Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = atmospheric radon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5427 KB  
Article
Long-Term Monitoring and Statistical Analysis of Indoor Radon Concentration near the Almaty Tectonic Fault
by Yuliya Zaripova, Vyacheslav Dyachkov, Zarema Biyasheva, Kuralay Dyussebayeva and Alexandr Yushkov
Atmosphere 2025, 16(9), 1027; https://doi.org/10.3390/atmos16091027 - 30 Aug 2025
Viewed by 72
Abstract
This study presents the results of a spatiotemporal analysis of indoor radon concentration dynamics at the Al-Farabi Kazakh National University (Almaty, Republic of Kazakhstan), located near the Almaty tectonic fault. The research is based on a 2.5-year monitoring campaign of radon levels using [...] Read more.
This study presents the results of a spatiotemporal analysis of indoor radon concentration dynamics at the Al-Farabi Kazakh National University (Almaty, Republic of Kazakhstan), located near the Almaty tectonic fault. The research is based on a 2.5-year monitoring campaign of radon levels using the RAMON-02A radiometer. The radon activity concentration ranged from 1.29 ± 0.19 to 149 ± 22 Bq/m3. The distribution of radon concentrations was found to follow a lognormal law, with a skewness coefficient of 1.55 and kurtosis of 4.7. The mean values were 28.7 ± 4.2 Bq/m3 (arithmetic mean) and 24.5 ± 3.6 Bq/m3 (geometric mean). Distinct seasonal and monthly variations were observed: the lowest concentrations were recorded during the summer months (August—20.8 ± 3.1 Bq/m3), while the highest were observed in spring and winter (May—34.0 ± 4.9 Bq/m3, December—34.2 ± 4.9 Bq/m3). The springtime increase in radon levels is attributed to thermobaric effects, limited ventilation, and precipitation, which contributes to soil sealing. Autocorrelation analysis revealed diurnal, seasonal, and annual fluctuations, as well as quasi-periodic variations of approximately 150 days, presumably linked to geophysical processes. Correlation analysis indicated a weak positive relationship between radon concentration and air temperature during winter and spring (≈0.2), and a pronounced negative correlation with atmospheric pressure in winter (−0.57). The influence of humidity was found to be minor and seasonally variable. Full article
(This article belongs to the Special Issue Atmospheric Radon and Radioecology)
Show Figures

Figure 1

15 pages, 3985 KB  
Article
Interaction Between Radon, Air Ions, and Ultrafine Particles Under Contrasting Atmospheric Conditions in Belgrade, Serbia
by Fathya Shabek, Predrag Kolarž, Igor Čeliković, Milica Ćurčić and Aco Janičijević
Atmosphere 2025, 16(7), 808; https://doi.org/10.3390/atmos16070808 - 1 Jul 2025
Viewed by 492
Abstract
Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, [...] Read more.
Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, and air pollution under varying conditions and to assess potential health impacts. Measurements were taken at two sites: in early autumn at a suburban part of Belgrade with relatively clean air, and in late autumn in central Belgrade under polluted conditions, with low temperatures and high humidity. Parameters measured included radon, small air ions, particle size distribution, PM mass concentration, temperature, humidity, and pressure. Results showed lower radon concentrations in late autumn due to high soil moisture and absence of nocturnal inversions. Radon and air ion concentrations exhibited a strong positive correlation for both polarities under suburban conditions, whereas measurements in the urban setting revealed a weak negative correlation, despite radon concentrations in soil gas being approximately equal at both sites. Small ion levels were also reduced, mainly due to suppressed radon exhalation and increased aerosol concentrations, especially ultrafine particles. A strong negative correlation (r < −0.5) was found between small air ion concentrations and particle number concentrations in the 20–300 nm range, while larger particles (300–1000 nm and >1 µm) showed weak or no correlation due to their lower and more stable concentrations. In contrast, early autumn measurements showed a diurnal cycle of radon, characterized by nighttime maxima and daytime minima, unlike the consistently low values observed in late autumn. Full article
(This article belongs to the Special Issue Outdoor and Indoor Air Ions, Radon, and Ozone)
Show Figures

Figure 1

14 pages, 1884 KB  
Article
Study of Radon Radiation in the Area of the Akchatau Polymetallic Mine, Republic of Kazakhstan
by Yuriy Pak, Dmitriy Pak, Vladimir Matonin, Diana Ibragimova, Pavel Timoshenko, Yuriy Barkov, Anar Tebayeva and Pavel Medvedev
Atmosphere 2025, 16(7), 769; https://doi.org/10.3390/atmos16070769 - 23 Jun 2025
Viewed by 398
Abstract
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential [...] Read more.
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential and industrial premises. Increased radon concentration in a number of areas is associated with the Akchatau tungsten–molybdenum mine. The source of radon in geological terms is acid leucocratic granites in the northwestern and southeastern parts of the studied territory. Seasonal assessment of radon radiation was carried out using modern devices “Alfarad Plus” and “Ramon-Radon”. Frequency analysis of the average annual equivalent equilibrium concentration (EEC) in 181 premises showed that only in 47.5% of the premises does the volumetric radon activity not exceed the current standards (200 Bq/m3). Differentiated values of radon concentration were obtained in cases where daily and seasonal observations were carried out. In 43.1% of premises, the effective dose varies from 6.6 mSv/year to 33 mSv/year, and for 9.4% of premises, from 33 mSv/year to 680 mSv/year. The increased radon concentration is caused by high exhalation from the soil surface, the radioactivity of building materials, and low air exchange in the surveyed premises. In the northwestern part of Akchatau, anomalous zones were found where the exposure dose rate of gamma radiation exceeds 0.6 mkSv/hour. An objective assessment of radon largely depends on a number of factors that take into account the geological, technical, atmospheric, and climatic conditions of the region. Therefore, when planning an optimal radon rehabilitation strategy, it is necessary to take the following factors into account: the design features of residential premises and socio-economic conditions. Practical recommendations are given for radiation-ecological and hygienic monitoring of radon safety levels in the environment to reduce effective doses on the population. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

21 pages, 10366 KB  
Article
An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment
by Alexander I. Malov, Vitaliy A. Nakhod, Sergey V. Druzhinin and Elena N. Zykova
Appl. Sci. 2025, 15(12), 6639; https://doi.org/10.3390/app15126639 - 12 Jun 2025
Viewed by 557
Abstract
The aim of the conducted research was to assess the impact of gypsum deposit development on changes in the radiation levels of the abiotic components of the environment. For this purpose, a study of the radioactivity of water, bottom sediment, soil, gypsum and [...] Read more.
The aim of the conducted research was to assess the impact of gypsum deposit development on changes in the radiation levels of the abiotic components of the environment. For this purpose, a study of the radioactivity of water, bottom sediment, soil, gypsum and loam samples was performed. Ground-based studies of the distribution of the values of the ambient dose equivalent rate of gamma radiation and radon flux density were also carried out. It was shown that due to the high solubility of gypsum, the degree of karstification of the territory increases under the influence of meteoric waters, and as a result of the intensification of anthropogenic impact, the degree of chemical weathering of rocks increases. This leads to a coordinated change in not only the chemical but also the radiation conditions. In particular, radioactive contamination of quarry waters and areas of increased radon flux density in soil air were established. In bottom sediments, the significant correlations of 137Cs, 238U and 234U activity concentrations with carbonates, organic matter and soluble salts contents, as well as Fe, Zn, Cu, Cr, Pb, Ni, Mo, Cd, Co, Ti and V, indicate a significant role of the anthropogenic factor in the accumulation in bottom sediments. This factor is associated with both regional atmospheric transport (137Cs) and the activity of the mining enterprise in the study area (238U and 234U). Full article
(This article belongs to the Special Issue Advances in Environmental Radioactivity Monitoring and Measurement)
Show Figures

Figure 1

19 pages, 6430 KB  
Article
Groundwater–River Water Interaction in an Urban Setting (Rome, Italy) Using a Multi-Method Approach (Hydrogeological and Radon Analyses)
by Martina Mattia, Gianmarco Mondati, Roberto Mazza, Carlo Rosa, Cristina Di Salvo and Paola Tuccimei
Water 2025, 17(10), 1555; https://doi.org/10.3390/w17101555 - 21 May 2025
Viewed by 639
Abstract
The interaction of the Almone River with groundwater in the Caffarella area (Rome, Italy) was investigated using a multi-method approach based on hydrogeological and radon analyses. Eleven measurement stations were established along the river at distances of approximately 270 m from one another. [...] Read more.
The interaction of the Almone River with groundwater in the Caffarella area (Rome, Italy) was investigated using a multi-method approach based on hydrogeological and radon analyses. Eleven measurement stations were established along the river at distances of approximately 270 m from one another. Stream discharge, water physicochemical properties, and radon levels were measured from June 2024 to March 2025. The contribution of two tributaries of the Almone was evaluated, but it was found to be negligible in terms of radon contribution. Except for an average increase of 40 L/s between stations 1A and 2A, the Almone’s discharge (corrected for the streams input) was constant (around 150 L/s) in June and slightly increasing from 6A to 11A in March due to heavier rainfalls. The increased discharge between stations 1A and 2A was interpreted as groundwater overflow from the volcanic aquifer into the alluvial body and in turn into the river due to a change in geometry and volume of the volcanic aquifer. In that part of the river, radon concentration increased only in March, due to the fast transition of the groundwater from a high to a lower radon emanation unit. Radon decreased along the valley due to atmospheric evasion, as confirmed by pH growth due to CO2 degassing. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

19 pages, 1743 KB  
Review
Some Recent Key Aspects of the DC Global Electric Circuit
by Michael J. Rycroft
Atmosphere 2025, 16(3), 348; https://doi.org/10.3390/atmos16030348 - 20 Mar 2025
Viewed by 1611
Abstract
The DC global electric circuit, GEC, was conceived by C.T.R. Wilson more than a century ago. Powered by thunderstorms and electrified shower clouds, an electric current I ~1 kA flows up into the ionosphere, maintaining the ionospheric potential V ~250 kV with respect [...] Read more.
The DC global electric circuit, GEC, was conceived by C.T.R. Wilson more than a century ago. Powered by thunderstorms and electrified shower clouds, an electric current I ~1 kA flows up into the ionosphere, maintaining the ionospheric potential V ~250 kV with respect to the Earth’s surface. The circuit is formed by the current I, flowing through the ionosphere all around the world, down through the atmosphere remote from the current sources (J ~2 pA/m2 through a resistance R ~250 Ω), through the land and sea surface, and up to the thunderstorms as point discharge currents. This maintains a downward electric field E of magnitude ~130 V/m at the Earth’s surface away from thunderstorms and a charge Q ~−6.105 C on the Earth’s surface. The theoretical modelling of ionospheric currents and the miniscule geomagnetic field perturbations (ΔB ~0.1 nT) which they cause, as derived by Denisenko and colleagues in recent years, are reviewed. The time constant of the GEC, τ = RC, where C is the capacitance of the global circuit capacitor, is estimated via three different methods to be ~7 to 12 min. The influence of stratus clouds in determining the value of τ is shown to be significant. Sudden excitations of the GEC by volcanic lightning in Iceland in 2011 and near the Tonga eruption in 2022 enable τ to be determined, from experimental observations, as ~10 min and 8 min, respectively. It has been suggested that seismic activity, or earthquake precursors, could produce large enough electric fields in the ionosphere to cause detectable effects, either by enhanced radon emission or by enhanced thermal emission from the earthquake region; a review of the quantitative estimates of these mechanisms shows that they are unlikely to produce sufficiently large effects to be detectable. Finally, some possible links between the topics discussed and human health are considered briefly. Full article
(This article belongs to the Special Issue Atmospheric Electricity (2nd Edition))
Show Figures

Figure 1

19 pages, 7288 KB  
Article
Atmospheric Radon in the Central Mediterranean: Seasonal and Diurnal Variations Measured in Gozo, Malta
by Beatriz Defez, Raymond Ellul, Martin Saliba, Rebecca Muscat, Marvic Grima, Alfred Micallef, Charles Galdies, María Moncho-Santonja, Silvia Aparisi-Navarro and Guillermo Peris-Fajarnés
Environments 2025, 12(2), 44; https://doi.org/10.3390/environments12020044 - 2 Feb 2025
Cited by 1 | Viewed by 1070
Abstract
This paper presents the findings of a 12-year study on radon conducted from January 2011 to December 2022 at the Giordan Lighthouse station on the island of Gozo, Malta. Located in the Central Mediterranean, Gozo’s strategic position enables effective monitoring of air mass [...] Read more.
This paper presents the findings of a 12-year study on radon conducted from January 2011 to December 2022 at the Giordan Lighthouse station on the island of Gozo, Malta. Located in the Central Mediterranean, Gozo’s strategic position enables effective monitoring of air mass movements between Africa and Europe (from south to north) and between Europe and Central Asia (from west to east). Our research involves an analysis of seasonal and diurnal variations in radon levels, alongside analysis of relevant meteorological variables, clustering of air mass back trajectories, and assessment of local and remote radon production. The findings provide critical insights into the dynamics of atmospheric radon, which are significant not only for the Maltese islands, but also for enhancing our understanding of transcontinental radon transport in the Central Mediterranean, a region that has remained largely unexplored. Full article
Show Figures

Graphical abstract

9 pages, 15387 KB  
Article
The Transmission Muography Technique for Locating Potential Radon Gas Conduits at the Temperino Mine (Tuscany, Italy)
by Diletta Borselli, Tommaso Beni, Lorenzo Bonechi, Debora Brocchini, Nicola Casagli, Roberto Ciaranfi, Vitaliano Ciulli, Raffaello D’Alessandro, Andrea Dini, Catalin Frosin, Giovanni Gigli, Sandro Gonzi, Silvia Guideri, Luca Lombardi, Massimiliano Nocentini, Andrea Paccagnella and Simone Vezzoni
Particles 2025, 8(1), 3; https://doi.org/10.3390/particles8010003 - 11 Jan 2025
Viewed by 893
Abstract
Transmission muography is an imaging technique that allows us to obtain two-dimensional and three-dimensional average-target density images by measuring the transmission of atmospheric muons. Through this technique, it is possible to observe density anomalies inside a target volume and locate them three-dimensionally. In [...] Read more.
Transmission muography is an imaging technique that allows us to obtain two-dimensional and three-dimensional average-target density images by measuring the transmission of atmospheric muons. Through this technique, it is possible to observe density anomalies inside a target volume and locate them three-dimensionally. In this work, the potential of the technique will be illustrated through the description of the results of two measurements carried out in the tourist path of the Temperino mine (Livorno, Italy) in an area where a higher concentration of Radon gas is measured. This section of the gallery, located at a depth of about 50 m and dating back to the Etruscan period, might contain ancient cavities not yet discovered that could represent preferential conduits into which Radon gas is released into the tourist route. The muographic results are illustrated, focusing on the search for low-density anomalies attributable to cavities. The measurements are part of the MIMA-SITES project aimed at ensuring the safety of specific zones within the Temperino mine. Full article
Show Figures

Figure 1

18 pages, 4615 KB  
Article
Depth Gradient and Radon Activity Concentration in Soil Gas in the Zone of a Potentially Active Fault
by Timofey Leshukov, Konstantin Legoshchin, Kirill Avdeev, Elizaveta Baranova and Aleksey Larionov
Earth 2024, 5(4), 1005-1022; https://doi.org/10.3390/earth5040052 - 11 Dec 2024
Cited by 1 | Viewed by 1508
Abstract
The study specifies the changes in radon activity concentration (RAC) in soil gas with depth and emphasizes the significance of the meteorological factor for deeper boreholes. Radon activity concentration was measured in 0.6 m, 1 m and 1.5 m boreholes, and the depth [...] Read more.
The study specifies the changes in radon activity concentration (RAC) in soil gas with depth and emphasizes the significance of the meteorological factor for deeper boreholes. Radon activity concentration was measured in 0.6 m, 1 m and 1.5 m boreholes, and the depth gradient was also calculated. Spatial patterns were estimated using an autocorrelation index. RAC ranged from 9454 ± 439 Bq/m3 for 0.6 m, 16,031 ± 602 Bq/m3 for 1 m and 22,049 ± 937 Bq/m3 for 1.5 m. RAC increased with depth at most of the study sites and behaved quite uniformly in spatial terms. At the same time, no significant differences in the activity of uranium (238U) series isotopes at different soil depths were detected. Significant spatial variability in radioactivity and the physical properties of soils is noted. The highest gradient was between 0.6 and 1 m. It was found that with increasing depth the connection between the RAC and the meteorological conditions (temperature and humidity) of the surface layer of the atmosphere is lost. It follows that for shallow boreholes it is necessary to consider the influence of meteorological conditions. RAC in 1 m boreholes correlates with 1.5 m and 0.6 m boreholes, but no correlation was found for the 1.5 m and 0.6 m boreholes themselves. Thus, 1 m boreholes are optimal for radon monitoring. A high level of RAC indicates a high potential for indoor radon exposure in this territory, with corresponding epidemiological consequences in the long term. Full article
Show Figures

Figure 1

28 pages, 5569 KB  
Article
Analysis of Outdoor and Indoor Radon Concentration Time Series Recorded with RadonEye Monitors
by Peter Bossew, Eleonora Benà, Scott Chambers and Miroslaw Janik
Atmosphere 2024, 15(12), 1468; https://doi.org/10.3390/atmos15121468 - 9 Dec 2024
Cited by 2 | Viewed by 4888
Abstract
Consumer-grade economical radon monitors are becoming increasingly popular in private and institutional use, in the contexts of both Citizen Science and traditional research. Although originally designed for screening indoor radon levels in view of radon regulation and decisions about mitigation or remediation—motivated by [...] Read more.
Consumer-grade economical radon monitors are becoming increasingly popular in private and institutional use, in the contexts of both Citizen Science and traditional research. Although originally designed for screening indoor radon levels in view of radon regulation and decisions about mitigation or remediation—motivated by the health hazard posed by high radon concentrations—researchers are increasingly exploring their potential in some environmental studies. For long time, radon has been used as a tracer for investigating atmospheric transport processes. This paper focuses on RadonEye, currently the most sensitive among low-cost monitors available on the market, and specifically, its potential use for monitoring very low radon concentrations. It has two objectives: firstly, discussing issues of statistics of low count rates, and secondly, analyzing radon concentration time series acquired with RadonEyes outdoors and in low-radon indoor spaces. Regarding the first objective, among other things, the inference radon concentration reported to expected true is discussed. The second objective includes the application of autoregressive methods and fractal statistics to time series analysis. The overall result is that radon dynamics can be well captured using this “low-tech” approach. Statistical results are plausible; however, few results are available in the literature for comparison, particularly concerning fractal methods. The paper may therefore be seen as an incentive for further research in this direction. Full article
Show Figures

Figure 1

11 pages, 3736 KB  
Article
Determination of the Radon Progeny Activity Size Distribution in Laboratory Conditions
by Eliska Fialova and Petr P. S. Otahal
Atmosphere 2024, 15(11), 1262; https://doi.org/10.3390/atmos15111262 - 22 Oct 2024
Cited by 2 | Viewed by 1258
Abstract
Knowledge of the active size distribution of radon daughters is one of the main parameters for determining the effective dose from inhalation of short-term radon decay products. However, this parameter is crucial for accurately determining an effective dose; there are currently very limited [...] Read more.
Knowledge of the active size distribution of radon daughters is one of the main parameters for determining the effective dose from inhalation of short-term radon decay products. However, this parameter is crucial for accurately determining an effective dose; there are currently very limited possibilities for determining it. This paper describes the laboratory validation of a method for determining the activity size distribution of radon decay products using the Dekati ELPI+ cascade impactor and the Graded Screen Array Diffusion Battery (GSA DB). Using nuclear track detectors placed on individual impaction plates of the cascade impactor, the equivalent equilibrium activity concentration of individual size classes can be determined in the range from 17 nm to 10 μm. A diffusion battery was used to detect smaller particles in the unattached fraction area. The presented method can further refine the knowledge of the activity size distribution of radon decay products in different types of workplace atmospheres. Workplaces with higher radon concentrations differ significantly in the size distribution of aerosol particles, radon activity concentration, and equilibrium equivalent activity concentration. Full article
(This article belongs to the Special Issue Environmental Radon Measurement and Radiation Exposure Assessment)
Show Figures

Figure 1

35 pages, 2405 KB  
Article
Measurement Performance of Electronic Radon Monitors
by Thomas R. Beck, Elisabeth Foerster, Martin Biel and Sebastian Feige
Atmosphere 2024, 15(10), 1180; https://doi.org/10.3390/atmos15101180 - 30 Sep 2024
Cited by 4 | Viewed by 1759
Abstract
The measurement performance and characteristics of electronic radon monitors with respect to radiological and environmental parameters are investigated. The study includes a sample of 14 different types of devices from nine manufacturers. The devices are currently available on the market with acquisition costs [...] Read more.
The measurement performance and characteristics of electronic radon monitors with respect to radiological and environmental parameters are investigated. The study includes a sample of 14 different types of devices from nine manufacturers. The devices are currently available on the market with acquisition costs in the low or medium range. For comparison purposes, a high-end AlphaGUARD device is included in the study as a benchmark for measurement performance of radon monitors. Significant differences in the measurement performance are found between the tested instrument types. Overall, however, it can be concluded that most radon monitors perform acceptably and provide reliable information on radon activity concentrations in homes or workplaces, allowing residents and employers to make decisions about the need for radon protection measures. But it turns out that many radon monitors are supplied by the manufacturer with inadequate calibration, so that the instruments must be additionally calibrated in a reference atmosphere before they can be used. Among the tested radon monitors, there are also types with sufficiently good measuring performance, which represent an inexpensive alternative to high-end devices for radon professionals. Full article
Show Figures

Figure 1

18 pages, 1578 KB  
Review
The Generation of Seismogenic Anomalous Electric Fields in the Lower Atmosphere, and Its Application to Very-High-Frequency and Very-Low-Frequency/Low-Frequency Emissions: A Review
by Masashi Hayakawa, Yasuhide Hobara, Koichiro Michimoto and Alexander P. Nickolaenko
Atmosphere 2024, 15(10), 1173; https://doi.org/10.3390/atmos15101173 - 30 Sep 2024
Cited by 2 | Viewed by 1295
Abstract
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in [...] Read more.
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in the closed atmosphere–ionosphere electric circuit during the preparation phase of an EQ. The current source is electromotive force (EMF) caused by upward convective transport and the gravitational sedimentation of radon and charged aerosols injected into the atmosphere by soil gasses during the course of the intensification of seismic processes. The theoretical calculations predict that pre-EQ DC electric field enhancement in the atmosphere can reach the breakdown value at the altitudes 2–6 km, suggesting the generation of a peculiar seismic-related thundercloud. Then, we propose to apply this theoretical inference to the observational results of seismogenic VHF (very high frequency) and VLF/LF (very low frequency/low frequency) natural radio emissions. The formation of such a peculiar layer initiates numerous chaotic electrical discharges within this region, leading to the generation of VHF electromagnetic radiation. Earlier works on VHF seismogenic radiation performed in Greece have been compared with the theoretical estimates, and showed a good agreement in the frequency range and intensity. The same idea can also be applied, for the first time, to seismogenic VLF/LF lightning discharges, which is completely the same mechanism with conventional cloud-to-ground lightning discharges. In fact, such seismogenic VLF/LF lightning discharges have been observed to appear before an EQ. So, we conclude in this review that both seismogenic VHF radiation and VLF/LF lightning discharges are regarded as indirect evidence of the generation of anomalous electric fields in the lowest atmosphere due to the emanation of radioactive radon and charged aerosols during the preparation phase of EQs. Finally, we have addressed the most fundamental issue of whether VHF and VLF/LF radiation reported in earlier works is either of atmospheric origin (as proposed in this paper) or of lithospheric origin as the result of microfracturing in the EQ fault region, which has long been hypothesized. This paper will raise a question regarding this hypothesis of lithospheric origin by proposing an alternative atmospheric origin outlined in this review. Also, the data on seismogenic electromagnetic radiation and its inference on perturbations in the lower atmosphere will be suggested to be extensively integrated in future lithosphere–atmosphere–ionosphere coupling (LAIC) studies. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

12 pages, 3994 KB  
Article
Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station
by Ioannis Contopoulos, Janusz Mlynarczyk, Jerzy Kubisz and Vasilis Tritakis
Atmosphere 2024, 15(9), 1134; https://doi.org/10.3390/atmos15091134 - 19 Sep 2024
Cited by 3 | Viewed by 1897
Abstract
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such [...] Read more.
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such as radon, through subterranean fissures that develop in the lead-up to the quake. This discharge augments the ionization at the lower atmospheric layers, instigating disturbances that extend from the Earth’s surface to the lower ionosphere. A critical component of the LAIC sequence involves the distinctive perturbations of Extremely Low Electromagnetic Frequencies (ELF) within the Schumann Resonances (SR) spectrum of 2 to 50 Hz, detectable days ahead of the seismic event. Our study examines 10 earthquakes that transpired over a span of 3.5 months—averaging nearly three quakes monthly—which concurrently generated 45 discernible potential precursor seismic signals. Notably, each earthquake originated in Southern Greece, within a radius of 30 to 250 km from the observatory on Mount Parnon. Our research seeks to resolve two important issues. The first concerns the association between specific ELF signals and individual earthquakes—a question of significant importance in seismogenic regions like Greece, where earthquakes occur frequently. The second inquiry concerns the parameters that determine the detectability of an earthquake by a given station, including the requisite proximity and magnitude. Initial findings suggest that SR signals can be reliably linked to a particular earthquake if the observatory is situated within the earthquake’s preparatory zone. Conversely, outside this zone, the correlation becomes indeterminate. Additionally, we observe a differentiation in SR signals based on whether the earthquake took place over land or offshore. The latter category exhibits unique signal behaviors, potentially attributable to the water layers above the epicenter acting as a barrier to the ascending gases, thereby affecting the atmospheric–ionospheric ionization process. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

17 pages, 3329 KB  
Article
Influence of Meteorological Parameters on Indoor Radon Concentration Levels in the Aksu School
by Yerlan Kashkinbayev, Meirat Bakhtin, Polat Kazymbet, Anel Lesbek, Baglan Kazhiyakhmetova, Masaharu Hoshi, Nursulu Altaeva, Yasutaka Omori, Shinji Tokonami, Hitoshi Sato and Danara Ibrayeva
Atmosphere 2024, 15(9), 1067; https://doi.org/10.3390/atmos15091067 - 3 Sep 2024
Cited by 4 | Viewed by 2076
Abstract
The radon concentration activity in buildings is influenced by various factors, including meteorological elements like temperature, pressure, and precipitation, which are recognized as significant influencers. The fluctuations of indoor radon in premises are related to seasonal change. This study aimed to understand better [...] Read more.
The radon concentration activity in buildings is influenced by various factors, including meteorological elements like temperature, pressure, and precipitation, which are recognized as significant influencers. The fluctuations of indoor radon in premises are related to seasonal change. This study aimed to understand better the effects of environmental parameters on indoor radon concentration levels in the Aksu school. Indoor and outdoor temperature differentials heavily influence diurnal indoor radon patterns. The analysis indicates that the correlation between indoor radon and outdoor temperature, dew point, and air humidity is weak and negligible for atmospheric pressure, wind speed, and precipitation, as determined by the obtained values of R2 and the Chaddock scale. The multiple regression model is characterized by the correlation coefficient rxy = 0.605, which corresponds to a close relationship on the Chaddock scale. Full article
Show Figures

Figure 1

Back to TopTop