Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = apple breeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2439 KB  
Review
The Biologically Active Compounds in Fruits of Cultivated Varieties and Wild Species of Apples
by Alexander A. Shishparenok, Anastasiya N. Shishparenok, Heather A. Harr, Valentina A. Gulidova, Eugene A. Rogozhin and Alexander M. Markin
Molecules 2025, 30(19), 3978; https://doi.org/10.3390/molecules30193978 - 4 Oct 2025
Viewed by 355
Abstract
Insufficient fruit intake is a major contributor to the development of non-communicable diseases, as the global average of daily fruit consumption remains far below the recommended levels. Apples are among the most widely consumed fruits worldwide, making them an ideal target for nutritional [...] Read more.
Insufficient fruit intake is a major contributor to the development of non-communicable diseases, as the global average of daily fruit consumption remains far below the recommended levels. Apples are among the most widely consumed fruits worldwide, making them an ideal target for nutritional enhancement. Enhancing the content of health-promoting compounds within apples offers a practical way to increase bioactive intake without requiring major dietary changes. This review evaluates which of the 41 biologically active compounds considered in this article can reach physiologically relevant intake levels at the current average daily consumption of cultivated and wild apples. Comparative analysis shows that wild apples consistently contain higher concentrations of phenolic compounds and organic acids than cultivated varieties, in some cases by more than tenfold. At the average daily fruit intake of 121.8 g, wild species provide effective doses of epicatechins, anthocyanins, chlorogenic acid, and malic acid. In contrast, cultivated apples reach this level only for chlorogenic acid. Notably, less than 50 g of wild apple is sufficient to supply physiologically relevant amounts of several polyphenols. These findings highlight the potential of wild apple species as donors of bioactive compounds and provide a framework for breeding future apple cultivars that combine consumer appeal with enhanced health benefits. Full article
(This article belongs to the Special Issue Nutritional Properties and Sensory Analysis of Food)
Show Figures

Figure 1

22 pages, 1481 KB  
Review
Research Advances in the Synthesis and Regulation of Apple Anthocyanins
by Haidong Bu, Guangjun Gu, Yinghui Hu, Yue Yang, Ling Yang, Hui Yuan and Wenquan Yu
Biology 2025, 14(10), 1322; https://doi.org/10.3390/biology14101322 - 25 Sep 2025
Viewed by 492
Abstract
Anthocyanins are key pigments responsible for apple fruit coloration, influencing not only its appearance and marketability but also contributing significantly to its nutritional and health benefits. In their natural state, anthocyanins are chemically unstable. However, glycosylation modifies them into anthocyanin derivatives known as [...] Read more.
Anthocyanins are key pigments responsible for apple fruit coloration, influencing not only its appearance and marketability but also contributing significantly to its nutritional and health benefits. In their natural state, anthocyanins are chemically unstable. However, glycosylation modifies them into anthocyanin derivatives known as anthocyanin glycosides, which exhibit markedly enhanced stability and improved water solubility. As a result, most naturally occurring anthocyanins exist in the form of anthocyanin glycosides. The biosynthesis of anthocyanins involves a series of structural genes within the phenylpropanoid and flavonoid pathways (including PAL, C4H, 4CL, CHS, CHI, F3H, DFR, ANS/LDOX, and UFGT). The MYB–bHLH–WD40 transcriptional complex serves as the core regulatory mechanism controlling anthocyanin synthesis, with additional transcription factors also playing important roles. This review systematically summarizes recent advances in the structural characteristics, biosynthetic pathways, molecular regulatory mechanisms, and environmental factors affecting anthocyanin accumulation in apples. These insights are important both for consumer health and for breeding apple cultivars with enhanced anthocyanin content. Full article
(This article belongs to the Special Issue Feature Papers on Developmental and Reproductive Biology)
Show Figures

Figure 1

23 pages, 291 KB  
Article
Biochemical and Volatile Compound Variation in Apple (Malus domestica) Cultivars According to Fruit Size: Implications for Quality and Breeding
by Jan Juhart, Franci Štampar, Mariana Cecilia Grohar and Aljaz Medic
Appl. Sci. 2025, 15(18), 10003; https://doi.org/10.3390/app151810003 - 12 Sep 2025
Viewed by 384
Abstract
Apple fruit size affects market value, yet its impact on biochemical and sensory traits is poorly understood. This study provides the first comprehensive metabolic profiling of peel and flesh across five cultivars, including red-fleshed ‘Baya Marisa’ and four white-fleshed cultivars (‘Opal’, ‘Red Boskoop’, [...] Read more.
Apple fruit size affects market value, yet its impact on biochemical and sensory traits is poorly understood. This study provides the first comprehensive metabolic profiling of peel and flesh across five cultivars, including red-fleshed ‘Baya Marisa’ and four white-fleshed cultivars (‘Opal’, ‘Red Boskoop’, ‘Crown Prince Rudolf’, and ‘Topaz’), in two size groups: large (>70 mm, Class I) and small (55–70 mm, Class II). Sugars and organic acids varied by cultivar but not consistently by size. White-fleshed small apples had higher flesh phenolics, suggesting a dilution effect, while ‘Baya Marisa’ showed no size-related phenolic differences, indicating potential genetic influence. VOCs were mainly aldehydes, with cultivar-specific differences outweighing size effects. Fruit maturity and controlled-atmosphere storage likely limited ester production. These findings demonstrate that fruit size influences certain biochemical traits in a cultivar-dependent manner. This study’s novelty lies in combining tissue-specific metabolite profiling with size comparisons across multiple cultivars, providing practical insights for breeders, nutritionists, and the fruit industry. This work supports size-specific quality assessment and valorization of smaller apples for fresh consumption and processing, challenging conventional market classifications based solely on size. Full article
(This article belongs to the Section Food Science and Technology)
21 pages, 8731 KB  
Article
Individual Segmentation of Intertwined Apple Trees in a Row via Prompt Engineering
by Herearii Metuarea, François Laurens, Walter Guerra, Lidia Lozano, Andrea Patocchi, Shauny Van Hoye, Helin Dutagaci, Jeremy Labrosse, Pejman Rasti and David Rousseau
Sensors 2025, 25(15), 4721; https://doi.org/10.3390/s25154721 - 31 Jul 2025
Viewed by 777
Abstract
Computer vision is of wide interest to perform the phenotyping of horticultural crops such as apple trees at high throughput. In orchards specially constructed for variety testing or breeding programs, computer vision tools should be able to extract phenotypical information form each tree [...] Read more.
Computer vision is of wide interest to perform the phenotyping of horticultural crops such as apple trees at high throughput. In orchards specially constructed for variety testing or breeding programs, computer vision tools should be able to extract phenotypical information form each tree separately. We focus on segmenting individual apple trees as the main task in this context. Segmenting individual apple trees in dense orchard rows is challenging because of the complexity of outdoor illumination and intertwined branches. Traditional methods rely on supervised learning, which requires a large amount of annotated data. In this study, we explore an alternative approach using prompt engineering with the Segment Anything Model and its variants in a zero-shot setting. Specifically, we first detect the trunk and then position a prompt (five points in a diamond shape) located above the detected trunk to feed to the Segment Anything Model. We evaluate our method on the apple REFPOP, a new large-scale European apple tree dataset and on another publicly available dataset. On these datasets, our trunk detector, which utilizes a trained YOLOv11 model, achieves a good detection rate of 97% based on the prompt located above the detected trunk, achieving a Dice score of 70% without training on the REFPOP dataset and 84% without training on the publicly available dataset.We demonstrate that our method equals or even outperforms purely supervised segmentation approaches or non-prompted foundation models. These results underscore the potential of foundational models guided by well-designed prompts as scalable and annotation-efficient solutions for plant segmentation in complex agricultural environments. Full article
Show Figures

Figure 1

15 pages, 10576 KB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 - 6 Jul 2025
Viewed by 666
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

27 pages, 5775 KB  
Article
Genome-Wide Analysis of the FNSII Gene Family and the Role of CitFNSII-1 in Flavonoid Synthesis in Citrus
by Xinya Liu, Beibei Chen, Ling Luo, Qi Zhong, Chee How Teo and Shengjia Huang
Plants 2025, 14(13), 1936; https://doi.org/10.3390/plants14131936 - 24 Jun 2025
Viewed by 1516
Abstract
Flavonoid synthases (FNSs) are key enzymes catalyzing the conversion of flavanones to flavonoids, yet their functions in citrus remain functionally uncharacterized. In this study, we identified three FNSII genes in the citrus genome. Phylogenetic analysis revealed that citrus FNSII genes share the closest [...] Read more.
Flavonoid synthases (FNSs) are key enzymes catalyzing the conversion of flavanones to flavonoids, yet their functions in citrus remain functionally uncharacterized. In this study, we identified three FNSII genes in the citrus genome. Phylogenetic analysis revealed that citrus FNSII genes share the closest evolutionary distance with apple FNSII genes. Chromosomal localization demonstrated that the three FNSII genes are distributed across two out of nine chromosomes. Gene structure analysis indicated that the majority of motifs within these three FNSII genes are highly conserved. We cloned a gene called CitFNSII-1 from citrus. Transient overexpression of CitFNSII-1 in citrus leaves significantly increased flavonoid content, while simultaneous virus-induced silencing of CitFNSII-1 led to synchronously and significantly reduced gene expression levels and flavonoid content in citrus seedlings. Through the Agrobacterium rhizogenes-mediated genetic transformation system, overexpression of CitFNSII-1 was found to markedly enhance flavonoid accumulation in hairy roots, whereas knockout of CitFNSII-1 resulted in a significant decrease in flavonoid content in hairy roots. Further experiments verified an interaction between CitFNSII-1 and the Chalcone isomerase-1 (CHI-1) protein. The results demonstrated that the flavonoid accumulation patterns of CHI-1 and CitFNSII-1 are highly similar. In conclusion, this study advances the understanding of the flavonoid biosynthesis pathway in citrus and provides a theoretical foundation for molecular breeding strategies in citrus. Full article
(This article belongs to the Special Issue Innovative Techniques for Citrus Cultivation)
Show Figures

Figure 1

17 pages, 1134 KB  
Article
Characterization of Heat Tolerance in Two Apple Rootstocks Using Chlorophyll Fluorescence as a Screening Method
by Ines Mihaljević, Marija Viljevac Vuletić, Vesna Tomaš, Dominik Vuković and Zvonimir Zdunić
Agronomy 2025, 15(6), 1442; https://doi.org/10.3390/agronomy15061442 - 13 Jun 2025
Viewed by 803
Abstract
High temperature has an adverse effect on apple production worldwide. Photosynthesis is a process especially vulnerable to heat stress, which can reduce photosynthetic efficiency, plant growth, development, and ultimately yield. Although the effects of heat stress on apples have been partially examined, the [...] Read more.
High temperature has an adverse effect on apple production worldwide. Photosynthesis is a process especially vulnerable to heat stress, which can reduce photosynthetic efficiency, plant growth, development, and ultimately yield. Although the effects of heat stress on apples have been partially examined, the photochemical reactions and heat tolerance of specific rootstocks have still not been sufficiently investigated. Identification of rootstocks with better photosynthetic performance and adaptation to heat stress enables the selection of rootstocks, which could contribute to stable yields and good fruit quality even at elevated temperatures. In this study, chlorophyll a fluorescence (ChlF) induction kinetics was used to investigate the heat tolerance between two apple rootstocks (M.9 and G.210). In addition, we employed lipid peroxidation measurements, hydrogen peroxide quantification, proline content, and total phenolic and flavonoid assessments. Analysis of chlorophyll fluorescence parameters and OJIP curves (different steps of the polyphasic fluorescence transient; O–J–I–P phases) revealed significant differences in their responses, with higher values of the PIABS parameter indicating better PS II stability and overall photosynthetic efficiency in M.9 rootstock. The higher contents of chlorophyll, carotenoids, proline, and significant increase in the accumulation of phenolics, and flavonoids in this rootstock also contributed to its better adaptation to heat stress. Oxidative stress was more pronounced in G.210 through higher H2O2 and MDA levels, which could point to its lower capacity to adjust to heat stress conditions. This research can provide a scientific basis for further breeding programs and growing plans due to climate change and the occurrence of extremely high temperatures. Full article
Show Figures

Figure 1

19 pages, 7673 KB  
Article
Overexpression of MdNRT2.4 Improved Low-Nitrogen Tolerance in Transgenic Tobacco Lines
by Junrong Li, Ke Liu, Chunqiong Shang, Qiandong Hou, Xiangmei Nie, Qinglong Dong, Dong Huang and Qian Wang
Horticulturae 2025, 11(6), 662; https://doi.org/10.3390/horticulturae11060662 - 10 Jun 2025
Viewed by 665
Abstract
Apple (Malus domestica Borkh.) is an economically important fruit. The use of nitrate by plants plays a crucial role in their growth and development, and its absorption and dispersal are controlled by nitrate transport proteins (NRTs). In this study, we investigated the [...] Read more.
Apple (Malus domestica Borkh.) is an economically important fruit. The use of nitrate by plants plays a crucial role in their growth and development, and its absorption and dispersal are controlled by nitrate transport proteins (NRTs). In this study, we investigated the potential function of MdNRT2.4 under low-nitrogen (N) stress by overexpressing it in tobacco. Compared with plants treated with a normal nitrogen level (5 mM), the MdNRT2.4 overexpression lines under low-N stress (0.25 mM) exhibited significantly greater plant height and width, as well as larger leaves and a higher leaf density, than wild-type plants, suggesting that the overexpression of MdNRT2.4 enhances the low-N tolerance of tobacco. Enhanced antioxidant enzyme activities in the MdNRT2.4 overexpression plant lines promoted the scavenging of reactive oxygen species, which reduced damage to their cell membranes. GUS staining of pMdNRT2.4::GUS-transformed Arabidopsis thaliana lines showed that MdNRT2.4 was expressed in the roots, vascular bundles, seeds in fruit pods, and young anther sites, suggesting that MdNRT2.4 mediates the transport of nitrate to these tissues, indicating that MdNRT2.4 might promote nitrate utilization in apple and improve its tolerance to low-N stress. Experiments using yeast one-hybrid and dual-luciferase assays revealed that MdbHLH3 binds to the MdNRT2.4 promoter and activates its expression. MdbHLH3 belongs to the basic helix–loop–helix (bHLH) transcription factor (TF). It is speculated that MdbHLH3 may interact with the promoter of MdNRT2.4 to regulate N metabolism in plants and enhance their low-N tolerance. This study establishes a theoretical framework for investigating the regulatory mechanisms of low-N responsive molecules in apple, while simultaneously providing valuable genetic resources for molecular breeding programs targeting low-N tolerance. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

28 pages, 15894 KB  
Article
Laser Scanning for Canopy Characterization in Hazelnut Trees: A Preliminary Approach to Define Growth Habitus Descriptor
by Raffaella Brigante, Laura Marconi, Simona Lucia Facchin, Franco Famiani, Marta Sánchez Piñero, Silvia Portarena, Rodrigo José De Vargas, Fabiola Villa, Chiara Traini, Alessandra Vinci, Fabio Radicioni and Daniela Farinelli
Agriculture 2025, 15(12), 1251; https://doi.org/10.3390/agriculture15121251 - 9 Jun 2025
Viewed by 714
Abstract
The accurate definition of tree growth descriptors is a crucial step in enhancing orchard management, allowing cultivar identification within an orchard and in new genotype selection for breeding programs. In apple, almond, and olive orchards, Terrestrial Laser Scanning (TLS) technologies have been already [...] Read more.
The accurate definition of tree growth descriptors is a crucial step in enhancing orchard management, allowing cultivar identification within an orchard and in new genotype selection for breeding programs. In apple, almond, and olive orchards, Terrestrial Laser Scanning (TLS) technologies have been already used to identify different architectural groups, but not in hazelnut yet. This study utilized TLS to investigate the canopy structure of hazelnut trees of four different Italian varieties, with and without leaves. TLS proved to be a sensor capable of collecting three-dimensional data from hazelnut field trials and allowed the definition and selection of hazelnut plant descriptors by morphological traits and morphological indexes. Nineteen descriptors, eight morphologic traits and 11 morphological indexes have been identified as reliable suitable descriptors of hazelnut cultivar and in breeding evaluations, according to Biodiversity, FAO and CIHEAM. Many of the selected descriptors are related to the tree habit, vigour and branching density. Two useful indexes have also been defined: Canopy Uprightness (CU) Index and the Index of Canopy Opening (ICO). The descriptors allowed us to distinguish the four studied hazelnut cultivars based on their growth habit; in particular the cultivar Tonda Gentile delle Langhe showed a growth habit that is a lot different from that of the other ones. Full article
(This article belongs to the Special Issue Application of Smart Technologies in Orchard Management)
Show Figures

Figure 1

16 pages, 3815 KB  
Article
Metagenomic Analysis of Wild Apple (Malus sieversii) Trees from Natural Habitats of Kazakhstan
by Aruzhan Mendybayeva, Alibek Makhambetov, Kirill Yanin, Aisha Taskuzhina, Marina Khusnitdinova and Dilyara Gritsenko
Plants 2025, 14(10), 1511; https://doi.org/10.3390/plants14101511 - 18 May 2025
Cited by 1 | Viewed by 962
Abstract
Kazakhstan’s rich biodiversity includes diverse apple populations, notably the wild apple tree (Malus sieversii) prized for traits like disease resistance and adaptability, potentially aiding breeding programs. Analyzing their microbiomes offers insights into bacterial diversity and how it influences apple tree development, [...] Read more.
Kazakhstan’s rich biodiversity includes diverse apple populations, notably the wild apple tree (Malus sieversii) prized for traits like disease resistance and adaptability, potentially aiding breeding programs. Analyzing their microbiomes offers insights into bacterial diversity and how it influences apple tree development, making it a reliable method for understanding ecological interactions. In this research, 334 apple tree samples were collected from different mountain ranges in southeastern Kazakhstan. An analysis using nanopore-based 16S rRNA sequencing showed a distinct similarity in the microbiome compositions of samples from the Zhongar and Ile Alatau mountain ranges, with a predominance of Pseudomonadaceae, Enterobacteriaceae, and Microbacteriaceae. In contrast, samples from Ketmen ridge showed a higher prevalence of Enterobacteriaceae. Alongside the less represented Pseudomonadaceae family, in the Ketmen ridge region, bacteria of the Xanthomonadaceae, Alcaligenaceae, and Brucellaceae families were also present. Across all regions, beneficial plant-associated bacteria were identified, such as Pseudomonas veronii, Stenotrophomonas geniculata, and Kocuria rhizophila, potentially enhancing plant resilience. However, opportunistic phytopathogens were also detected, including Pseudomonas viridiflava and Serratia marcescens, particularly in the Ile Alatau region. These findings highlight the complex microbial interactions in M. sieversii, thus offering key insights into host—microbe relationships that can inform apple breeding and ecological preservation efforts. Full article
(This article belongs to the Special Issue Evolution and Genetics of Plant–Microbe Interactions)
Show Figures

Figure 1

15 pages, 4612 KB  
Article
Regulation of MdANR in Anti-Burning Process of Apple Peel
by Yifeng Feng, Wenya Tian, Junjiao Guo, Jianghong Fu, Jiangbo Wang, Yan Wang and Zhengyang Zhao
Int. J. Mol. Sci. 2025, 26(10), 4656; https://doi.org/10.3390/ijms26104656 - 13 May 2025
Viewed by 703
Abstract
Sunburn in apple peel significantly affects fruit appearance and reduces its commercial value. Previous research has shown that apple peel reduces sunburn by increasing the accumulation of proanthocyanidins (PAs) and other protective compounds. However, the precise molecular regulatory mechanism remains unclear. In this [...] Read more.
Sunburn in apple peel significantly affects fruit appearance and reduces its commercial value. Previous research has shown that apple peel reduces sunburn by increasing the accumulation of proanthocyanidins (PAs) and other protective compounds. However, the precise molecular regulatory mechanism remains unclear. In this study, we systematically investigated MdANR, a key gene involved in PAs biosynthesis. We found that MdANR expression in apple peel is responsive to temperature and light fluctuations, with higher expression levels observed under increased temperature and light exposure. Functional analysis revealed that MdANR overexpression in apple peel and callus enhanced resistance to high-temperature and -light-intensity stress, accompanied by a corresponding increase in PAs and chlorogenic acid contents. In addition, we demonstrated that MdMYBR9 can activate MdANR promoter activity and promote its expression through yeast one-hybrid, dual-luciferase, and electrophoretic mobility transfer experiments. The results indicated that MdMYBR9 was an upstream regulator of MdANR. Based on these findings, this study proposes the MdMYBR9-MdANR-PAs regulatory model for apple sunburn resistance, providing a molecular framework for enhancing sunburn tolerance in apple breeding programs. Full article
Show Figures

Figure 1

20 pages, 2161 KB  
Review
Rootstock Breeding of Stone Fruits Under Modern Cultivation Regime: Current Status and Perspectives
by Juanjuan Ling, Wenjian Yu, Li Yang, Junhuan Zhang, Fengchao Jiang, Meiling Zhang, Yuzhu Wang and Haoyuan Sun
Plants 2025, 14(9), 1320; https://doi.org/10.3390/plants14091320 - 27 Apr 2025
Cited by 2 | Viewed by 1893
Abstract
Stone fruits (Prunus spp.) occupy a pivotal position in global fruit production due to their significant nutritional profile and distinctive organoleptic characteristics. Contemporary orchard systems are undergoing transformation through innovative cultivation approaches, notably high-density dwarfing systems, greenhouse cultivation, agri-tech integration, and simplified [...] Read more.
Stone fruits (Prunus spp.) occupy a pivotal position in global fruit production due to their significant nutritional profile and distinctive organoleptic characteristics. Contemporary orchard systems are undergoing transformation through innovative cultivation approaches, notably high-density dwarfing systems, greenhouse cultivation, agri-tech integration, and simplified management. As a crucial agronomic component in modern stone fruit cultivation, rootstock systems confer multi-benefits including enhanced environmental resilience, improved scion productivity, superior fruit quality, controlled vigor, and dwarfing capacity. While the majority of European apple orchards have transitioned to dwarfing rootstock systems, achieving substantial gains in productivity and profitability, stone fruit cultivation lags significantly due to the key gaps in prunus rootstock development, including genetic complexity, extended evaluation cycles, clonal propagation barriers, and limited research programs. Urgent innovation is required to address these challenges in rootstock breeding to meet the demand of sustainable stone fruit production. This review systematically examines strategic breeding objectives and innovative molecular methodologies in prunus rootstock development, with particular emphasis on marker-assisted selection and genomic prediction technologies. We provide a comprehensive synthesis of breeding achievements across major commercial rootstock cultivars, while proposing forward-looking research strategies incorporating CRISPR-based genome editing and multi-omics approaches. The synthesized insights establish a theoretical pathway for advancing rootstock genetic improvement and sustainable orchard management practices in stone fruit cultivation systems. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

23 pages, 5807 KB  
Article
Integrated Analysis of the Metabolome and Transcriptome During Apple Ripening to Highlight Aroma Determinants in Ningqiu Apples
by Jun Ma, Guangzong Li, Yannan Chu, Haiying Yue, Zehua Xu, Jiaqi Wu, Xiaolong Li and Yonghua Jia
Plants 2025, 14(8), 1165; https://doi.org/10.3390/plants14081165 - 9 Apr 2025
Viewed by 942
Abstract
We investigated the dynamic changes in volatile aroma compound profiles (types and concentrations) and associated gene expression patterns in both the peel and pulp tissues of apples during fruit maturation. This study aimed to elucidate the metabolic regulatory mechanisms underlying volatile aroma biosynthesis [...] Read more.
We investigated the dynamic changes in volatile aroma compound profiles (types and concentrations) and associated gene expression patterns in both the peel and pulp tissues of apples during fruit maturation. This study aimed to elucidate the metabolic regulatory mechanisms underlying volatile aroma biosynthesis in Malus domestica “Ningqiu” apples, thereby providing theoretical support for the comprehensive utilization of aroma resources. Our methodological framework integrated headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS), ultra-high-performance liquid chromatography–orbitrap mass spectrometry (UHPLC-OE-MS), and Illumina high-throughput sequencing to generate comprehensive metabolomic and transcriptomic profiles of peel and pulp tissues. Critical differential aroma compound classes were identified, including esters, aldehydes, alcohols, terpenoids, and ketones, with their metabolic pathways systematically mapped through KEGG functional annotation. Our findings revealed substantial transcriptomic and metabolomic divergence across carotenoid, terpenoid, and fatty acid metabolic pathways. Integrative analysis of multi-omics data revealed 26 and 31 putative biologically significant hub genes in peel and pulp tissues, respectively, putatively associated with the observed metabolic signatures. Among these, five core genes—farnesyl diphosphate synthase (FDPS1.X1), alcohol acyltransferases (AAT1 and AAT3), alcohol dehydrogenase (ADH3), and carotenoid cleavage dioxygenase (CCD3)—were recognized as shared regulatory determinants between both tissue types. Furthermore, terpene synthase (TPS7) emerged as a peel-specific regulatory factor, while hydroperoxide lyase (HPL2), alcohol dehydrogenases (ADH2 and ADH4), and alcohol acyltransferase (AAT2) were identified as pulp-exclusive modulators of metabolic differentiation. The experimental findings provide foundational insights into the molecular basis of aroma profile variation in Malus domestica “Ningqiu” and establish a functional genomics framework for precision breeding initiatives targeting fruit quality optimization through transcriptional regulatory network manipulation. Full article
Show Figures

Figure 1

18 pages, 1229 KB  
Article
Interactions Between Seasonal Temperature Changes, Activities of Selected Genes and Fruit Quality in Malus domestica Borkh.
by Sylwia Keller-Przybyłkowicz, Mariusz Lewandowski, Anita Kuras, Krystyna Strączyńska, Renata Czarnecka, Bogusława Idczak, Krzysztof P. Rutkowski and Anna Skorupinska
Agronomy 2025, 15(4), 908; https://doi.org/10.3390/agronomy15040908 - 6 Apr 2025
Viewed by 679
Abstract
Temperature changes strongly affect apple development and quality. In this study, we analyze the relationships between the main factors modulating both of the aforementioned processes in the fruits of four apple cultivars. We assessed three-dimensional data concerning the expression profile (fold change) of [...] Read more.
Temperature changes strongly affect apple development and quality. In this study, we analyze the relationships between the main factors modulating both of the aforementioned processes in the fruits of four apple cultivars. We assessed three-dimensional data concerning the expression profile (fold change) of eight genes related to fruit ripeness regulation (involved in the cell respiration process and sorbitol metabolism as well as encoding cell kinase receptors) and fruit parameters such as fruit weight, ethylene concentration, concentration of soluble solids and acidity, which are affected by seasonal temperature variations (2018–2020). We observed that low temperatures (before the apple ripening phase) promoted an increase in gene activity and improved the fruit quality of the following cultivars: early-flowering/mid-ripening ‘Pink Braeburn’ and ‘Pinokio’, early-flowering/late-ripening ‘Ligol’ and late-flowering/late-ripening ‘Ligolina’. We confirmed the positive effect of low temperatures on the activity of the AAAA1, AALA1, StG and AAXA genes and on the evaluated fruit quality parameters, and we confirmed their dependence on the genotype of the studied cultivars. The obtained results shed light on the complexity of the variability mechanism in fruit features and fruit harvest dates. This knowledge may improve breeding programs for the production of better-quality apples. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 9144 KB  
Article
MIR396d-p3 Negatively Regulates Apple Resistance to Colletotrichum gloeosporioides via MdUGT89A2 and MdRGA3
by Baodong Zhang, Jinqi Tang, Zhirui Ji, Yinan Du, Jialin Cong and Zongshan Zhou
Horticulturae 2025, 11(4), 351; https://doi.org/10.3390/horticulturae11040351 - 25 Mar 2025
Viewed by 536
Abstract
Apple (Malus domestica) is an economically important fruit crop, but its production is affected by Glomerella leaf spot, a devastating disease caused by the fungal pathogen Colletotrichum gloeosporioides. MicroRNA (miRNA) is a kind of non-coding RNA that plays an important [...] Read more.
Apple (Malus domestica) is an economically important fruit crop, but its production is affected by Glomerella leaf spot, a devastating disease caused by the fungal pathogen Colletotrichum gloeosporioides. MicroRNA (miRNA) is a kind of non-coding RNA that plays an important role in the process of plant–pathogen interactions. However, little is known about the miRNAs that influence apple resistance against C. gloeosporioides. A novel miRNA, MIR396d-p3, was identified through small RNA sequencing (sRNA-seq). Functional analyses revealed that MIR396d-p3 negatively regulates apple resistance to C. gloeosporioides. In addition, MdUGT89A2 and MdRGA3 were confirmed as targets of MIR396d-p3 using 5′ RACE and heterologous expression assays. We further found that overexpressing MdUGT89A2 and MdRGA3 induce apple disease resistance to C. gloeosporioides, while silencing of MdUGT89A2 and MdRGA3 reduces resistance to C. gloeosporioides. These results indicate that MIR396d-p3 plays a role in the response to the infection of C. gloeosporioides through regulating the expressions of MdUGT89A2 and MdRGA3. This research provides a new perspective on the interaction between apples and C. gloeosporioides and offers possible targets for resistance breeding. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

Back to TopTop