Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = astrocytic gliomas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1226 KB  
Article
Multi-Layered Analysis of TGF-β Signaling and Regulation via DNA Methylation and microRNAs in Astrocytic Tumors
by Klaudia Skóra, Damian Strojny, Dawid Sobański, Rafał Staszkiewicz, Paweł Gogol, Mateusz Miller, Przemysław Rogoziński, Nikola Zmarzły and Beniamin Oskar Grabarek
Int. J. Mol. Sci. 2025, 26(16), 7798; https://doi.org/10.3390/ijms26167798 - 12 Aug 2025
Viewed by 524
Abstract
Astrocytic tumors are a heterogeneous group of glial neoplasms characterized by marked differences in biological behavior and patient prognosis. Transforming growth factor-beta (TGF-β) signaling plays a pivotal role in astrocytoma pathogenesis; however, the extent and mechanisms of its epigenetic regulation remain poorly understood. [...] Read more.
Astrocytic tumors are a heterogeneous group of glial neoplasms characterized by marked differences in biological behavior and patient prognosis. Transforming growth factor-beta (TGF-β) signaling plays a pivotal role in astrocytoma pathogenesis; however, the extent and mechanisms of its epigenetic regulation remain poorly understood. This study aimed to investigate how promoter methylation and microRNA-mediated mechanisms regulate key genes within the TGF-β signaling pathway across various astrocytoma grades. Tumor tissue samples from 65 patients with WHO grade II–IV astrocytomas were analyzed using Affymetrix gene expression and microRNA microarrays. Promoter methylation of TGF-β signaling genes was assessed using methylation-specific polymerase chain reaction (MSP). Gene expression was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), and protein levels were quantified using enzyme-linked immunosorbent assay (ELISA). MicroRNA targets were predicted using bioinformatic tools, and survival analyses were conducted using Kaplan–Meier and Cox regression models. Six genes—SMAD1, SMAD3, SKIL, BMP2, SMAD4, and MAPK1—showed significant upregulation in high-grade tumors (fold change > 5.0, p < 0.05), supported by RT-qPCR and protein-level data. Promoter hypomethylation and reduced expression of regulatory microRNAs (e.g., hsa-miR-145-5p targeting SMAD3) were more common in higher-grade tumors. Protein–protein interaction analysis indicated strong functional interconnectivity among the overexpressed genes. High protein levels of SMAD1, SMAD3, and SKIL were significantly associated with shorter overall survival (p < 0.001). This multi-level analysis reveals that astrocytic tumor progression involves epigenetic derepression and microRNA-mediated dysregulation of TGF-β signaling. Elevated expression of SMAD1, SMAD3, and SKIL emerged as strong prognostic indicators, underscoring their potential as biomarkers and therapeutic targets in astrocytic tumors. Full article
(This article belongs to the Special Issue Cancer Biology: From Genetic Aspects to Treatment, 2nd Edition)
Show Figures

Figure 1

18 pages, 2563 KB  
Article
The Potential Anti-Cancer Effects of Polish Ethanolic Extract of Propolis and Quercetin on Glioma Cells Under Hypoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Molecules 2025, 30(14), 3008; https://doi.org/10.3390/molecules30143008 - 17 Jul 2025
Viewed by 1131
Abstract
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation [...] Read more.
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation and aggressive growth. Recent studies have indicated that natural products may hold potential as components of cancer therapy. Among these, Polish propolis and its active compound, quercetin, have demonstrated promising anti-cancer properties. The aim of this study was to evaluate the concentrations of selected cytokines—specifically IL-6, IL-9, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), interferon gamma-induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1)—produced by astrocytes of the CCF-STTG1 cell line. The cytotoxic effects of ethanolic extract of propolis (EEP) and quercetin were assessed using the MTT assay. Astrocytes were stimulated with lipopolysaccharide (LPS, 200 ng/mL) and/or IFN-α (100 U/mL), followed by treatment with EEP or quercetin (25–50 µg/mL) under hypoxic conditions for two hours. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine Kit. Our study demonstrated that Polish propolis and its component quercetin modulate the tumour microenvironment in vitro, primarily by altering the levels of specific cytokines. The HCA analysis revealed that IL-6 and MCP-1 formed a distinct cluster at the highest linkage distance (approximately 100% of Dmax), suggesting that their expression patterns are significantly different from those of the other cytokines and that they are more similar to each other than to the rest. PCA analysis showed that EEP-PL (50 μg/mL) with IFN-α and EEP-PL (50 μg/mL) with LPS exert similar activities on cytokine secretion by astrocytes. Similar effects were demonstrated for EEP-PL 50 μg/mL + LPS + IFN-α, EEP-PL 25 μg/mL + IFN-α and EEP-PL 25 μg/mL + LPS + IFN-α. Our findings suggest that Polish propolis and quercetin may serve as promising natural agents to support the treatment of stage IV malignant astrocytoma. Nonetheless, further research is needed to confirm these results. Full article
Show Figures

Figure 1

21 pages, 4035 KB  
Article
Exploring the Role of Peripheral Macrophages in Glioma Progression: The Metabolic Significance of Cyclooxygenase-2 (COX-2)
by Jens Pietzsch, Magali Toussaint, Cornelius Kurt Donat, Alina Doctor, Sebastian Meister, Johanna Wodtke, Markus Laube, Frank Hofheinz, Jan Rix, Winnie Deuther-Conrad and Cathleen Haase-Kohn
Int. J. Mol. Sci. 2025, 26(13), 6198; https://doi.org/10.3390/ijms26136198 - 27 Jun 2025
Viewed by 882
Abstract
Glioblastoma (GBM) is the most aggressive form of malignant gliomas, with the eicosanoid-synthesizing enzyme cyclooxygenase-2 (COX-2) playing a pivotal role in its progression via the COX-2/prostaglandin E2/4 axis. COX-2 upregulations in tumor cells induces a pro-inflammatory tumor microenvironment (TME), affecting the behavior of [...] Read more.
Glioblastoma (GBM) is the most aggressive form of malignant gliomas, with the eicosanoid-synthesizing enzyme cyclooxygenase-2 (COX-2) playing a pivotal role in its progression via the COX-2/prostaglandin E2/4 axis. COX-2 upregulations in tumor cells induces a pro-inflammatory tumor microenvironment (TME), affecting the behavior of invading bone marrow-derived macrophages (Mϕ) and brain-resident microglia (MG) through unclear autocrine and paracrine mechanisms. Using CRISPR/Cas9 technology, we generated COX-2 knockout U87 glioblastoma cells. In spheroids and in vivo xenografts, this resulted in a significant inhibition of tumorigenic properties, while not observed in standard adherent monolayer culture. Here, the knockout induced a G1 cell cycle arrest in adherent cells, accompanied by increased ROS, mitochondrial activity, and cytochrome c-mediated apoptosis. In spheroids and xenograft models, COX-2 knockout led to notable growth delays and increased cell death, characterized by features of both apoptosis and autophagy. Interestingly, these effects were partially reversed in subcutaneous xenografts after co-culture with Mϕ, while co-culture with MG enhanced the growth-suppressive effects. In an orthotopic model, COX-2 knockout tumors displayed reduced proliferation (fewer Ki-67 positive cells), increased numbers of GFAP-positive astrocytes, and signs of membrane blebbing. These findings highlight the potential of COX-2 knockout and suppression as a therapeutic strategy in GBM, particularly when combined with suppression of infiltrating macrophages and stabilization of resident microglia populations to enhance anti-tumor effects. Full article
Show Figures

Graphical abstract

23 pages, 2915 KB  
Article
Analysis of the Expression Patterns of Tumor Necrosis Factor Alpha Signaling Pathways and Regulatory MicroRNAs in Astrocytic Tumors
by Klaudia Skóra, Damian Strojny, Dawid Sobański, Rafał Staszkiewicz, Paweł Gogol, Mateusz Miller and Beniamin Oskar Grabarek
Int. J. Mol. Sci. 2025, 26(12), 5892; https://doi.org/10.3390/ijms26125892 - 19 Jun 2025
Cited by 2 | Viewed by 3194
Abstract
Chronic inflammation is increasingly recognized as a driver of glioma progression, with tumor necrosis factor-alpha (TNF-α) playing a central role in modulating the tumor microenvironment. This study aimed to investigate the expression profiles and regulatory mechanisms of TNF-α and its downstream mediators—including interleukin-1 [...] Read more.
Chronic inflammation is increasingly recognized as a driver of glioma progression, with tumor necrosis factor-alpha (TNF-α) playing a central role in modulating the tumor microenvironment. This study aimed to investigate the expression profiles and regulatory mechanisms of TNF-α and its downstream mediators—including interleukin-1 beta (IL-1β), Mitogen-Activated Protein Kinase Kinase Kinase 8 (MAP3K8), and Mitogen-activated protein kinase kinase 7 (MAP2K7)—in astrocytic tumors of varying malignancy. We conducted an integrative molecular analysis of 60 human astrocytic tumor samples (20 G2, 12 G3, 28 G4) using transcriptomic microarrays, Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR), Enzyme-Linked Immunosorbent Assay (ELISA), Western blotting, immunohistochemistry, methylation-specific PCR, and miRNA profiling. Prognostic associations were evaluated using Kaplan–Meier survival and Cox regression analyses. TNF-α, IL-1β, and MAP3K8 were significantly upregulated in high-grade tumors, with log2 fold changes ranging from 5.56 to 8.76 (p < 0.001). High expression of TNF-α (HR = 2.10, 95% CI: 1.27–3.46, p = 0.004), IL-1β (HR = 2.35, 95% CI: 1.45–3.82, p = 0.001), and MAP3K8 (Hazard Ratio; HR = 1.88, 95% confidence interval; 95% CI: 1.12–3.16, p = 0.015) was associated with poorer overall survival. miR-34a-3p and miR-30 family members, predicted to target TNF-α and IL-1β, were markedly downregulated in G3/G4 tumors (e.g., miR-30e-3p fold change: –3.78, p < 0.01). Promoter hypomethylation was observed in G3/G4 tumors, supporting epigenetic activation. Our findings establish a multi-layered regulatory mechanism of TNF-α signaling in astrocytic tumors. These data highlight the TNF-α/IL-1β/MAP3K8 axis as a critical driver of glioma aggressiveness and a potential therapeutic target. Full article
Show Figures

Figure 1

46 pages, 8583 KB  
Systematic Review
The Adverse Effects and Use of Bevacizumab in Patients with Glioblastoma: A Systematic Review and Meta-Analysis
by Alejandro Bruna-Mejías, Vicente Silva-Bravo, Laura Moyano Valarezo, María Fernanda Delgado-Retamal, Diego Nazar-Izquierdo, Isidora Aguilar-Aguirre, Pablo Nova-Baeza, Mathias Orellana-Donoso, Alejandra Suazo-Santibáñez, Héctor Gutiérrez-Espinoza, Juan Sanchis Gimeno, Carlos Bastidas-Caldes and Juan José Valenzuela Fuenzalida
Pharmaceuticals 2025, 18(6), 795; https://doi.org/10.3390/ph18060795 - 25 May 2025
Cited by 2 | Viewed by 2616
Abstract
Background: A glioblastoma (GBM) is a type of tumor originating from the glial brain cells, the astrocytes, and thus belongs to the astrocytoma group. Bevacizumab (BV) is a treatment for GBM. BV is the active ingredient in the drugs Avastin®, [...] Read more.
Background: A glioblastoma (GBM) is a type of tumor originating from the glial brain cells, the astrocytes, and thus belongs to the astrocytoma group. Bevacizumab (BV) is a treatment for GBM. BV is the active ingredient in the drugs Avastin®, Alymsys®, Mvasi® and ZiraBev®. It is currently approved as second-line treatment for GBM recurrence in combination with radiotherapy, and as first-line treatment for other cancers, including advanced colorectal cancer, metastatic breast cancer and advanced non-small-cell lung cancer. The objective of this systematic review was to analyze the scientific evidence from the science-based literature on the therapeutic effect and adverse effects of the drug BV in patients with GBM or GBM multiforme. Methods: We systematically searched electronic databases for the literature search, including the MEDLINE (via PubMed), SCOPUS, Google Scholar, the Cumulative Index to Nursing and Allied Health Literature and Web of Science databases, covering records from their earliest data to December 2024. Randomized or controlled clinical trials that were published in English or Spanish were included. The following keywords were used in different combinations: “Bevacizumab therapy”, “Bevacizumab pharmaceutical”, “Glioblastoma”, “Glioma” and “multiform glioblastoma”. Results: The use of Bevacizumab has been extensively studied in the scientific literature, with beneficial effects in symptom control. However, the adverse effects of BV vary across different types of carcinomas, which is why it has already been established that these adverse effects must be taken into consideration. In our meta-analysis of adverse effects, we found 14 adverse effects and estimated their prevalence, with an average of 19% (CI: 4 to 44%). The most significant vascular adverse effect was thromboembolism, which led to a greater number of complications for patients with GBM. Finally, the most common adverse effects were nausea, vomiting, fatigue and hypertension. Conclusions: While the beneficial properties of this pharmacological therapy have been observed, its adverse effect profile requires constant evaluation, as it includes vascular, blood and symptomatic adverse effects, which must be analyzed on a case-by-case basis and with great attention, especially in the case of more serious complications such as thromboembolic events. Full article
Show Figures

Graphical abstract

12 pages, 3354 KB  
Article
Polycystins Expression in Astrocytic Gliomas
by Martha Assimakopoulou, Konstantina Soufli and Maria Melachrinou
Biomedicines 2025, 13(4), 884; https://doi.org/10.3390/biomedicines13040884 - 5 Apr 2025
Viewed by 742
Abstract
Background: Polycystin 1 (PC1) and polycystin 2 (PC2) proteins are members of the transient receptor potential (TRP) channels family and are encoded from PKD1 and PKD2 genes, respectively. Until recently, the role of PKD1 and PKD2 has been associated with the pathogenesis of [...] Read more.
Background: Polycystin 1 (PC1) and polycystin 2 (PC2) proteins are members of the transient receptor potential (TRP) channels family and are encoded from PKD1 and PKD2 genes, respectively. Until recently, the role of PKD1 and PKD2 has been associated with the pathogenesis of the kidney since mutations in these genes cause autosomal dominant polycystic kidney disease (ADPKD). Recent data implicates polycystins in the pathogenesis of solid tumors. In this aspect, the expression of PKD1 and PKD2 in human astrocytomas is largely unknown. The aim of the present research study was to investigate the expression of PKD1 and PKD2 in astrocytic tumors and correlate it with clinicopathological characteristics such as the grade of malignancy, age, and gender of the patients. Methods: A total of 70 cases—corresponding to 8 grade II (diffuse fibrillary astrocytomas), 12 grade III (anaplastic astrocytomas), and 50 grade IV (glioblastomas multiforme)—were examined. The mRNA expression levels of PKD1 and PKD2 were determined through molecular qRT-PCR analysis using the relative quantification ΔΔCt method and the expression of PC1 and PC2 was detected through immunohistochemistry using the semi-quantitative H-score system. Results: Increased levels of PKD1 and PKD2 in astrocytomas were found compared with that of a normal brain (p < 0.05). Glioblastomas demonstrated the greatest increase in PKD1 and PKD2 expression compared to other grades of malignancy (p < 0.05). The same pattern of expression showed PC1 and PC2 proteins. A significant correlation between PKD1 and PKD2 as well as PC1 and PC2 expressions was found (p < 0.05). Although no association was detected between PC1 or PC2 and Ki67 expression (p > 0.05), a significant correlation between PC1 and p53 immunoexpressions, in grade III and between PC2 and p53 immunoexpressions, in grade II astrocytomas (p < 0.01) has emerged. PC1 expression was correlated with age of the patients (p < 0.05). PKD1 and PKD2 expression were negatively correlated with the prognosis of glioma patients. Conclusions: The results of this study indicate the potential involvement of polycystins in the pathogenesis of astrocytomas. However, further research is required to fully understand the mechanisms that these molecules are implicated. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

26 pages, 4779 KB  
Review
Reactive Astrocytes in Glioma: Emerging Opportunities and Challenges
by Jiasheng Wu, Ran Li, Junwen Wang, Hongtao Zhu, Yixuan Ma, Chao You and Kai Shu
Int. J. Mol. Sci. 2025, 26(7), 2907; https://doi.org/10.3390/ijms26072907 - 23 Mar 2025
Cited by 1 | Viewed by 3106
Abstract
Gliomas are the most prevalent malignant tumors in the adult central nervous system (CNS). Glioblastoma (GBM) accounts for approximately 60–70% of primary gliomas. It is a great challenge to human health because of its high degree of malignancy, rapid progression, short survival time, [...] Read more.
Gliomas are the most prevalent malignant tumors in the adult central nervous system (CNS). Glioblastoma (GBM) accounts for approximately 60–70% of primary gliomas. It is a great challenge to human health because of its high degree of malignancy, rapid progression, short survival time, and susceptibility to recurrence. Owing to the specificity of the CNS, the glioma microenvironment often contains numerous glial cells. Astrocytes are most widely distributed in the human brain and form reactive astrocyte proliferation regions around glioma tissue. In addition, astrocytes are activated under pathological conditions and regulate tumor and microenvironmental cells through cell-to-cell contact or the secretion of active substances. Therefore, astrocytes have attracted attention as important components of the glioma microenvironment. Here, we focus on the mechanisms of reactive astrocyte activation under glioma conditions, their contribution to the mechanisms of glioma genesis and progression, and their potential value as targets for clinical intervention in gliomas. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 4256 KB  
Article
Effects of Induced Pluripotent Stem Cell-Derived Astrocytes on Cisplatin Sensitivity in Pediatric Brain Cancer Cells
by Sonia Kiran, Yu Xue, Drishty B. Sarker and Qing-Xiang Amy Sang
Cancers 2025, 17(6), 997; https://doi.org/10.3390/cancers17060997 - 16 Mar 2025
Cited by 1 | Viewed by 1518
Abstract
Background: ATRTs and DIPGs are deadly pediatric brain tumors with poor prognosis. These tumors can develop resistance to chemotherapies, which may be significantly influenced by their microenvironment. Since astrocytes are the most abundant glial cell type in the brain microenvironment and may support [...] Read more.
Background: ATRTs and DIPGs are deadly pediatric brain tumors with poor prognosis. These tumors can develop resistance to chemotherapies, which may be significantly influenced by their microenvironment. Since astrocytes are the most abundant glial cell type in the brain microenvironment and may support tumor growth and chemoresistance, this study investigated the effects of induced pluripotent stem cell-derived astrocytes (iPSC-astrocytes) on cisplatin sensitivity in CHLA-05-ATRT and SF8628 (DIPG) cells. iPSCs provide an unlimited and standardized source of nascent astrocytes, which enables modeling the interaction between childhood brain tumor cells and iPSC-astrocytes within a controlled coculture system. Methods: To study the effects on tumor growth, the iPSC-astrocytes were cocultured with tumor cells. Additionally, the tumor cells were exposed to various concentrations of cisplatin to evaluate their chemosensitivity in the presence of astrocytes. Results: The paracrine interaction of iPSC-astrocytes with tumor cells upregulated astrocyte activation markers GFAP and STAT3 and promoted tumor cell proliferation. Moreover, the cisplatin treatment significantly decreased the viability of CHLA-05-ATRT and SF8628 cells. However, tumor cells exhibited reduced sensitivity to cisplatin in the coculture with iPSC-astrocytes. During cisplatin treatment, DIPG cells in particular showed upregulation of resistance markers, ERK1, STAT3, and MTDH, which are associated with enhanced proliferation and invasion. They also had increased expression of APEX1, which is involved in the base excision repair pathway following cisplatin-induced DNA damage. Conclusion: These findings underscore the significance of the tumor microenvironment in modulating tumor cell survival and chemosensitivity. Full article
Show Figures

Graphical abstract

21 pages, 9529 KB  
Article
The Effect of Ethanolic Extract of Brazilian Green Propolis and Artepillin C on Cytokine Secretion by Stage IV Glioma Cells Under Hypoxic and Normoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Pharmaceuticals 2025, 18(3), 389; https://doi.org/10.3390/ph18030389 - 9 Mar 2025
Cited by 2 | Viewed by 3443
Abstract
Background: The majority of gliomas are astrocytic in nature. Gliomas have the lowest survival rate among all tumors of the central nervous system (CNS), characterized by high aggressiveness and poor response to treatment. The tumor microenvironment is a source of cytokines such as [...] Read more.
Background: The majority of gliomas are astrocytic in nature. Gliomas have the lowest survival rate among all tumors of the central nervous system (CNS), characterized by high aggressiveness and poor response to treatment. The tumor microenvironment is a source of cytokines such as IL-6, IFN-γ, VEGF, and PDGF-BB, secreted mainly by tumor and immune cells. These cytokines play a significant role in angiogenesis, invasion, and metastasis formation. In vitro and in vivo studies have shown that Brazilian green propolis, derived from Baccharis dracunculifolia DC and rich in artepillin C, exhibits anti-inflammatory, antimicrobial, chemopreventive, and anticancer activities. Additionally, it can penetrate the blood–brain barrier, demonstrating neuroprotective effects. The aim of the present study was to determine the concentration of selected cytokines produced by astrocytes of the CCF-STTG1 cell line, isolated from the brain of a patient with stage IV glioma (astrocytoma). Methods: The cytotoxicity of the EEP-B was evaluated using the MTT assay. Astrocytes were stimulated with LPS at a final concentration of 200 ng/mL and/or IFN-α at 100 U/mL, followed by incubation with EEP-B (25–50 µg/mL) and artepillin C (25–50 µg/mL) under 2-h hypoxia and normoxia conditions. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine kit. Results: The absence of cytotoxic effects of EEP-B and artepillin C on human astrocytes of the CCF-STTG1 lineage was demonstrated. Stimulation with LPS, IFN-α, and their combination (LPS + IFN-α) significantly increased the secretion of the tested cytokines compared to the control cell line. The most pronounced and statistically significant reduction in cytokine levels, particularly IL-6 and VEGF, was observed following EEP-B treatment at both tested concentrations under both hypoxic and normoxic conditions. Conclusions: Brazilian green propolis may serve as a potential immunomodulator in combination therapies for gliomas of varying malignancy grades. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Figure 1

16 pages, 1691 KB  
Review
Microenvironmental Drivers of Glioma Progression
by Hyun Ji Jang and Jong-Whi Park
Int. J. Mol. Sci. 2025, 26(5), 2108; https://doi.org/10.3390/ijms26052108 - 27 Feb 2025
Cited by 4 | Viewed by 3406
Abstract
Gliomas, particularly glioblastoma (GBM), are among the most challenging brain tumors due to their complex and dynamic tumor microenvironment (TME). The TME plays a pivotal role in tumor progression, immune evasion, and resistance to therapy through intricate interactions among glioma cells, immune components, [...] Read more.
Gliomas, particularly glioblastoma (GBM), are among the most challenging brain tumors due to their complex and dynamic tumor microenvironment (TME). The TME plays a pivotal role in tumor progression, immune evasion, and resistance to therapy through intricate interactions among glioma cells, immune components, neurons, astrocytes, the extracellular matrix, and the blood-brain barrier. Targeting the TME has demonstrated potential, with immunotherapies such as checkpoint inhibitors and neoadjuvant therapies enhancing immune responses. Nonetheless, overcoming the immunosuppressive landscape and metabolic adaptations continues to pose significant challenges. This review explores the diverse cellular and molecular mechanisms that shape the glioma TME. A deeper understanding of these mechanisms holds promise for providing novel therapeutic opportunities to improve glioma treatment outcomes. Full article
(This article belongs to the Special Issue Novel Combination Therapies for the Solid Cancers Treatment)
Show Figures

Figure 1

23 pages, 3717 KB  
Article
Epidemiology and Outcome of Primary Central Nervous System Tumors Treated at King Hussein Cancer Center
by Maysa Al-Hussaini, Abdallah Al-Ani, Justin Z. Amarin, Sarah Al Sharie, Mouness Obeidat, Awni Musharbash, Amer A. Al Shurbaji, Ahmad Kh. Ibrahimi, Abdellatif Al-Mousa, Nasim Sarhan, Nisreen Amayiri, Rula Amarin, Tala Alawabdeh, Qasem Alzoubi, Dima Abu Laban, Bayan Maraqa, Khaled Jamal and Asem Mansour
Cancers 2025, 17(4), 590; https://doi.org/10.3390/cancers17040590 - 9 Feb 2025
Viewed by 2613
Abstract
Background and Objectives: Primary central nervous system (CNS) tumors are often associated with relatively poor outcomes. Data on the epidemiology and outcome of CNS tumors in Jordan are scarce. We aim to report the epidemiology and outcome of primary CNS tumors of patients [...] Read more.
Background and Objectives: Primary central nervous system (CNS) tumors are often associated with relatively poor outcomes. Data on the epidemiology and outcome of CNS tumors in Jordan are scarce. We aim to report the epidemiology and outcome of primary CNS tumors of patients managed at a comprehensive cancer care center in Jordan. Methods: We performed a retrospective chart review of all Jordanian patients with a primary CNS tumor diagnosis who were managed at the center between July 2003 and June 2019. We included all entities described in the 2021 CNS WHO classification system, in addition to pituitary neuroendocrine tumors (PitNETs). We used the Kaplan–Meier method to estimate the 1-year, 2-year, and 5-year overall survival (OS) rates for each entity. Results and Findings: We included 2094 cases. The numbers of pediatrics and adults were 652 (31.1%) and 1442 (68.9%), respectively. The three most common groups of tumors were “gliomas, glioneuronal tumors, and neuronal tumors” (n = 1200 [57.30%]), followed by meningiomas (n = 261 [12.5%]), embryonal tumors (n = 234 [11.2%]). The three most common tumor families were adult-type diffuse gliomas (n = 709 [33.8%]), medulloblastoma (n = 199 [9.5%]), and circumscribed astrocytic gliomas (n = 183 [8.7%]). The median survival for the entire cohort was 97 months (95CI; 81–112). Survival was significantly worse for males and adults compared to their respective counterparts. Among the most common tumor group, “gliomas, glioneuronal tumors, and neuronal tumors”, OS rates for adult-type diffuse gliomas were significantly lower than all other types. Overall, adult gliomas with IDH-mutations had a survival advantage over wildtype cases (IDH-mutant 1-year OS, 89% [82–97%] vs. IDH-wildtype 1-year OS, 60% [52–70%]; p < 0.001). Conclusions: We present a detailed analysis of the primary CNS tumors diagnosed in the largest cancer center in Jordan between 2003 and 2019. We compared the epidemiology and overall survival of these patients to worldwide estimates and found the epidemiology and outcome of these tumors comparable to worldwide trends. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

65 pages, 16891 KB  
Review
Nanozyme-Based Cancer Nanotheranostics: Emerging Applications and Challenges in Brain Cancer Therapeutics
by Alexandra A. P. Mansur and Herman S. Mansur
J. Nanotheranostics 2025, 6(1), 4; https://doi.org/10.3390/jnt6010004 - 31 Jan 2025
Cited by 5 | Viewed by 5563
Abstract
Regrettably, despite undeniable advances in cancer diagnosis and therapy, primary brain cancer (or brain cancer) remains one of the deadliest forms of malignant tumors, where glioblastoma (GBM) is known as the most malignant diffuse glioma of astrocytic lineage. Fortunately, to improve this scenario, [...] Read more.
Regrettably, despite undeniable advances in cancer diagnosis and therapy, primary brain cancer (or brain cancer) remains one of the deadliest forms of malignant tumors, where glioblastoma (GBM) is known as the most malignant diffuse glioma of astrocytic lineage. Fortunately, to improve this scenario, remarkable progress in nanotechnology has brought new promise and raised expectations in cancer treatment. Nanomedicine, principally an area amalgamating nanotechnology with biology and medicine, has demonstrated a pivotal role, starting with the earliest detection and diagnosis while also offering novel multimodal cancer therapy alternatives. In the vast realm of nanotechnology, nanozymes, a type of nanomaterial with intrinsic enzyme-like activities and characteristics connecting the fields of nanocatalysts, enzymology, and biology, have emerged as powerful nanotools for cancer theranostics. Hence, this fascinating field of research has experienced exponential growth in recent years. As it is virtually impossible to cover all the literature on this broad domain of science in one paper, this review focuses on presenting a multidisciplinary approach, with its content extending from fundamental knowledge of nanozymes and enzyme-mimicking catalysis to the most recent advances in nanozymes for therapy targeting brain cancers. Although we are at the very early stages of research, it can be envisioned that the strategic development of nanozymes in brain cancer theranostics will positively offer disruptive nanoplatforms for future nano-oncology. Full article
Show Figures

Graphical abstract

13 pages, 1928 KB  
Article
Non-Optic Glioma-like Lesions in Adult Neurofibromatosis Type 1 Patients
by Walter Taal, Bart Zick, Bart J. Emmer and Martin J. van den Bent
Diagnostics 2025, 15(1), 67; https://doi.org/10.3390/diagnostics15010067 - 30 Dec 2024
Viewed by 1437
Abstract
Background/Objectives: Physicians face clinical dilemmas in the diagnosis of non-optic intraparenchymal lesions on MRI brain scans of patients with neurofibromatosis type 1. As the incidence and evolution of these lesions into adulthood remain unclear, we conducted a retrospective study on this topic. Methods: [...] Read more.
Background/Objectives: Physicians face clinical dilemmas in the diagnosis of non-optic intraparenchymal lesions on MRI brain scans of patients with neurofibromatosis type 1. As the incidence and evolution of these lesions into adulthood remain unclear, we conducted a retrospective study on this topic. Methods: All adult neurofibromatosis type 1 patients who had at least one MRI brain scan in our center were selected for this study. Brain lesions with contrast enhancement after gadolinium administration and/or mass effect were named “glioma-like lesions”. Results: In our cohort of 396 adult neurofibromatosis type 1 patients, 182 had at least one MRI scan of the brain. A total of 48 glioma-like lesions were found in 38/182 patients. The majority of glioma-like lesions remained stable, decreased in size or even disappeared during a median follow-up time of 8.5 years. Twelve glioma-like lesions in 11/182 patients were resected or biopsied, and histology showed gliomas of astrocytic origin (WHO grade 1–4). Conclusions: It was concluded from these data that asymptomatic glioma-like lesions on MRI brain scans in neurofibromatosis type 1 patients, either with contrast enhancement and/or mass effect, had an indolent nature. Mildly symptomatic or asymptomatic patients can therefore be followed without invasive diagnostic and therapeutic procedures. Full article
(This article belongs to the Special Issue Pathology and Diagnosis of Neurological Disorders)
Show Figures

Figure 1

31 pages, 2407 KB  
Review
Role of Podoplanin (PDPN) in Advancing the Progression and Metastasis of Glioblastoma Multiforme (GBM)
by Bharti Sharma, George Agriantonis, Zahra Shafaee, Kate Twelker, Navin D. Bhatia, Zachary Kuschner, Monique Arnold, Aubrey Agcon, Jasmine Dave, Juan Mestre, Shalini Arora, Hima Ghanta and Jennifer Whittington
Cancers 2024, 16(23), 4051; https://doi.org/10.3390/cancers16234051 - 3 Dec 2024
Cited by 3 | Viewed by 3239
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor categorized as a Grade 4 astrocytic glioma by the World Health Organization (WHO). Some of the established risk factors of GBM include inherited genetic syndromes, body mass index, alcohol consumption, use of non-steroidal anti-inflammatory [...] Read more.
Glioblastoma multiforme (GBM) is a malignant primary brain tumor categorized as a Grade 4 astrocytic glioma by the World Health Organization (WHO). Some of the established risk factors of GBM include inherited genetic syndromes, body mass index, alcohol consumption, use of non-steroidal anti-inflammatory drugs (NSAIDs), and therapeutic ionizing radiation. Vascular anomalies, including local and peripheral thrombosis, are common features of GBM. Podoplanin (PDPN), a ligand of the C-type lectin receptor (CLEC-2), promotes platelet activation, aggregation, venous thromboembolism (VTE), lymphatic vessel formation, and tumor metastasis in GBM patients. It is regulated by Prox1 and is expressed in developing and adult mammalian brains. It was initially identified on lymphatic endothelial cells (LECs) as the E11 antigen and on fibroblastic reticular cells (FRCs) of lymphoid organs and thymic epithelial cells as gp38. In recent research studies, its expression has been linked with prognosis in GBM. PDPN-expressing cancer cells are highly pernicious, with a mutant aptitude to form stem cells. Such cells, on colocalization to the surrounding tissues, transition from epithelial to mesenchymal cells, contributing to the malignant carcinogenesis of GBM. PDPN can be used as an independent prognostic factor in GBM, and this review provides strong preclinical and clinical evidence supporting these claims. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

15 pages, 4030 KB  
Article
Epichaperome Inhibition by PU-H71-Mediated Targeting of HSP90 Sensitizes Glioblastoma Cells to Alkylator-Induced DNA Damage
by Pratibha Sharma, Jihong Xu and Vinay K. Puduvalli
Cancers 2024, 16(23), 3934; https://doi.org/10.3390/cancers16233934 - 24 Nov 2024
Viewed by 2407
Abstract
Background: Targeted therapies have been largely ineffective against glioblastoma (GBM) owing to the tumor’s heterogeneity and intrinsic and adaptive treatment resistance. Targeting multiple pro-survival pathways simultaneously may overcome these limitations and yield effective treatments. Heat shock protein 90 (HSP90), an essential component of [...] Read more.
Background: Targeted therapies have been largely ineffective against glioblastoma (GBM) owing to the tumor’s heterogeneity and intrinsic and adaptive treatment resistance. Targeting multiple pro-survival pathways simultaneously may overcome these limitations and yield effective treatments. Heat shock protein 90 (HSP90), an essential component of the epichaperome complex, is critical for the proper folding and activation of several pro-survival oncogenic proteins that drive GBM biology. Methods: Using a panel of biochemical and biological assays, we assessed the expression of HSP90 and its downstream targets and the effects of PU-H71, a highly specific and potent HSP90 inhibitor, on target modulation, downstream biochemical alterations, cell cycle progression, proliferation, migration, and apoptosis in patient-derived glioma stem-like cells (GSCs) with molecular profiles characteristic of GBM, as well as commercial glioma cell lines and normal human astrocytes (NHAs). Results: HSP90 inhibition by PU-H71 in GSCs significantly reduced cell proliferation, colony formation, wound healing, migration, and angiogenesis. In glioma cells, but not NHAs, potent PU-H71-mediated HSP90 inhibition resulted in the downregulation of pro-survival client proteins such as EGFR, MAPK, AKT, and S6. This reduction in pro-survival signals increased glioma cells’ sensitivity to temozolomide, a monofunctional alkylator, and the combination of PU-H71 and temozolomide had greater anticancer efficacy than either agent alone. Conclusions: These results confirm that HSP90 is a strong pro-survival factor in molecularly heterogeneous gliomas and suggest that epichaperome inhibition with HSP90 inhibitors warrants further investigation for the treatment of gliomas. Full article
(This article belongs to the Collection Treatment of Glioma)
Show Figures

Graphical abstract

Back to TopTop