read more.
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use and in discovering new therapeutic opportunities. This study aimed to screen volatile compounds of Warburgia salutaris leaf extracts and investigate their pro-apoptotic effects on MCF-7 cells. The approach was mainly based on determining cell viability using MTT and scratch assays, and DNA synthesis and damage using BrdU and comet assays, respectively. DAPI/PI stains were used for morphological analysis and expression was determined by RT-PCR and human apoptotic proteome profiler. Warburgia salutaris extracts exhibited antiproliferative effects on MCF-7 cells in a time- and dose-dependent manner. Acetone and methanol extracts exhibited low IC50 at 24, 48 and 72 h. Furthermore, the scratch test revealed that MCF-7 does not metastasise when treated with IC50. Expression showed upregulation of pro-apoptotic proteins and executioner caspases. Taken together, these findings suggest that leaves can promote apoptosis through the intrinsic apoptotic pathway, as observed by upregulation of the Bax and caspase 3 proteins. This paper provides new insights into the mechanisms of action of W. salutaris leaf extracts in the development of anticancer drugs. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

24 pages, 1620 KB  
Article
Novel Indole-Based Sulfonylhydrazones as Potential Anti-Breast Cancer Agents: Synthesis, In Vitro Evaluation, ADME, and QSAR Studies
by Violina T. Angelova, Rositsa Mihaylova, Zvetanka Zhivkova, Nikolay Vassilev, Boris Shivachev and Irini Doytchinova
Pharmaceuticals 2025, 18(8), 1231; https://doi.org/10.3390/ph18081231 - 20 Aug 2025
Viewed by 218
Abstract
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of [...] Read more.
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of ten hybrid indolyl-methylidene phenylsulfonylhydrazones and one bis-indole derivative were designed, synthesized, and structurally characterized using NMR and high-resolution mass spectrometry (HRMS). Prior to synthesis, in silico screening was performed to assess drug likeness and ADME-related properties. Single-crystal X-ray diffraction was conducted for compound 3e. The cytotoxic potential of the synthesized compounds was evaluated using the MTT assay against MCF-7 (ER-α⁺) and MDA-MB-231 (triple-negative) breast cancer cell lines. Additionally, quantitative structure–activity relationship (QSAR) analysis was conducted to identify key structural features contributing to activity. Results: Most compounds exhibited selective cytotoxicity against MCF-7 cells. Notably, compound 3b demonstrated the highest potency with an IC50 of 4.0 μM and a selectivity index (SI) of 20.975. Compound 3f showed strong activity against MDA-MB-231 cells (IC50 = 4.7 μM). QSAR analysis revealed that the presence of a non-substituted phenyl ring and specific indolyl substituents (5-methoxy, 1-acetyl, 5-chloro) significantly contributed to enhanced cytotoxic activity and ligand efficiency. Conclusion: The synthesized phenylsulfonylhydrazone hybrids exhibit promising and selective cytotoxicity, particularly against ER-α⁺ breast cancer cells. Structural insights from QSAR analysis provide a valuable foundation for the further optimization of this scaffold as a potential source of selective anticancer agents. Full article
(This article belongs to the Special Issue Advances in Hydrazone Compounds with Anticancer Activity)
Show Figures

Graphical abstract

21 pages, 1838 KB  
Article
In Vitro Shoot Cultures of Micromeria graeca: Micropropagation and Evaluation of Methanolic Extracts for Anticancer and Antimicrobial Activity
by Branka Uzelac, Mirjana Janjanin, Dijana Krstić-Milošević, Gordana Tovilović-Kovačević, Đurđica Ignjatović, Tatjana Mihajilov-Krstev and Dragana Stojičić
Plants 2025, 14(16), 2592; https://doi.org/10.3390/plants14162592 - 20 Aug 2025
Viewed by 272
Abstract
Micromeria graeca (L.) Benth. ex Rchb. (Lamiaceae) is a promising medicinal plant valued for its antioxidant, anti-hyperglycemic, anti-hypertensive, antimicrobial, and anti-aflatoxigenic properties. It is rich in phenolic and flavonoid compounds, supporting its traditional use for digestive, respiratory, cardiovascular, and dermatological conditions. Plant tissue [...] Read more.
Micromeria graeca (L.) Benth. ex Rchb. (Lamiaceae) is a promising medicinal plant valued for its antioxidant, anti-hyperglycemic, anti-hypertensive, antimicrobial, and anti-aflatoxigenic properties. It is rich in phenolic and flavonoid compounds, supporting its traditional use for digestive, respiratory, cardiovascular, and dermatological conditions. Plant tissue culture facilitates controlled in vitro propagation to study plant growth and bioactive properties. The effects of activated charcoal and varying subculture intervals on multiplication and biomass production in M. graeca shoot cultures were investigated. The phenolic composition of methanolic extracts from in vitro-grown plants was characterized using high-performance liquid chromatography (HPLC), identifying rosmarinic, caffeic, and syringic acids as the primary phenolic compounds. Antimicrobial activity against selected microbial strains was evaluated using a micro-well dilution assay. Anticancer activity of selected extracts was assessed in human hepatocellular carcinoma cell line HepG2, with flow cytometry (Annexin-V/PI staining) used to analyze cell death mechanisms, and compared to pure rosmarinic acid (RA). Activated charcoal showed no beneficial effects on multiplication or biomass production, but significantly increased phenolic acid content (up to 4-fold). RA dominated the phenolic profiles, with other phenolic acids present in lower amounts. Methanolic extracts exhibited negligible antimicrobial activity compared to reference antibiotics and fungicide. Extracts from 4-week-old shoot cultures displayed modest anti-hepatoma activity (IC50 values of CV assay ranging from 193 to 274 µg mL−1), inducing HepG2 cell apoptosis via oxidative stress, independent of RA. Our results suggest that the metabolic output of M. graeca shoot cultures and consequently their biological activity can be modulated by varying in vitro culture conditions. These findings underscore the potential of their methanolic extracts for biotechnological production and therapeutic applications. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

20 pages, 6354 KB  
Article
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Viewed by 315
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial [...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

24 pages, 4816 KB  
Article
Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties
by Katarzyna Dominiak, Aleksandra Gostyńska-Stawna, Agnieszka Sobczak, Jarosław Paluszczak, Aneta Woźniak-Braszak, Mikołaj Baranowski, Paweł Bilski, Barbara Wicher, Ewa Tykarska, Anna Jelińska and Maciej Stawny
Int. J. Mol. Sci. 2025, 26(16), 8032; https://doi.org/10.3390/ijms26168032 - 20 Aug 2025
Viewed by 204
Abstract
Honokiol (HON) and magnolol (MAG), structural isomers from Magnolia officinalis, exhibit notable anticancer activity, particularly against head and neck squamous cell carcinoma (HNSCC). However, due to their high lipophilicity, their intravenous administration is challenging. This study aimed to develop HON- and MAG-loaded [...] Read more.
Honokiol (HON) and magnolol (MAG), structural isomers from Magnolia officinalis, exhibit notable anticancer activity, particularly against head and neck squamous cell carcinoma (HNSCC). However, due to their high lipophilicity, their intravenous administration is challenging. This study aimed to develop HON- and MAG-loaded intravenous (IV) nanoemulsions using commercial lipid preparations with varying fatty acid compositions. The formulations were physicochemically characterized and evaluated in vitro using FaDu and SCC-040 HNSCC cell lines. HON and MAG were sterilized via ionizing radiation at doses of 25, 100, and 400 kGy. Their suitability for IV use was assessed through PXRD, DSC, TGA, EPR, FT-IR, NMR, and HPLC analyses. All formulations met safety criteria for IV administration, with mean droplet diameters below 241 nm and encapsulation efficiencies exceeding 95%. They significantly reduced cancer cell viability, with a synergistic effect observed in combined HON and MAG formulations compared to single-compound nanoemulsions. Clinoleic-based formulations showed enhanced anticancer efficacy, likely due to the pro-apoptotic properties of oleic acid. Notably, radiation sterilization at the standard 25 kGy dose preserved the thermal, crystalline, and structural stability of HON and MAG, whereas higher doses (400 kGy) induced degradation. Although free radicals were detected via EPR, their transient nature and rapid decay confirmed the method’s safety. HON/MAG-loaded nanoemulsions exhibited strong anticancer potential, while radiation sterilization at 25 kGy ensured sterility without compromising stability. These findings provide a preliminary in vitro basis for future in vivo studies investigating HON and MAG as potential adjuvant therapies for HNSCC. Full article
(This article belongs to the Special Issue Drug Discovery: Natural Products and Compounds)
Show Figures

Figure 1

Back to TopTop