Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = autolysins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 2550 KiB  
Review
Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the “Suicidal Tendencies” of Streptococcus pneumoniae—A Review
by Ernesto García
Microorganisms 2025, 13(4), 827; https://doi.org/10.3390/microorganisms13040827 - 5 Apr 2025
Viewed by 405
Abstract
Streptococcus pneumoniae (pneumococcus) is a significant human pathogen responsible for a range of diseases from mild infections to invasive pneumococcal diseases, particularly affecting children, the elderly, and immunocompromised individuals. Despite pneumococcal conjugate vaccines having reduced disease incidence, challenges persist due to serotype diversity, [...] Read more.
Streptococcus pneumoniae (pneumococcus) is a significant human pathogen responsible for a range of diseases from mild infections to invasive pneumococcal diseases, particularly affecting children, the elderly, and immunocompromised individuals. Despite pneumococcal conjugate vaccines having reduced disease incidence, challenges persist due to serotype diversity, vaccine coverage gaps, and antibiotic resistance. This review highlights the role of LytA, a key autolysin (N-acetylmuramoyl-l-alanine amidase), in pneumococcal biology. LytA regulates autolysis, contributes to inflammation, and biofilm formation, and impairs bacterial clearance. It also modulates complement activation, aiding immune evasion. LytA expression is influenced by environmental signals and genetic regulation and is tied to competence for genetic transformation, which is an important virulence trait, particularly in meningitis. With the increase in antibiotic resistance, LytA has emerged as a potential therapeutic target. Current research explores its use in bacteriolytic therapies, vaccine development, and synergistic antibiotic strategies. Various compounds, including synthetic peptides, plant extracts, and small molecules, have been investigated for their ability to trigger LytA-mediated bacterial lysis. Future directions include the development of novel anti-pneumococcal interventions leveraging LytA’s properties while overcoming vaccine efficacy and resistance-related challenges. Human challenge models and animal studies continue to deepen our understanding of pneumococcal pathogenesis and potential treatment strategies. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

16 pages, 2191 KiB  
Article
Staphylococcus aureus Stress Response to Bicarbonate Depletion
by Elisa Liberini, Sook-Ha Fan, Arnold S. Bayer, Christian Beck, Jacob Biboy, Patrice François, Joe Gray, Katharina Hipp, Iris Koch, Andreas Peschel, Brigitte Sailer, Daniela Vollmer, Waldemar Vollmer and Friedrich Götz
Int. J. Mol. Sci. 2024, 25(17), 9251; https://doi.org/10.3390/ijms25179251 - 26 Aug 2024
Cited by 1 | Viewed by 1370
Abstract
Bicarbonate and CO2 are essential substrates for carboxylation reactions in bacterial central metabolism. In Staphylococcus aureus, the bicarbonate transporter, MpsABC (membrane potential-generating system) is the only carbon concentrating system. An mpsABC deletion mutant can hardly grow in ambient air. In this [...] Read more.
Bicarbonate and CO2 are essential substrates for carboxylation reactions in bacterial central metabolism. In Staphylococcus aureus, the bicarbonate transporter, MpsABC (membrane potential-generating system) is the only carbon concentrating system. An mpsABC deletion mutant can hardly grow in ambient air. In this study, we investigated the changes that occur in S. aureus when it suffers from CO2/bicarbonate deficiency. Electron microscopy revealed that ΔmpsABC has a twofold thicker cell wall thickness compared to the parent strain. The mutant was also substantially inert to cell lysis induced by lysostaphin and the non-ionic surfactant Triton X-100. Mass spectrometry analysis of muropeptides revealed the incorporation of alanine into the pentaglycine interpeptide bridge, which explains the mutant’s lysostaphin resistance. Flow cytometry analysis of wall teichoic acid (WTA) glycosylation patterns revealed a significantly lower α-glycosylated and higher ß-glycosylated WTA, explaining the mutant’s increased resistance towards Triton X-100. Comparative transcriptome analysis showed altered gene expression profiles. Autolysin-encoding genes such as sceD, a lytic transglycosylase encoding gene, were upregulated, like in vancomycin-intermediate S. aureus mutants (VISA). Genes related to cell wall-anchored proteins, secreted proteins, transporters, and toxins were downregulated. Overall, we demonstrate that bicarbonate deficiency is a stress response that causes changes in cell wall composition and global gene expression resulting in increased resilience to cell wall lytic enzymes and detergents. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

12 pages, 1929 KiB  
Article
Targeting N-Acetylglucosaminidase in Staphylococcus aureus with Iminosugar Inhibitors
by Janja Sluga, Tihomir Tomašič, Marko Anderluh, Martina Hrast Rambaher, Gregor Bajc, Alen Sevšek, Nathaniel I. Martin, Roland J. Pieters, Marjana Novič and Katja Venko
Antibiotics 2024, 13(8), 751; https://doi.org/10.3390/antibiotics13080751 - 10 Aug 2024
Viewed by 1647
Abstract
Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new [...] Read more.
Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance. The bacteriolytic enzyme autolysin E (AtlE) is a promising new drug target as it plays a key role in the degradation of peptidoglycan in the bacterial cell wall. Consequently, disruption of function can have an immense impact on bacterial growth and survival. An in silico and in vitro evaluation of iminosugar derivatives as potent inhibitors of S. aureus (AtlE) was performed. Three promising hit compounds (1, 3 and 8) were identified as AtlE binders in the micromolar range as measured by surface plasmon resonance. The most potent compound among the SPR response curve hits was 1, with a KD of 19 μM. The KD value for compound 8 was 88 μM, while compound 3 had a KD value of 410 μM. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Drug Discovery, 2nd Edition)
Show Figures

Figure 1

14 pages, 2327 KiB  
Article
The Pneumococcal Protein SufC Binds to Host Plasminogen and Promotes Its Conversion into Plasmin
by Yoshihito Yasui, Satoru Hirayama, Takumi Hiyoshi, Toshihito Isono, Hisanori Domon, Tomoki Maekawa, Koichi Tabeta and Yutaka Terao
Microorganisms 2023, 11(12), 2969; https://doi.org/10.3390/microorganisms11122969 - 12 Dec 2023
Viewed by 1709
Abstract
Streptococcus pneumoniae causes otitis media, sinusitis, and serious diseases such as pneumonia and bacteremia. However, the in vivo dynamics of S. pneumoniae infections and disease severity are not fully understood. In this study, we investigated pneumococcal proteins detected in the bronchoalveolar lavage fluid [...] Read more.
Streptococcus pneumoniae causes otitis media, sinusitis, and serious diseases such as pneumonia and bacteremia. However, the in vivo dynamics of S. pneumoniae infections and disease severity are not fully understood. In this study, we investigated pneumococcal proteins detected in the bronchoalveolar lavage fluid of an S. pneumoniae-infected mouse, which were assumed to be expressed during infection. Analysis of three proteins with unknown infection-related functions revealed that recombinant Fe-S cluster assembly ATP-binding protein (SufC) binds to the host plasminogen and promotes its conversion into plasmin. SufC was detected in the bacterial cell-surface protein fraction, but it had no extracellular secretory signal. This study suggests that S. pneumoniae releases SufC extracellularly through LytA-dependent autolysis, binding to the bacterial cell surface and host plasminogen and promoting its conversion into plasmin. The recruitment of plasmin by S. pneumoniae is considered useful for bacterial survival and spread, and SufC is suggested to facilitate this process. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

17 pages, 2428 KiB  
Article
Novel P335-like Phage Resistance Arises from Deletion within Putative Autolysin yccB in Lactococcus lactis
by Jenny Seiler, Anne Millen, Dennis A. Romero, Damian Magill and Laura Simdon
Viruses 2023, 15(11), 2193; https://doi.org/10.3390/v15112193 - 31 Oct 2023
Cited by 1 | Viewed by 1848
Abstract
Lactococcus lactis and Lactococcus cremoris are broadly utilized as starter cultures for fermented dairy products and are inherently impacted by bacteriophage (phage) attacks in the industrial environment. Consequently, the generation of bacteriophage-insensitive mutants (BIMs) is a standard approach for addressing phage susceptibility in [...] Read more.
Lactococcus lactis and Lactococcus cremoris are broadly utilized as starter cultures for fermented dairy products and are inherently impacted by bacteriophage (phage) attacks in the industrial environment. Consequently, the generation of bacteriophage-insensitive mutants (BIMs) is a standard approach for addressing phage susceptibility in dairy starter strains. In this study, we characterized spontaneous BIMs of L. lactis DGCC12699 that gained resistance against homologous P335-like phages. Phage resistance was found to result from mutations in the YjdB domain of yccB, a putative autolysin gene. We further observed that alteration of a fused tail-associated lysin-receptor binding protein (Tal-RBP) in the phage restored infectivity on the yccB BIMs. Additional investigation found yccB homologs to be widespread in L. lactis and L. cremoris and that different yccB homologs are highly correlated with cell wall polysaccharide (CWPS) type/subtype. CWPS are known lactococcal phage receptors, and we found that truncation of a glycosyltransferase in the cwps operon also resulted in resistance to these P335-like phages. However, characterization of the CWPS mutant identified notable differences from the yccB mutants, suggesting the two resistance mechanisms are distinct. As phage resistance correlated with yccB mutation has not been previously described in L. lactis, this study offers insight into a novel gene involved in lactococcal phage sensitivity. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

19 pages, 3179 KiB  
Review
An Overview of the Factors Involved in Biofilm Production by the Enterococcus Genus
by Pavel Șchiopu, Dan Alexandru Toc, Ioana Alina Colosi, Carmen Costache, Giuseppe Ruospo, George Berar, Ștefan-Gabriel Gălbău, Alexandra Cristina Ghilea, Alexandru Botan, Adrian-Gabriel Pană, Vlad Sever Neculicioiu and Doina Adina Todea
Int. J. Mol. Sci. 2023, 24(14), 11577; https://doi.org/10.3390/ijms241411577 - 18 Jul 2023
Cited by 41 | Viewed by 4515
Abstract
Enterococcus species are known for their ability to form biofilms, which contributes to their survival in extreme environments and involvement in persistent bacterial infections, especially in the case of multi-drug-resistant strains. This review aims to provide a comprehensive understanding of the mechanisms underlying [...] Read more.
Enterococcus species are known for their ability to form biofilms, which contributes to their survival in extreme environments and involvement in persistent bacterial infections, especially in the case of multi-drug-resistant strains. This review aims to provide a comprehensive understanding of the mechanisms underlying biofilm formation in clinically important species such as Enterococcus faecalis and the less studied but increasingly multi-drug-resistant Enterococcus faecium, and explores potential strategies for their eradication. Biofilm formation in Enterococcus involves a complex interplay of genes and virulence factors, including gelatinase, cytolysin, Secreted antigen A, pili, microbial surface components that recognize adhesive matrix molecules (MSCRAMMs), and DNA release. Quorum sensing, a process of intercellular communication, mediated by peptide pheromones such as Cob, Ccf, and Cpd, plays a crucial role in coordinating biofilm development by targeting gene expression and regulation. Additionally, the regulation of extracellular DNA (eDNA) release has emerged as a fundamental component in biofilm formation. In E. faecalis, the autolysin N-acetylglucosaminidase and proteases such as gelatinase and serin protease are key players in this process, influencing biofilm development and virulence. Targeting eDNA may offer a promising avenue for intervention in biofilm-producing E. faecalis infections. Overall, gaining insights into the intricate mechanisms of biofilm formation in Enterococcus may provide directions for anti-biofilm therapeutic research, with the purpose of reducing the burden of Enterococcus-associated infections. Full article
(This article belongs to the Special Issue Molecular Mechanism of Biofilm Infections and the Combat Strategies)
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
Rapid Screening and Comparison of Chimeric Lysins for Antibacterial Activity against Staphylococcus aureus Strains
by Jin-Mi Park, Dae-Sung Ko, Hee-Soo Kim, Nam-Hyung Kim, Eun-Kyoung Kim, Young-Hye Roh, Danil Kim, Jae-Hong Kim, Kang-Seuk Choi and Hyuk-Joon Kwon
Antibiotics 2023, 12(4), 667; https://doi.org/10.3390/antibiotics12040667 - 29 Mar 2023
Cited by 5 | Viewed by 2387
Abstract
Chimeric lysins composed of various combinations of cell wall-lysing (enzymatic) and cell-wall-binding (CWB) domains of endolysins, autolysins, and bacteriocins have been developed as alternatives to or adjuvants of conventional antibiotics. The screening of multiple chimeric lysin candidates for activity via E. coli expression [...] Read more.
Chimeric lysins composed of various combinations of cell wall-lysing (enzymatic) and cell-wall-binding (CWB) domains of endolysins, autolysins, and bacteriocins have been developed as alternatives to or adjuvants of conventional antibiotics. The screening of multiple chimeric lysin candidates for activity via E. coli expression is not cost effective, and we previously reported on a simple cell-free expression system as an alternative. In this study, we sufficiently improved upon this cell-free expression system for use in screening activity via a turbidity reduction test, which is more appropriate than a colony reduction test when applied in multiple screening. Using the improved protocol, we screened and compared the antibacterial activity of chimeric lysin candidates and verified the relatively strong activity associated with the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain of secretory antigen SsaA-like protein (ALS2). ALS2 expressed in E. coli showed two major bands, and the smaller one (subprotein) was shown to be expressed by an innate downstream promoter and start codon (ATG). The introduction of synonymous mutations in the promoter resulted in clearly reduced expression of the subprotein, whereas missense mutations in the start codon abolished antibacterial activity as well as subprotein production. Interestingly, most of the S. aureus strains responsible for bovine mastitis were susceptible to ALS2, but those from human and chicken were less susceptible. Thus, the simple and rapid screening method can be applied to select functional chimeric lysins and define mutations affecting antibacterial activity, and ALS2 may be useful in itself and as a lead molecule to control bovine mastitis. Full article
Show Figures

Figure 1

10 pages, 288 KiB  
Article
Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa
by Jonathan Asante, Akebe L. K. Abia, Daniel Anokwah, Bakoena A. Hetsa, Dorcas O. Fatoba, Linda A. Bester and Daniel G. Amoako
Genes 2023, 14(1), 104; https://doi.org/10.3390/genes14010104 - 29 Dec 2022
Cited by 5 | Viewed by 2356
Abstract
The work aims to investigate biofilm formation and biofilm/adhesion-encoding genes in coagulase-negative staphylococci (CoNS) species recovered from blood culture isolates. Eighty-nine clinical CoNS were confirmed using the VITEK 2 system, and antibiotic susceptibility testing of isolates was conducted using the Kirby-Bauer disk diffusion [...] Read more.
The work aims to investigate biofilm formation and biofilm/adhesion-encoding genes in coagulase-negative staphylococci (CoNS) species recovered from blood culture isolates. Eighty-nine clinical CoNS were confirmed using the VITEK 2 system, and antibiotic susceptibility testing of isolates was conducted using the Kirby-Bauer disk diffusion method against a panel of 20 antibiotics. Isolates were qualitatively screened using the Congo red agar medium. Quantitative assays were performed on microtiter plates, where the absorbances of the solubilised biofilms were recorded as optical densities and quantified. In all, 12.4% of the isolates were strong biofilm formers, 68.5% had moderate biofilm capacity, and 17.9% showed weak capacity. A subset of 18 isolates, mainly methicillin-resistant S. epidermidis, were investigated for adherence-related genes using whole-genome sequencing and bioinformatics analysis. The highest antibiotic resistance rates for strongly adherent isolates were observed against penicillin (100%) and cefoxitin (81.8%), but the isolates showed no resistance to linezolid (0.0%) and tigecycline (0.0%). The icaABC genes involved in biofilm formation were detected in 50% of the screened isolates. Other adherence-related genes, including autolysin gene atl (88.8%), elastin binding protein gene ebp (94.4%), cell wall-associated fibronectin-binding protein gene ebh (66.7%), clumping factor A gene clfA (5.5%), and pili gene ebpC (22.2%) were also found. The insertion sequence IS256, involved in biofilm formation, was found in 10/18 (55.5%) screened isolates. We demonstrate a high prevalence of biofilm-forming coagulase-negative staphylococci associated with various resistance phenotypes and a substantial agreement between the possession of biofilm-associated genes and the biofilm phenotype. Full article
(This article belongs to the Special Issue Genetic Mechanisms Involved in Microbial Stress Responses)
35 pages, 4978 KiB  
Article
Targeting the Achilles’ Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide
by Ronit Vogt Sionov, Shreya Banerjee, Sergei Bogomolov, Reem Smoum, Raphael Mechoulam and Doron Steinberg
Int. J. Mol. Sci. 2022, 23(14), 7798; https://doi.org/10.3390/ijms23147798 - 14 Jul 2022
Cited by 8 | Viewed by 3025
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, [...] Read more.
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics. Full article
(This article belongs to the Special Issue New Insight into Cannabinoid Effects)
Show Figures

Figure 1

18 pages, 2098 KiB  
Article
Effects of Growth Stage on the Characterization of Enterotoxin A-Producing Staphylococcus aureus-Derived Membrane Vesicles
by Yuka Yamanashi, Yuko Shimamura, Haruka Sasahara, Misaki Komuro, Kuniaki Sasaki, Yasujiro Morimitsu and Shuichi Masuda
Microorganisms 2022, 10(3), 574; https://doi.org/10.3390/microorganisms10030574 - 6 Mar 2022
Cited by 5 | Viewed by 2908
Abstract
Virulence factors, such as staphylococcal enterotoxin A (SEA), are contained within membrane vesicles (MVs) in the cell membrane of Staphylococcus aureus. In this study, the effects of the growth stage on quantitative and qualitative changes in the components contained in the MVs [...] Read more.
Virulence factors, such as staphylococcal enterotoxin A (SEA), are contained within membrane vesicles (MVs) in the cell membrane of Staphylococcus aureus. In this study, the effects of the growth stage on quantitative and qualitative changes in the components contained in the MVs of S. aureus SEA-producing strains were examined. Changes in the expression levels of S. aureus genes were examined at each growth stage; phenol-soluble modulin (PSM) gene reached a maximum after 8 h, and the expression of cell membrane-related genes was decreased after 6 h. Based on these gene expression patterns, MVs were prepared at 6, 17, and 24 h. The particle size of MVs did not change depending on the growth stage. MVs prepared after culture for 17 h maintained their particle size when stored at 23 °C. The amount of SEA in the culture supernatant and MVs were not correlated. Bifunctional autolysin, a protein involved in cell wall biosynthesis/degradation, was increased in MVs at 17 h. The expression pattern of inflammation-related genes in human adult low calcium high temperature (HaCaT) cells induced by MVs was different for each growth stage. The inclusion components of S. aureus-derived MVs are selective, depend on the stage of growth, and may play an important role in toxicity. Full article
(This article belongs to the Special Issue Staphylococcal Infections (Host and Pathogenic Factors) 2.0)
Show Figures

Graphical abstract

17 pages, 2289 KiB  
Article
Influence of Nisin-Biogel at Subinhibitory Concentrations on Virulence Expression in Staphylococcus aureus Isolates from Diabetic Foot Infections
by Carolina Jesus, Rui Soares, Eva Cunha, Miguel Grilo, Luís Tavares and Manuela Oliveira
Antibiotics 2021, 10(12), 1501; https://doi.org/10.3390/antibiotics10121501 - 7 Dec 2021
Cited by 3 | Viewed by 3847
Abstract
A new approach to diabetic foot infections (DFIs) has been investigated, using a nisin-biogel combining the antimicrobial peptide (AMP) nisin with the natural polysaccharide guar-gum. Since in in vivo conditions bacteria may be exposed to decreased antimicrobial concentrations, known as subinhibitory concentrations (sub-MICs), [...] Read more.
A new approach to diabetic foot infections (DFIs) has been investigated, using a nisin-biogel combining the antimicrobial peptide (AMP) nisin with the natural polysaccharide guar-gum. Since in in vivo conditions bacteria may be exposed to decreased antimicrobial concentrations, known as subinhibitory concentrations (sub-MICs), effects of nisin-biogel sub-MIC values corresponding to 1/2, 1/4 and 1/8 of nisin’s minimum inhibitory concentration (MIC) on virulence expression by six Staphylococcus aureus DFI isolates was evaluated by determining bacteria growth rate; expression of genes encoding for staphylococcal protein A (spA), coagulase (coa), clumping factor A (clfA), autolysin (atl), intracellular adhesin A (icaA), intracellular adhesin D (icaD), and the accessory gene regulator I (agrI); biofilm formation; Coa production; and SpA release. Nisin-biogel sub-MICs decreased bacterial growth in a strain- and dose-dependent manner, decreased agrI, atl and clfA expression, and increased spA, coa, icaA and icaD expression. Biofilm formation increased in the presence of nisin-biogel at 1/4 and 1/8 MIC, whereas 1/2 MIC had no effect. Finally, nisin-biogel at sub-MICs did not affect coagulase production, but decreased SpA production in a dose-dependent manner. Results highlight the importance of optimizing nisin-biogel doses before proceeding to in vivo trials, to reduce the risk of virulence factor’s up-regulation due to the presence of inappropriate antimicrobial concentrations. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Virulence - 2nd Volume)
Show Figures

Figure 1

14 pages, 52804 KiB  
Article
Structural Investigations on the SH3b Domains of Clostridium perfringens Autolysin through NMR Spectroscopy and Structure Simulation Enlighten the Cell Wall Binding Function
by Yubao Shan, Xiaoling He, Zi Wang, Xiali Yue, Jiang Zhu, Yunhuang Yang and Maili Liu
Molecules 2021, 26(18), 5716; https://doi.org/10.3390/molecules26185716 - 21 Sep 2021
Cited by 3 | Viewed by 2615
Abstract
Clostridium perfringens autolysin (CpAcp) is a peptidoglycan hydrolase associated with cell separation, division, and growth. It consists of a signal peptide, ten SH3b domains, and a catalytic domain. The structure and function mechanisms of the ten SH3bs related to cell wall peptidoglycan binding [...] Read more.
Clostridium perfringens autolysin (CpAcp) is a peptidoglycan hydrolase associated with cell separation, division, and growth. It consists of a signal peptide, ten SH3b domains, and a catalytic domain. The structure and function mechanisms of the ten SH3bs related to cell wall peptidoglycan binding remain unclear. Here, the structures of CpAcp SH3bs were studied through NMR spectroscopy and structural simulation. The NMR structure of SH3b6 was determined at first, which adopts a typical β-barrel fold and has three potential ligand-binding pockets. The largest pocket containing eight conserved residues was suggested to bind with peptide ligand in a novel model. The structures of the other nine SH3bs were subsequently predicted to have a fold similar to SH3b6. Their ligand pockets are largely similar to those of SH3b6, although with varied size and morphology, except that SH3b1/2 display a third pocket markedly different from those in other SH3bs. Thus, it was supposed that SH3b3-10 possess similar ligand-binding ability, while SH3b1/2 have a different specificity and additional binding site for ligand. As an entirety, ten SH3bs confer a capacity for alternatively binding to various peptidoglycan sites in the cell wall. This study presents an initial insight into the structure and potential function of CpAcp SH3bs. Full article
(This article belongs to the Special Issue Structure of Bacterial Proteins)
Show Figures

Figure 1

12 pages, 958 KiB  
Article
Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories
by Martin Wagner, Jörg Slaghuis, Werner Göbel, José Antonio Vázquez-Boland, Kathrin Rychli and Stephan Schmitz-Esser
Microorganisms 2021, 9(8), 1745; https://doi.org/10.3390/microorganisms9081745 - 16 Aug 2021
Cited by 4 | Viewed by 2511
Abstract
Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), [...] Read more.
Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), and strain G6006 (CC3, serovar 1/2a), responsible for a large gastroenteritis outbreak in the USA due to chocolate milk. We analysed the genomes and characterized the virulence in vitro and in vivo. Whole-genome sequencing revealed a high conservation of the major virulence genes. Minor deviations of the gene contents were found in the autolysins Ami, Auto, and IspC. Moreover, different ActA variants were present. Strain PF49 and F80594 showed prolonged survival in the liver of infected mice. Invasion and intracellular proliferation were similar for all strains, but the CC1 and CC2 strains showed increased spreading in intestinal epithelial Caco2 cells compared to strain G6006. Overall, this study revealed long-term survival of serovar 4b strains F80594 and PF49 in the liver of mice. Future work will be needed to determine the genes and molecular mechanism behind the long-term survival of L. monocytogenes strains in organs. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 1169 KiB  
Article
Insights Into the Micelle-Induced β-Hairpin-to-α-Helix Transition of a LytA-Derived Peptide by Photo-CIDNP Spectroscopy
by M. Victoria Gomez, Margarita Ruiz-Castañeda, Philipp Nitschke, Ruth M. Gschwind and M. Angeles Jiménez
Int. J. Mol. Sci. 2021, 22(13), 6666; https://doi.org/10.3390/ijms22136666 - 22 Jun 2021
Cited by 2 | Viewed by 2320
Abstract
A choline-binding module from pneumococcal LytA autolysin, LytA239–252, was reported to have a highly stable nativelike β-hairpin in aqueous solution, which turns into a stable amphipathic α-helix in the presence of micelles. Here, we aim to obtain insights into this DPC-micelle triggered [...] Read more.
A choline-binding module from pneumococcal LytA autolysin, LytA239–252, was reported to have a highly stable nativelike β-hairpin in aqueous solution, which turns into a stable amphipathic α-helix in the presence of micelles. Here, we aim to obtain insights into this DPC-micelle triggered β-hairpin-to-α-helix conformational transition using photo-CIDNP NMR experiments. Our results illustrate the dependency between photo-CIDNP phenomena and the light intensity in the sample volume, showing that the use of smaller-diameter (2.5 mm) NMR tubes instead of the conventional 5 mm ones enables more efficient illumination for our laser-diode light setup. Photo-CIDNP experiments reveal different solvent accessibility for the two tyrosine residues, Y249 and Y250, the latter being less accessible to the solvent. The cross-polarization effects of these two tyrosine residues of LytA239–252 allow for deeper insights and evidence their different behavior, showing that the Y250 aromatic side chain is involved in a stronger interaction with DPC micelles than Y249 is. These results can be interpreted in terms of the DPC micelle disrupting the aromatic stacking between W241 and Y250 present in the nativelike β-hairpin, hence initiating conversion towards the α-helix structure. Our photo-CIDNP methodology represents a powerful tool for observing residue-level information in switch peptides that is difficult to obtain by other spectroscopic techniques. Full article
(This article belongs to the Special Issue Molecular and Ionic Dynamics by Means of Nuclear Magnetic Resonance)
Show Figures

Figure 1

16 pages, 3086 KiB  
Article
Comparison of the Genetic Features Involved in Bacillus subtilis Biofilm Formation Using Multi-Culturing Approaches
by Yasmine Dergham, Pilar Sanchez-Vizuete, Dominique Le Coq, Julien Deschamps, Arnaud Bridier, Kassem Hamze and Romain Briandet
Microorganisms 2021, 9(3), 633; https://doi.org/10.3390/microorganisms9030633 - 18 Mar 2021
Cited by 21 | Viewed by 7581
Abstract
Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. [...] Read more.
Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. subtilis biofilm studies have mainly focused on pellicle formation at the air-liquid interface or complex macrocolonies formed on nutritive agar. However, only few studies focus on the genetic features of B. subtilis submerged biofilm formation and their link with other multicellular models at the air interface. NDmed, an undomesticated B. subtilis strain isolated from a hospital, has demonstrated the ability to produce highly structured immersed biofilms when compared to strains classically used for studying B. subtilis biofilms. In this contribution, we have conducted a multi-culturing comparison (between macrocolony, swarming, pellicle, and submerged biofilm) of B. subtilis multicellular communities using the NDmed strain and mutated derivatives for genes shown to be required for motility and biofilm formation in pellicle and macrocolony models. For the 15 mutated NDmed strains studied, all showed an altered phenotype for at least one of the different culture laboratory assays. Mutation of genes involved in matrix production (i.e., tasA, epsA-O, cap, ypqP) caused a negative impact on all biofilm phenotypes but favored swarming motility on semi-solid surfaces. Mutation of bslA, a gene coding for an amphiphilic protein, affected the stability of the pellicle at the air-liquid interface with no impact on the submerged biofilm model. Moreover, mutation of lytF, an autolysin gene required for cell separation, had a greater effect on the submerged biofilm model than that formed at aerial level, opposite to the observation for lytABC mutant. In addition, B. subtilis NDmed with sinR mutation formed wrinkled macrocolony, less than that formed by the wild type, but was unable to form neither thick pellicle nor structured submerged biofilm. The results are discussed in terms of the relevancy to determine whether genes involved in colony and pellicle formation also govern submerged biofilm formation, by regarding the specificities in each model. Full article
(This article belongs to the Special Issue Bacillus subtilis as a Model Organism to Study Basic Cell Processes)
Show Figures

Figure 1

Back to TopTop