Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = bacterial iron regulatory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2629 KB  
Article
SDG 6 in Practice: Demonstrating a Scalable Nature-Based Wastewater Treatment System for Pakistan’s Textile Industry
by Kamran Siddique, Aansa Rukya Saleem, Muhammad Arslan and Muhammad Afzal
Sustainability 2025, 17(13), 6226; https://doi.org/10.3390/su17136226 - 7 Jul 2025
Viewed by 539
Abstract
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents [...] Read more.
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents routinely discharged into rivers and agricultural lands despite stringent National Environmental Quality Standards (NEQS). This study presents a pilot-scale case from Faisalabad’s Khurrianwala industrial zone, where a decentralized, nature-based bioreactor was piloted to bridge the gap between policy and practice. The system integrates four treatment stages—anaerobic digestion (AD), floating treatment wetland (FTW), constructed wetland (CW), and sand filtration (SF)—and was further intensified via nutrient amendment, aeration, and bioaugmentation with three locally isolated bacterial strains (Acinetobacter junii NT-15, Pseudomonas indoloxydans NT-38, and Rhodococcus sp. NT-39). The fully intensified configuration achieved substantial reductions in total dissolved solids (TDS) (46%), total suspended solids (TSS) (51%), chemical oxygen demand (COD) (91%), biochemical oxygen demand (BOD) (94%), nutrients, nitrogen (N), and phosphorus (P) (86%), sulfate (26%), and chloride (41%). It also removed 95% iron (Fe), 87% cadmium (Cd), 57% lead (Pb), and 50% copper (Cu) from the effluent. The bacterial inoculants persist in the system and colonize the plant roots, contributing to stable bioremediation. The treated effluent met the national environmental quality standards (NEQS) discharge limits, confirming the system’s regulatory and ecological viability. This case study demonstrates how nature-based systems, when scientifically intensified, can deliver high-performance wastewater treatment in industrial zones with limited infrastructure—offering a replicable model for sustainable, SDG-aligned pollution control in the Global South. Full article
(This article belongs to the Special Issue Progress and Challenges in Realizing SDG-6 in Developing Countries)
Show Figures

Figure 1

25 pages, 3717 KB  
Article
Genotypic Characterisation and Risk Assessment of Virulent ESBL-Producing E. coli in Chicken Meat in Tunisia: Insights from Multi-Omics Machine Learning Perspective
by Khaled Abdallah, Ghassan Tayh, Elaa Maamar, Amine Mosbah, Omar Abbes, Ismail Fliss and Lilia Messadi
Microbiol. Res. 2025, 16(6), 131; https://doi.org/10.3390/microbiolres16060131 - 18 Jun 2025
Viewed by 987
Abstract
Antibiotics are frequently used in the poultry industry, which has led to the emergence of bacterial strains that are resistant to antimicrobial treatments. The main objectives of this research were to conduct a multimodal risk assessment, to determine the extent of contamination of [...] Read more.
Antibiotics are frequently used in the poultry industry, which has led to the emergence of bacterial strains that are resistant to antimicrobial treatments. The main objectives of this research were to conduct a multimodal risk assessment, to determine the extent of contamination of chicken meat with Escherichia coli, assess the prevalence of strains resistant to extended-spectrum cephalosporins (ESC), and characterise the genes associated with resistance and virulence. A standardised procedure involving enrichment in buffered peptone water and isolation of E. coli on MacConkey agar was carried out on 100 chicken carcasses. Subsequently, the sensitivity of the strains was tested against 21 antibiotic discs. Additionally, ESBL production was detected using a double synergy test. Specific PCRs were employed to identify resistance to critical antibiotics in human medicine (such as cephalosporins, carbapenems, fluoroquinolones, and colistin), as well as the presence of virulence genes. The contamination rate of chicken meat with E. coli was 82%. The prevalence of ESC-resistant isolates was 91.2%. Furthermore, 76.5% of the isolates exhibited ESBL production, with the different beta-lactamase genes (blaCTXM, blaTEM, and blaSHV). The mcr-1 gene, associated with colistin resistance, was detected in four strains (5.9%). Some isolates also carried resistance genes such as sul1, sul2, sul3, tetA, tetB, qnrB, and qnrS. In addition, several virulence genes were detected. In our study, we were able to link the expression of AMR to the iron metabolic regulatory elements using a multimodal machine learning approach; this mechanism could be targeted to mitigate the bacteria virulence and resistance. The high prevalence of ESBL-producing and multi-resistant E. coli strains in poultry presents significant human health risks, with the focus on antibiotic-resistant uropathogenic strains since poultry meat could be an important source of uropathogenic strains, underscoring the danger of hard-to-treat urinary tract infections, stressing the need for controlled antibiotic use and thorough monitoring. Full article
Show Figures

Figure 1

20 pages, 1849 KB  
Article
Evidence for a Putative Regulatory System Consisting of an ECF σE-Type Factor, LIC_12757, and a FecR-like σ Factor Regulator, LIC_12756, in the Pathogenic Spirochaetes Leptospira interrogans
by Sabina Kędzierska-Mieszkowska, Barbara Kędzierska, Laura Pardyak and Zbigniew Arent
Int. J. Mol. Sci. 2025, 26(11), 4994; https://doi.org/10.3390/ijms26114994 - 22 May 2025
Viewed by 497
Abstract
ECF σ factors, which constitute the most abundant and diverse group of the σ70-family, are important signal response regulatory proteins in bacterial adaptative responses to harsh environmental changes and for bacterial survival. Their activity is commonly controlled by specific and reversible [...] Read more.
ECF σ factors, which constitute the most abundant and diverse group of the σ70-family, are important signal response regulatory proteins in bacterial adaptative responses to harsh environmental changes and for bacterial survival. Their activity is commonly controlled by specific and reversible interactions with their cognate anti-σ factors (soluble or transmembrane proteins), which directly or indirectly sense the environmental signals and transmit them to their partner σ factor. The genome of pathogenic L. interrogans is predicted to encode 11 ECF σE-type factors and more than 30 regulators predicted as anti-σ factors, anti-anti-σ factors, and regulators of anti-anti-σ factors. We have recently demonstrated that one of the L. interrogans ECF σ factors, i.e., LIC_12757, indeed functions as a transcriptional factor and is autoregulated at the transcriptional level. This study is a next step towards determining key aspects of LIC_12757 functioning in Leptospira. By using genetic and proteomic approaches, we provide strong evidence that the LIC_12757 activity is controlled via interactions with its putative FecR-like regulator, LIC_12756. We also demonstrate that LIC_12756 exhibits not only an anti-σ activity but also acts as a positive regulator of LIC_12757 in the presence of specific environmental cues. Interestingly, we found that the nutrient-limiting conditions, including iron deficiency, may act as specific signals for the LIC_12757 activation. In conclusion, we identified the L. interrogans regulatory system consisting of an ECF σ factor, LIC_12757, and a FecR-like regulator, LIC_12756, which is most likely involved in the response of pathogenic Leptospira to iron and nutrient limitation, and thus also likely involved in their response to host-induced stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 2295 KB  
Article
RNA-Seq Analysis Revealed the Virulence Regulatory Network Mediated by the Ferric Uptake Regulator (Fur) in Apostichopus japonicus Pathogenesis Induced by Vibrio splendidus
by Changyu Liao, Lincheng Hu, Si Zhu, Weikang Liang, Lei Yang and Chenghua Li
Microorganisms 2025, 13(6), 1173; https://doi.org/10.3390/microorganisms13061173 - 22 May 2025
Viewed by 520
Abstract
The uptake and utilization of iron by bacteria must be strictly controlled. The ferric uptake regulator (Fur) is a global transcription factor widely present in bacteria that can perceive cellular iron levels and adjust the expressions of various genes accordingly. Our earlier research [...] Read more.
The uptake and utilization of iron by bacteria must be strictly controlled. The ferric uptake regulator (Fur) is a global transcription factor widely present in bacteria that can perceive cellular iron levels and adjust the expressions of various genes accordingly. Our earlier research demonstrated that the knockdown of the fur gene in Vibrio splendidus significantly reduced its lethality to Apostichopus japonicus. Although the functions and mechanisms of Fur in regulating bacterial virulence genes have been extensively studied, its virulence regulatory network during V. splendidus pathogenesis in A. japonicus remains unclear. In this article, transcriptome sequencing analysis of V. splendidus under different iron conditions reveals substantial differential gene expressions in the simulated pathogenic environments, identifying 1185 differentially expressed genes, including 198 downregulated and 987 upregulated genes. Comparative analysis between wild-type and Vsfur knockdown strains shows that Vsfur knockdown altered the expression of 3593 genes in V. splendidus, with the most significant differential expression observed under simulated pathogenic conditions (1030 upregulated and 72 downregulated). KEGG enrichment analysis indicates that Vsfur knockdown caused significant gene enrichment in the flagellar assembly pathway and bacterial secretion system, critically impairing flagellar synthesis and secretion system function in V. splendidus. Eight genes selected for qRT-PCR validation showed expression levels in line with the RNA-seq results. Consistent with the transcriptomic results, Vsfur knockdown resulted in reduced antioxidant capacity, bacterial competitiveness, and cytotoxicity in V. splendidus. These findings elucidate the virulence regulatory mechanism of Fur in V. splendidus and provide a reference for understanding the occurrence of A. japonicus skin ulcer syndrome. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

23 pages, 2849 KB  
Article
Comprehensive Genomic Analysis of Klebsiella pneumoniae and Its Temperate N-15-like Phage: From Isolation to Functional Annotation
by Reham Yahya, Aljawharah Albaqami, Amal Alzahrani, Suha M. Althubaiti, Moayad Alhariri, Eisa T. Alrashidi, Nada Alhazmi, Mohammed A. Al-Matary and Najwa Alharbi
Microorganisms 2025, 13(4), 908; https://doi.org/10.3390/microorganisms13040908 - 15 Apr 2025
Viewed by 2011
Abstract
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated [...] Read more.
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated an extensively drug-resistant (XDR) Klebsiella pneumoniae strain obtained from an ICU patient and telomeric temperate phage derived from hospital effluent. The bacteria showed strong resistance to multiple antibiotics, including penicillin (≥16 μg/mL), ceftriaxone (≥32 μg/mL), and meropenem (≥8 μg/mL), which was caused by SHV-11 beta-lactamase, NDM-1 carbapenemase, and porin mutations (OmpK37, MdtQ). The strain was categorized as K46 and O2a types and carried virulence genes involved in iron acquisition, adhesion, and immune evasion, as well as plasmids (IncHI1B_1_pNDM-MAR, IncFIB) and eleven prophage regions, reflecting its genetic adaptability and resistance dissemination. The 172,025 bp linear genome and 46.3% GC content of the N-15-like phage showed strong genomic similarities to phages of the Sugarlandvirus genus, especially those that infect K. pneumoniae. There were structural proteins (11.8%), DNA replication and repair enzymes (9.3%), and a toxin–antitoxin system (0.4%) encoded by the phage genome. A protelomerase and ParA/B partitioning proteins indicate that the phage is replicating and maintaining itself in a manner similar to the N15 phage, which is renowned for maintaining a linear plasmid prophage throughout lysogeny. Understanding the dynamics of antibiotic resistance and pathogen development requires knowledge of phages like this one, which are known for their temperate nature and their function in altering bacterial virulence and resistance profiles. The regulatory and structural proteins of the phage also provide a model for research into the biology of temperate phages and their effects on microbial communities. The importance of temperate phages in bacterial genomes and their function in the larger framework of microbial ecology and evolution is emphasized in this research. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

24 pages, 2682 KB  
Review
Behavioral Cooperation or Conflict of Human Intestinal Roundworms and Microbiomes: A Bio-Activity Perspective
by Meisam Khazaei, Malihe Parsasefat, Aisa Bahar, Hamed Tahmasebi and Valentyn Oksenych
Cells 2025, 14(7), 556; https://doi.org/10.3390/cells14070556 - 7 Apr 2025
Cited by 3 | Viewed by 937
Abstract
Human infections are greatly impacted by intestinal nematodes. These nematodes, which encompass the large roundworms, have a direct impact on human health and well-being due to their close cohabitation with the host’s microorganisms. When nematodes infect a host, the microbiome composition changes, and [...] Read more.
Human infections are greatly impacted by intestinal nematodes. These nematodes, which encompass the large roundworms, have a direct impact on human health and well-being due to their close cohabitation with the host’s microorganisms. When nematodes infect a host, the microbiome composition changes, and this can impact the host’s ability to control the parasites. We aimed to find out if the small intestinal roundworms produce substances that have antimicrobial properties and respond to their microbial environment, and if the immune and regulatory reactions to nematodes are altered in humans lacking gut microbes. There is no doubt that different nematodes living in the intestines can alter the balance of intestinal bacteria. Nonetheless, our knowledge about the parasite’s influence on the gut microbiome remains restricted. The last two decades of study have revealed that the type of iron utilized can influence the activation of unique virulence factors. However, some roundworm proteins like P43, which makes up a large portion of the worm’s excretory-secretory product, have an unknown role. This review explores how the bacterial iron regulatory network contributes to the adaptability of this opportunistic pathogen, allowing it to successfully infect nematodes in different host environments. Full article
Show Figures

Graphical abstract

13 pages, 3239 KB  
Brief Report
Characterizing Common Factors Affecting Replication Initiation During H2O2 Exposure and Genetic Mutation-Induced Oxidative Stress in Escherichia coli
by Jiaxin Qiao, Weiwei Zhu, Dongdong Du and Morigen Morigen
Int. J. Mol. Sci. 2025, 26(7), 2968; https://doi.org/10.3390/ijms26072968 - 25 Mar 2025
Viewed by 722
Abstract
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and [...] Read more.
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and mutations in antioxidant enzymes suppress replication initiation in Escherichia coli. The existence of common regulatory factors governing replication initiation across diverse causes-induced oxidative stress remains unclear. In this study, we utilized flow cytometry to determine the replication pattern of E. coli, and found that oxidative stress also participated in the inhibition of replication initiation by a defective iron regulation (fur-bfr-dps deletion). Adding a certain level of ATP promoted replication initiation in various antioxidant enzyme-deficient mutants and the ΔfurΔbfrΔdps mutant, suggesting that low ATP levels could be a common factor in the inhibition of replication initiation by different causes-induced oxidative stress. More potential common factors were screened using proteomics, followed by genetic validation with H2O2 stress. We found that oxidative stress might mediate the inhibition of replication initiation by interfering with the metabolism of glycine, glutamate, ornithine, and aspartate. Blocking CcmA-dependent cytochrome c biosynthesis, deleting the efflux pump proteins MdtABCD and TolC, or the arabinose transporter AraFHG eliminated the replication initiation inhibition by H2O2. In conclusion, this study uncovers a common multifactorial pathway of different causes-induced oxidative stress inhibiting replication initiation. Dormant and persistent bacteria exhibit an arrested or slow cell cycle, and non-lethal oxidative stress promotes their formation. Our findings contribute to exploring strategies to limit dormant and persistent bacterial formation by maintaining faster DNA replication initiation (cell cycle progression). Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

24 pages, 6117 KB  
Article
Functional Differentiation and Regulatory Mechanisms of Ferrochelatases HemH1 and HemH2 in Bacillus thuringiensis Under Iron and Oxidative Stress
by Jianghan Wang, Yi Luo, Tian Jiao, Shizhen Liu, Ting Liang, Huiting Mei, Shuang Cheng, Qian Yang, Jin He and Jianmei Su
Int. J. Mol. Sci. 2025, 26(7), 2911; https://doi.org/10.3390/ijms26072911 - 23 Mar 2025
Viewed by 613
Abstract
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to [...] Read more.
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to the promoters of hemH1 and hemH2, with Fe2+ or Fe3+ enhancing this binding. Heterologous expression of HemH1 and HemH2 in Escherichia coli showed that pEH2/BL grew better than pEH1/BL under different 2,2′-Bipyridyl, Fe2+, and Fe3+ concentrations. Under iron limitation, the heme precursor ALA production decreased significantly in both strains. The heme production of pEH2/BL decreased sharply under iron-limited conditions, while that of pEH1/BL decreased significantly under iron-rich conditions. The H2O2 sensitivity experiment revealed that E. coli pEH1/BL was more tolerant to H2O2 than pEH2/BL. In Bt, ΔhemH2 was most sensitive to H2O2 stress, but complementation of hemH1 or hemH2 partially restored H2O2 resistance, with the overexpressed strain pHH2/Bt being most tolerant. β-galactosidase assays indicated that Fur positively regulated hemH1 and negatively regulated hemH2 under normal conditions, but this regulation reversed with 2.5 mM Fe3+. qRT-PCR showed upregulation of genes related to heme synthesis, oxidative stress, and ferrous iron transport. This study reveals the functional differentiation of HemH1 and HemH2 under the joint regulation of Fur and environmental factors, highlighting their synergistic roles in heme synthesis, heavy metal detoxification, and oxidative stress resistance to maintain bacterial physiological homeostasis. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

17 pages, 11911 KB  
Article
Cooperative and Independent Functionality of tmRNA and SmpB in Aeromonas veronii: A Multifunctional Exploration Beyond Ribosome Rescue
by Taipeng Bai, Juanjuan Li, Xue Chi, Hong Li, Yanqiong Tang, Zhu Liu and Xiang Ma
Int. J. Mol. Sci. 2025, 26(1), 409; https://doi.org/10.3390/ijms26010409 - 6 Jan 2025
Cited by 1 | Viewed by 1167
Abstract
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens [...] Read more.
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in Aeromonas veronii, a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the ssrA and smpB genes at different growth stages of the pathogen, assessed the responses of deletion strains ΔssrA and ΔsmpB to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene ssrA maintained stable expression throughout the bacterial growth period, while smpB exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the ΔssrA and ΔsmpB strains exhibited attenuated resistance to most stress conditions. However, ΔssrA independently responded to starvation, while ΔsmpB specifically showed reduced resistance to lower concentrations of Fe3+ and higher concentrations of Na+ ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 715 KB  
Review
Fungi in the Gut Microbiota: Interactions, Homeostasis, and Host Physiology
by Hao-Yu Liu, Shicheng Li, Kennedy Jerry Ogamune, Abdelkareem A. Ahmed, In Ho Kim, Yunzeng Zhang and Demin Cai
Microorganisms 2025, 13(1), 70; https://doi.org/10.3390/microorganisms13010070 - 2 Jan 2025
Cited by 5 | Viewed by 3519
Abstract
The mammalian gastrointestinal tract is a stage for dynamic inter-kingdom interactions among bacteria, fungi, viruses, and protozoa, which collectively shape the gut micro-ecology and influence host physiology. Despite being a modest fraction, the fungal community, also referred to as mycobiota, represents a critical [...] Read more.
The mammalian gastrointestinal tract is a stage for dynamic inter-kingdom interactions among bacteria, fungi, viruses, and protozoa, which collectively shape the gut micro-ecology and influence host physiology. Despite being a modest fraction, the fungal community, also referred to as mycobiota, represents a critical component of the gut microbiota. Emerging evidence suggests that fungi act as early colonizers of the intestine, exerting a lasting influence on gut development. Meanwhile, the composition of the mycobiota is influenced by multiple factors, with diet, nutrition, drug use (e.g., antimicrobials), and physical condition standing as primary drivers. During its establishment, the mycobiota forms both antagonistic and synergistic relationships with bacterial communities within the host. For instance, intestinal fungi can inhibit bacterial colonization by producing alcohol, while certain bacterial pathogens exploit fungal iron carriers to enhance their growth. However, the regulatory mechanisms governing these complex interactions remain poorly understood. In this review, we first introduce the methodologies for studying the microbiota, then address the significance of the mycobiota in the mammalian intestine, especially during weaning when all ‘primary drivers’ change, and, finally, discuss interactions between fungi and bacteria under various influencing factors. Our review aims to shed light on the complex inter-kingdom dynamics between fungi and bacteria in gut homeostasis and provide insights into how they can be better understood and managed to improve host health and disease outcomes. Full article
(This article belongs to the Special Issue Microbiota and Gastrointestinal Diseases)
Show Figures

Figure 1

18 pages, 6900 KB  
Article
Macrogenomic Analysis Reveals Soil Microbial Diversity in Different Regions of the Antarctic Peninsula
by Jiangyong Qu, Xiaofei Lu, Tianyi Liu, Ying Qu, Zhikai Xing, Shuang Wang, Siluo Jing, Li Zheng, Lijun Wang and Xumin Wang
Microorganisms 2024, 12(12), 2444; https://doi.org/10.3390/microorganisms12122444 - 27 Nov 2024
Cited by 2 | Viewed by 1511
Abstract
(1) Background: The unique geographical and climatic conditions of the Antarctic Peninsula contribute to distinct regional ecosystems. Microorganisms are crucial for sustaining the local ecological equilibrium. However, the variability in soil microbial community diversity across different regions of the Antarctic Peninsula remains underexplored. [...] Read more.
(1) Background: The unique geographical and climatic conditions of the Antarctic Peninsula contribute to distinct regional ecosystems. Microorganisms are crucial for sustaining the local ecological equilibrium. However, the variability in soil microbial community diversity across different regions of the Antarctic Peninsula remains underexplored. (2) Methods: We utilized metagenome sequencing to investigate the composition and functionality of soil microbial communities in four locations: Devil Island, King George Island, Marambio Station, and Seymour Island. (3) Results: In the KGI region, we observed increased abundance of bacteria linked to plant growth promotion and the degradation of pollutants, including PAHs. Conversely, Marambio Station exhibited a significant reduction in bacterial abundance associated with iron and sulfur oxidation/reduction. Notably, we identified 94 antibiotic resistance genes (ARGs) across 15 classes of antibiotics in Antarctic soils, with those related to aminoglycosides, β-lactamase, ribosomal RNA methyltransferase, antibiotic efflux, gene regulatory resistance, and ABC transporters showing a marked influence from anthropogenic activities. (4) Conclusions: This study carries substantial implications for the sustainable use, advancement, and conservation of microbial resources in Antarctic soils. Full article
(This article belongs to the Topic Environmental Bioengineering and Geomicrobiology)
Show Figures

Figure 1

15 pages, 1852 KB  
Article
Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions
by Flavia Costa Carvalho de Andrade, Mariana Fernandes Carvalho and Agnes Marie Sá Figueiredo
Antibiotics 2024, 13(12), 1131; https://doi.org/10.3390/antibiotics13121131 - 25 Nov 2024
Viewed by 1571
Abstract
Background/Objective: The anti-restriction protein ArdA-H1, found in multiresistant Staphylococcus aureus (MRSA) strains from the ST239-SCCmecIII lineage, inhibits restriction–modification systems, fostering horizontal gene transfer (HGT) and supporting genetic adaptability and resistance. This study investigates the regulatory mechanisms controlling ardA-H1 expression [...] Read more.
Background/Objective: The anti-restriction protein ArdA-H1, found in multiresistant Staphylococcus aureus (MRSA) strains from the ST239-SCCmecIII lineage, inhibits restriction–modification systems, fostering horizontal gene transfer (HGT) and supporting genetic adaptability and resistance. This study investigates the regulatory mechanisms controlling ardA-H1 expression in S. aureus under various stress conditions, including acidic pH, iron limitation, and vancomycin exposure, and explores the roles of the Agr quorum sensing system. Methods: The expression of ardA-H1 was analyzed in S. aureus strains exposed to environmental stressors using real-time quantitative reverse transcription PCR. Comparisons were made between Agr-functional and Agr-deficient strains. In addition, Agr inhibition was achieved using a heterologous Agr autoinducing peptide. Results: The Agr system upregulated ardA-H1 expression in acidic and iron-limited conditions. However, vancomycin induced ardA-H1 activation specifically in the Agr-deficient strain GV69, indicating that an alternative regulatory pathway controls ardA-H1 expression in the absence of agr. The vancomycin response in GV69 suggests that diminished quorum sensing may offer a survival advantage by promoting persistence and HGT-related adaptability. Conclusion: Overall, our findings provide new insights into the intricate relationships between quorum-sensing, stress responses, bacterial virulence, and genetic plasticity, enhancing our understanding of S. aureus adaptability in challenging environments. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

23 pages, 3950 KB  
Review
Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends
by Aixa M. Orta-Rivera, Yazmary Meléndez-Contés, Nataniel Medina-Berríos, Adriana M. Gómez-Cardona, Andrés Ramos-Rodríguez, Claudia Cruz-Santiago, Christian González-Dumeng, Janangelis López, Jansteven Escribano, Jared J. Rivera-Otero, Josean Díaz-Rivera, Sebastián C. Díaz-Vélez, Zulemaría Feliciano-Delgado and Arthur D. Tinoco
Inorganics 2023, 11(6), 252; https://doi.org/10.3390/inorganics11060252 - 8 Jun 2023
Cited by 14 | Viewed by 4629
Abstract
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their [...] Read more.
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body’s innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs. Full article
(This article belongs to the Special Issue Weaponizing Metals against Pathogenic Bacterial Superbugs)
Show Figures

Graphical abstract

21 pages, 8266 KB  
Article
Lactobacillus johnsonii L531 Ameliorates Salmonella enterica Serovar Typhimurium Diarrhea by Modulating Iron Homeostasis and Oxidative Stress via the IRP2 Pathway
by Keyuan Chen, Jiufeng Wang, Liang Guo, Jing Wang, Lan Yang, Ting Hu, Yiqing Zhao, Xue Wang and Yaohong Zhu
Nutrients 2023, 15(5), 1127; https://doi.org/10.3390/nu15051127 - 23 Feb 2023
Cited by 8 | Viewed by 2586
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved mechanisms to evade the host’s nutritional immunity and thus promote bacterial growth by using the iron in the host. However, the detailed mechanisms of S. Typhimurium induce dysregulation of iron homeostasis and whether [...] Read more.
Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved mechanisms to evade the host’s nutritional immunity and thus promote bacterial growth by using the iron in the host. However, the detailed mechanisms of S. Typhimurium induce dysregulation of iron homeostasis and whether Lactobacillus johnsonii L531 can alleviate the iron metabolism disorder caused by S. Typhimurium has not been fully elucidated. Here, we show that S. Typhimurium activated the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1, and divalent metal transporter protein 1 and suppressed the expression of iron exporter ferroportin, which resulted in iron overload and oxidative stress, inhibiting the key antioxidant proteins NF-E2-related factor 2, Heme Oxygenase-1, and Superoxide Dismutase in vitro and in vivo. L. johnsonii L531 pretreatment effectively reversed these phenomena. IRP2 knockdown inhibited iron overload and oxidative damage induced by S. Typhimurium in IPEC-J2 cells, while IRP2 overexpression promoted iron overload and oxidative damage caused by S. Typhimurium. Interestingly, the protective effect of L. johnsonii L531 on iron homeostasis and antioxidant function was blocked following IRP2 overexpression in Hela cells, demonstrating that L. johnsonii L531 attenuates disruption of iron homeostasis and consequent oxidative damage caused by S. Typhimurium via the IRP2 pathway, which contributes to the prevention of S. Typhimurium diarrhea in mice. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

16 pages, 957 KB  
Review
Ferroptosis: A New Development Trend in Periodontitis
by Kexiao Chen, Shuyuan Ma, Jianwen Deng, Xinrong Jiang, Fengyu Ma and Zejian Li
Cells 2022, 11(21), 3349; https://doi.org/10.3390/cells11213349 - 24 Oct 2022
Cited by 25 | Viewed by 4133
Abstract
Periodontitis is a chronic inflammatory disease associated with bacterial biofilm. It is characterized by loss of periodontal support tissue and has long been considered as a “silent disease”. Because it is difficult to prevent and has a health impact that can not be [...] Read more.
Periodontitis is a chronic inflammatory disease associated with bacterial biofilm. It is characterized by loss of periodontal support tissue and has long been considered as a “silent disease”. Because it is difficult to prevent and has a health impact that can not be ignored, researchers have been focusing on a mechanism-based treatment model. Ferroptosis is an iron-dependent regulatory form of cell death, that directly or indirectly affects glutathione peroxidase through different signaling pathways, resulting in a decrease in cell antioxidant capacity, accumulation of reactive oxygen species and lipid peroxidation, which cause oxidative cell death and tissue damage. Recently, some studies have proven that iron overload, oxidative stress, and lipid peroxidation exist in the process of periodontitis. Based on this, this article reviews the relationship between periodontitis and ferroptosis, in order to provide a theoretical reference for future research on the prevention and treatment of periodontal disease. Full article
(This article belongs to the Special Issue Novel Mechanisms and Therapeutic Opportunities of Ferroptosis)
Show Figures

Figure 1

Back to TopTop