Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = benthic primary productivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5810 KB  
Article
Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance
by Ricardo J. Pimentel, Pedro M. Callapez, Mahima Pai, Paulo Legoinha and Pedro A. Dinis
Geosciences 2025, 15(8), 309; https://doi.org/10.3390/geosciences15080309 - 8 Aug 2025
Viewed by 899
Abstract
The western Iberian marine Pliocene represents a key transitional zone between tropical and boreal molluscan faunas. Recent studies at the rediscovered fossil locality of Vale Farpado have yielded 34 bivalve species, distributed among 18 families. The most diverse families identified are Veneridae and [...] Read more.
The western Iberian marine Pliocene represents a key transitional zone between tropical and boreal molluscan faunas. Recent studies at the rediscovered fossil locality of Vale Farpado have yielded 34 bivalve species, distributed among 18 families. The most diverse families identified are Veneridae and Pectinidae. The assemblage is predominantly composed of suspension- and deposit-feeding taxa, with no evidence of carnivorous feeding strategies. Most taxa exhibit an infaunal life habitat. Initial colonising bivalve communities inhabited mobile, gravel-dominated substrates, where coarse clasts and disarticulated bioclasts provided stable microhabitats for epifaunal species. Over time, later assemblages became established, primarily on sandy substrates. Palaeoenvironmental indicators, including molluscs and foraminifera, suggest that these benthic communities occupied the infralittoral zone, at depths generally shallower than 30 metres, and the sea surface temperatures were broadly subtropical. However, periodic incursions of cooler, nutrient-rich waters driven by upwelling systems influenced local conditions, enhancing primary productivity and supporting a taxonomically rich and ecologically complex benthic ecosystem. The bivalve assemblages of Vale Farpado thus contribute valuable insights into the palaeoecology and biogeographical dynamics of the Pliocene North Atlantic, particularly in the context of sea surface temperature gradients and bivalve faunal interchange between temperate and tropical marine realms. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

9 pages, 1246 KB  
Brief Report
The Role of Abundant Organic Macroaggregates in Planktonic Metabolism in a Tropical Bay
by Marcelo Friederichs Landim de Souza and Guilherme Camargo Lessa
Water 2025, 17(13), 1967; https://doi.org/10.3390/w17131967 - 30 Jun 2025
Viewed by 341
Abstract
Abundant large organic aggregates, which form mucous webs up to a few decimeters in length, have been observed in Baía de Todos os Santos (BTS), northeastern Brazil. This communication presents preliminary results from field (February 2015) and laboratory (June 2015) experiments that aimed [...] Read more.
Abundant large organic aggregates, which form mucous webs up to a few decimeters in length, have been observed in Baía de Todos os Santos (BTS), northeastern Brazil. This communication presents preliminary results from field (February 2015) and laboratory (June 2015) experiments that aimed to determine preliminary values for respiration and near-maximum photosynthesis and the impact of macroaggregates on respiration rates. The experiments included the determination of respiration in controls, with the mechanical removal and addition of macroaggregates. The field experiment during a flood tide presented the lowest respiration rate (−7.0 ± 0.7 µM L−1 d−1), average net primary production (8.9 ± 4.5 µM L−1 d−1), and gross primary production (16.0 ± 10 µM L−1 d−1), with a ratio of gross primary production to respiration of 2.3. The control experiments during an ebb tide showed a mean respiration rate of 8.7 ± 2.3 µM L−1 d−1, whereas, after macroaggregate removal, this was 9.5 ± 4.5 µM L−1 d−1. In the laboratory experiments, the control sample respiration rate of 18.4 ± 1.4 µM L−1 d−1 was slightly increased to 20.6 ± 0.1 µM L−1 d−1 after aggregate removal. The addition of aggregates to the control sample increased the respiration rate by approximately 3-fold, to 56.5 ± 4.8 µM L−1 d−1. These results indicate that macroaggregates could have an important role in pelagic and benthic respiration, as well as in the whole bay’s metabolism. Full article
(This article belongs to the Special Issue Biogeochemical Cycles in Vulnerable Coastal and Marine Environment)
Show Figures

Figure 1

39 pages, 2337 KB  
Review
Overview of Patagonian Red Octopus (Enteroctopus megalocyathus) Fisheries in Chilean Regions and Their Food Safety Aspects
by Alessandro Truant, Federica Giacometti, Jorge Hernández, Viviana Espinoza, Ana Farías, Iker Uriarte, Cecilia Godoy, Riccardo Miotti Scapin, Leonardo Alberghini, Paolo Catellani and Valerio Giaccone
Animals 2025, 15(10), 1464; https://doi.org/10.3390/ani15101464 - 19 May 2025
Viewed by 1298
Abstract
Artisanal fisheries in southern Chile rely heavily on the Patagonian red octopus (Enteroctopus megalocyathus) as a valuable resource, contributing significantly to local economies. This octopus species accounts for 25–40% of Chilean octopus landings. It is a merobenthic species, characterized by a [...] Read more.
Artisanal fisheries in southern Chile rely heavily on the Patagonian red octopus (Enteroctopus megalocyathus) as a valuable resource, contributing significantly to local economies. This octopus species accounts for 25–40% of Chilean octopus landings. It is a merobenthic species, characterized by a semelparous life cycle and a long brooding period, and it is distributed along the Pacific and Atlantic coasts of the southern tip of South America, inhabiting holes and crevices in rocky substrates. However, this fishery faces critical challenges to both its ecological sustainability and the food safety of octopus products. The primary fishing method, using hooks, poses a risk to reproductive capacity as it can capture brooding females. Food safety concerns arise from microbial contamination during pre- and post-harvest handling, bioaccumulation of toxins from algal blooms, and the presence of heavy metals in the marine environment. While evisceration effectively reduces the risk of consuming toxins and heavy metals, inadequate hygiene practices and insufficient ice usage throughout the production chain represent significant food safety risks. Chilean fishing Law No. 18892/1989 defines artisanal fishing and establishes territorial use rights in fisheries (TURFs) to promote sustainable extraction of benthic resources. Integrating training programs on post-harvest handling, hygiene practices, and food safety measures into the TURFs framework, along with targeted investments in infrastructure and technical assistance, is crucial to ensure the long-term sustainability of the E. megalocyathus fishery, protect consumer health, and maintain the economic viability and environmental sustainability of this vital resource for local communities. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

15 pages, 4909 KB  
Article
Macrozoobenthic Communities in the Upwelling Area off Chile (36° S) with Special Consideration of the Oxygen Minimum Zone
by Anna S. Krug and Michael L. Zettler
Diversity 2025, 17(4), 278; https://doi.org/10.3390/d17040278 - 16 Apr 2025
Viewed by 851
Abstract
The Humboldt Current System (HCS) off southwest America is known for its strong upwelling and the resulting high primary production and associated oxygen minimum zones (OMZs). Macrozoobenthic species represent a group of organisms that are affected by the low oxygen concentrations in the [...] Read more.
The Humboldt Current System (HCS) off southwest America is known for its strong upwelling and the resulting high primary production and associated oxygen minimum zones (OMZs). Macrozoobenthic species represent a group of organisms that are affected by the low oxygen concentrations in the OMZ. In January 2023, benthic diversity was investigated at 8 stations on a transect off Concepción, central Chile (in the centre of the OMZ) in a water depth range from 56 to 912 m. The measured oxygen values ranged from 0 µmol/L in the OMZ to 144.64 µmol/L outside the OMZ. At each station, 3 van Veen grabs were taken, the species identified, counted and weighed. The mean abundance, biomass and diversity were calculated for each station. This analysis provided an overview of the changes in the species communities at different oxygen concentrations. The species communities at the stations with low oxygen levels differed greatly from those with higher oxygen levels. Species diversity at the stations increased during the transition from low (<2 µmol/L) to higher oxygen levels (>100 µmol/L). In contrast, species abundance and, to a lesser extent, biomass tended to be higher at low oxygen concentrations. The species composition at the various stations showed a high occurrence of polychaetes. The spionid polychaete Paraprionospio pinnata played an important role as a central key species within the OMZ. In addition to Paraprionospio, Ampelisca araucana, Magelona phyllisae, Nephtys ferruginea and Cossura chilensis were found in high abundance in the oxygen minimum zone (50–200 m water depth). At the edge and presumably below the oxygen minimum zone (300–912 m), where the oxygen concentration rises again, the dominance of individual species decreased, and the total number of species increased. In addition, the species composition changed and the abundance of other polychaete families (Cirratulidae, Amphinomidae, Oweniidae and Capitellidae) amplified. The proportion of polychaetes in the total abundance decreased from almost 100% at the low-oxygen stations to around 60% at the stations below the oxygen minimum zone. Bivalvia of the families Thyasiridae, Nuculidae and Yoldiidae were of particular importance at the deeper stations with a share of up to 20% of the total abundance. The study of benthic communities is of central importance to better understand the future changes in the structure and function of marine ecosystems in hypoxic waters. Full article
(This article belongs to the Special Issue Ecology and Biogeography of Marine Benthos—2nd Edition)
Show Figures

Figure 1

14 pages, 2446 KB  
Article
Role of Seagrass as a Food Source for Benthos in Tidal Flats: Toward Conservation and Restoration of Resilient Ecosystems
by Yumi Nagahama, Munehiro Nomura and Osamu Nishimura
Animals 2025, 15(8), 1098; https://doi.org/10.3390/ani15081098 - 10 Apr 2025
Viewed by 860
Abstract
Seagrass is a key primary producer in coastal ecosystems; however, most studies on seagrass-benthos interactions have focused on subtidal zones. Some species such as Zostera japonica grow in intertidal flats; however, their ecological functions remain unclear. Understanding whether intertidal seagrass beds contribute to [...] Read more.
Seagrass is a key primary producer in coastal ecosystems; however, most studies on seagrass-benthos interactions have focused on subtidal zones. Some species such as Zostera japonica grow in intertidal flats; however, their ecological functions remain unclear. Understanding whether intertidal seagrass beds contribute to benthic abundance and diversity can provide insights that facilitate tidal flat conservation. The present study clarifies the role of intertidal Z. japonica as a food source for benthos. Field surveys were conducted in an intertidal flat in Matsushima Bay, Japan. Five benthic species (Batillaria cumingii, Umbonium costatum, Phacosoma japonicum, Nereididae, and Paguroidea) were identified. Carbon and nitrogen stable isotope ratios (δ13C, δ15N) and fatty acid compositions of sediment organic matter, seawater, and target benthos were analyzed to determine food sources. The results showed that B. cumingii actively consumed Z. japonica-derived organic matter present in both seagrass and sandy sediments. Z. japonica also influenced bacterial community structure, providing a favorable habitat for Nereididae. Filter feeders (U. costatum and P. japonicum) exhibited minimal reliance on Z. japonica-derived organic matter. The findings suggest that, similar to subtidal seagrass ecosystems, intertidal seagrass meadows support benthic communities by supplying organic matter and enhancing bacterial production. Full article
(This article belongs to the Special Issue Conservation and Restoration of Aquatic Animal Habitats)
Show Figures

Figure 1

19 pages, 3897 KB  
Article
Seasonal Dynamics of Benthic Infauna Communities in Zostera marina Meadows: Effects of Plant Density Gradients
by Natalia Anna Gintowt, Halina Kendzierska and Urszula Janas
Biology 2025, 14(2), 153; https://doi.org/10.3390/biology14020153 - 3 Feb 2025
Cited by 1 | Viewed by 1163
Abstract
Zostera marina meadows play a key role in the Baltic Sea ecosystem. They are characterized by high primary production and provide feeding and reproduction grounds for organisms. These characteristics vary due to year-round environmental changes and may be due to the characteristics of [...] Read more.
Zostera marina meadows play a key role in the Baltic Sea ecosystem. They are characterized by high primary production and provide feeding and reproduction grounds for organisms. These characteristics vary due to year-round environmental changes and may be due to the characteristics of the meadows themselves. Organisms inhabiting seagrass meadows are involved in the transformation of substances from terrestrial runoff, and, through bioturbation and bioirrigation, affect biogeochemical processes in the sediments. This study aimed to determine the structure of benthic communities inhabiting Z. marina meadows and their bioturbation (BPC) and bioirrigation (IPC) potential as affected by seagrass density and seasonal changes. This study shows a positive correlation between the density of Z. marina and the structure of macrozoobenthos, as well as the bioturbation and bioirrigation potential of the studied communities. The autumn season stimulated the density of macrofauna and recorded the highest values of their potential activities indices. The presence of Z. marina positively affects macrozoobenthic communities and their functioning regardless of seagrass density, indicating that seagrass meadows inhabited by macrofauna are key biotopes that can support biogeochemical processes in the coastal zone more effectively than bare sand. Full article
Show Figures

Figure 1

22 pages, 12407 KB  
Article
Analyzing Archive Transit Multibeam Data for Nodule Occurrences
by Mark E. Mussett, David F. Naar, David W. Caress, Tracey A. Conrad, Alastair G. C. Graham, Max Kaufmann and Marcia Maia
J. Mar. Sci. Eng. 2024, 12(12), 2322; https://doi.org/10.3390/jmse12122322 - 18 Dec 2024
Cited by 1 | Viewed by 1396
Abstract
We show that analyzing archived and future multibeam backscatter and bathymetry data, in tandem with regional environmental parameters, can help to identify polymetallic nodule fields in the world’s oceans. Extensive archived multibeam transit data through remote areas of the world’s oceans are available [...] Read more.
We show that analyzing archived and future multibeam backscatter and bathymetry data, in tandem with regional environmental parameters, can help to identify polymetallic nodule fields in the world’s oceans. Extensive archived multibeam transit data through remote areas of the world’s oceans are available for data mining. New multibeam data will be made available through the Seabed 2030 Project. Uniformity of along- and across-track backscatter, backscatter intensity, angular response, water depth, nearby ground-truth data, local slope, sedimentation rate, and seafloor age provide thresholds for discriminating areas that are permissive to nodule presence. A case study of this methodology is presented, using archived multibeam data from a remote section of the South Pacific along the Foundation Seamounts between the Selkirk paleomicroplate and East Pacific Rise, that were collected during the 1997 Foundation–Hotline expedition on R/V Atalante. The 12 kHz Simrad EM12D multibeam data and the other forementioned data strongly suggest that a previously unknown nodule occurrence exists along the expedition transit. We also compare the utility of three different backscatter products to demonstrate that scans of printed backscatter maps can be a useful substitute for digital backscatter mosaics calculated using primary multibeam data files. We show that this expeditious analysis of legacy multibeam data could characterize benthic habitat types efficiently in remote deep-ocean areas, prior to more time-consuming and expensive video and sample acquisition surveys. Additionally, utilizing software other than specialty sonar processing programs during this research allows an exploration of how multibeam data products could be interrogated by a broader range of scientists and data users. Future mapping, video, and sampling cruises in this area would test our prediction and investigate how far it might extend to the north and south. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

18 pages, 3121 KB  
Article
Dynamics of Marenzelleria spp. Biomass and Environmental Variability: A Case Study in the Neva Estuary (The Easternmost Baltic Sea)
by Sergey M. Golubkov and Mikhail S. Golubkov
Biology 2024, 13(12), 974; https://doi.org/10.3390/biology13120974 - 26 Nov 2024
Viewed by 757
Abstract
Predicting which non-indigenous species (NISs) will establish persistent invasive populations and cause significant ecosystem changes remains an important environmental challenge. We analyzed the spatial and temporal dynamics of the entire zoobenthos and the biomass of Marenzelleria spp., one of the most successful invaders [...] Read more.
Predicting which non-indigenous species (NISs) will establish persistent invasive populations and cause significant ecosystem changes remains an important environmental challenge. We analyzed the spatial and temporal dynamics of the entire zoobenthos and the biomass of Marenzelleria spp., one of the most successful invaders in the Baltic Sea, in the Neva estuary in 2014–2023. A considerable decrease in Marenzelleria biomass was observed in the second half of the study period, which was accompanied by a sharp increase in the dominance of opportunistic oligochaete and chironomid species. Our one-way analysis of variance showed that communities with high Marenzelleria biomass had significantly higher diversity and biomass of native benthic crustaceans compared to communities with low alien polychaetes biomass. A high biomass of Marenzelleria was observed in biotopes characterized by low temperatures, high salinity, low plankton primary production and chlorophyll concentration. The results of PCA and one-way ANOVA indicated that these factors significantly influenced the spatial and temporal dynamics of the polychaete biomass. More detailed studies of the responses of NISs to environmental variables are needed to better understand and anticipate their dynamics in different regions of the Baltic Sea in relation to climate warming and anthropogenic impacts. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

16 pages, 9215 KB  
Article
Spatial Distribution and Growth Patterns of a Common Bivalve Mollusk (Macoma calcarea) in Svalbard Fjords in Relation to Environmental Factors
by Alyona E. Noskovich and Alexander G. Dvoretsky
Animals 2024, 14(23), 3352; https://doi.org/10.3390/ani14233352 - 21 Nov 2024
Cited by 3 | Viewed by 1035
Abstract
Ongoing warming in the Arctic has led to significant sea-ice loss and alterations in primary production, affecting all components of the marine food web. The considerable spatial variability of near-bottom environments around the Svalbard Archipelago renders the local fjords promising sites for revealing [...] Read more.
Ongoing warming in the Arctic has led to significant sea-ice loss and alterations in primary production, affecting all components of the marine food web. The considerable spatial variability of near-bottom environments around the Svalbard Archipelago renders the local fjords promising sites for revealing responses of benthic organisms to different environmental conditions. We investigated spatial variations in abundance, biomass, and growth parameters of the common bivalve Macoma calcarea in waters off western Spitsbergen and identified two distinct groups of this species: one composed mainly of cold-water stations from Storfjorden (Group I) and the other comprising warmer-water stations from Grønfjorden and Coles Bay (Group II). Within these groups, the mean abundance, biomass, production, and mortality accounted for 0.2 and 429 ind. m−2, 20 and 179 g m−2, 18.5 and 314 g m−2 year−1, and 0.22 and 0.10 year−1 respectively. The size–frequency and age–frequency distributions were biased towards smaller and younger specimens in Group I, while Group II displayed more even distributions. The maximum ages were 11 and 21 years, respectively. The mollusks from cold water were significantly smaller than their same-aged counterparts from warmer water. Two groups of Macoma were identified: slow-growing individuals with a rate of 1.4 mm and fast-growing individuals with a growth rate of 1.8 mm. Most population parameters were higher than those observed in the Pechora, Kara, and Greenland Seas. Redundancy analysis indicated water temperature as the main driving factor of abundance and biomass, while the latter was also influenced by the presence of pebbles. Our findings provide new insights into the growth patterns and spatial distribution of Macoma at high latitudes and confirm that this species can serve as a reliable indicator of environmental conditions. Full article
Show Figures

Figure 1

27 pages, 1309 KB  
Article
Trophic Position Stability of Benthic Organisms in a Changing Food Web of an Arctic Fjord Under the Pressure of an Invasive Predatory Snow Crab, Chionoecetes opilio
by Anna K. Zalota, Polina Yu. Dgebuadze, Alexander D. Kiselev, Margarita V. Chikina, Alexey A. Udalov, Daria V. Kondar, Alexey V. Mishin and Sergey M. Tsurikov
Biology 2024, 13(11), 874; https://doi.org/10.3390/biology13110874 - 28 Oct 2024
Cited by 1 | Viewed by 1785
Abstract
The introduction of a large predatory snow crab, Chionoecetes opilio, into the Kara Sea is a unique situation where the impact of an invasive species affecting an otherwise undisturbed ecosystem can be observed unhindered by other ecosystem stressors. Trophic interactions are one [...] Read more.
The introduction of a large predatory snow crab, Chionoecetes opilio, into the Kara Sea is a unique situation where the impact of an invasive species affecting an otherwise undisturbed ecosystem can be observed unhindered by other ecosystem stressors. Trophic interactions are one of the principal relationships between animals and can help assess an ecosystem’s stability. The trophic positions and sources of organic material for the most common benthic species of Blagopoluchiya Bay sampled at different stages of the invasion were calculated using stable isotope analysis. The most pronounced changes in the trophic web occurred amongst the megabenthic species, where previously most abundant deposit-feeding ophiuroids have disappeared. However, the benthic species’ trophic position and primary production source preference did not change. A sea star, Urasterias lincki, remained the highest carnivore in the bay, and the invasive crab remained at a lower trophic level, showing higher omnivory in its diet. Any changes in the consumers’ prey items were within the same trophic level. Overall, active predators became one of the most abundant feeding mode groups. The average weighted trophic position of all megabenthic species increased to the third trophic level, where mostly secondary consumers remained. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

26 pages, 3259 KB  
Article
Eucarid and Peracarid Fauna of the Valencia Seamount, a Deep-Isolated Seamount of the Western Mediterranean: Colonisation Capacity and Historical Changes
by Joan E. Cartes
Diversity 2024, 16(9), 582; https://doi.org/10.3390/d16090582 - 13 Sep 2024
Viewed by 982
Abstract
Seamounts can have a strong influence on the distribution and diversity of species, creating an oasis effect that may favour diversification. In order to assess how and to what extent supra- and epibenthic crustaceans can colonise these environments, the eucarid and peracarid fauna [...] Read more.
Seamounts can have a strong influence on the distribution and diversity of species, creating an oasis effect that may favour diversification. In order to assess how and to what extent supra- and epibenthic crustaceans can colonise these environments, the eucarid and peracarid fauna collected from the summit of the Valencia Seamount (VS), a small deep seamount (summit depth: 1056 m), rising from a depth of ca. 1850 m, in the oligotrophic Balearic Basin, was analysed. Based on a first sampling (beam trawls, plankton nets and stomach contents), and a faunal reconstruction from a sediment core (MC2, at 1151 m), the supra(epi)benthic crustaceans at the VS summit (to 1300 m) were composed of nine Eucarida and 25 Peracarida. Polycheles typhlops, Munida tenuimana, and Aristeus antennatus were the dominant species among eucarids. Among Peracarida the most abundant species were the Mysida Boreomysis arctica, the Amphipoda Rhachtropis caeca, and the Isopoda Munnopsurus atlanticus. Among Decapoda, a species with a wide amplitude in their depth distribution and small eggs (i.e., with planktotrophic larvae), showed a higher colonisation capacity. In the absence of larvae, the colonisation of peracarids depends on the amplitude of their depth distribution and only those species that reach the highest depths in the entire Balearic Basin, at least 1600–1800 m, were able to colonise the summit of VS. The natatory capacity of the species also has some influence and whole groups with low natatory capacity, such as the Desmosomatidae, were completely absent on the VS summit; however, they are distributed throughout the Balearic Basin to depths (up to about 1500 m) exceeding the depth of the seamount summit. Therefore, colonisation by peracarids must not have occurred by swimming through the entire water column, but by swimming along or just above the bottom. Remains of some suprabenthic species (mainly the isopod M. atlanticus) in MC2 and another core collected in NW Mallorca (MC3, 1114 m), i.e., out of the VS, showed how isopod diversity and size distribution changed historically. Also, after the 1960s, a decrease in primary production due to a decrease in rainfall and river runoff associated with river damming could have reduced the abundance of M. atlanticus. These types of historical studies can be useful in interpreting long-term changes in deep-sea communities and optimising the management of these vulnerable areas. Full article
Show Figures

Figure 1

18 pages, 3582 KB  
Article
Short-Term Impact of Decomposing Crown-of-Thorn Starfish Blooms on Reef-Building Corals and Benthic Algae: A Laboratory Study
by Yuxiao Li, Ruoxing Hao, Kefu Yu and Xiaoyan Chen
Water 2024, 16(2), 190; https://doi.org/10.3390/w16020190 - 5 Jan 2024
Cited by 2 | Viewed by 3264
Abstract
Outbreaks of crown-of-thorn starfish (COTS) have caused dramatic declines in reefs through predation on corals, but the post-bloom effects of COTS may still potentially threaten the environment and living organisms due to massive organic decomposition. This stimulation experiment showed that the decomposition of [...] Read more.
Outbreaks of crown-of-thorn starfish (COTS) have caused dramatic declines in reefs through predation on corals, but the post-bloom effects of COTS may still potentially threaten the environment and living organisms due to massive organic decomposition. This stimulation experiment showed that the decomposition of COTS debris triggered an extra mineralization process and resulted in acidifying, hypoxic, and eutrophic seawater. Consequently, the photosynthetic efficiency of coral symbionts decreased by 83%, and coral bleached after removing the stress within two days, then the coral skeleton dissolved at rates of 0.02–0.05 mg cm−2 day−1. Within two weeks, the photosynthesis and growth of benthic algae were suppressed by 27–86% and 1.5–16%, respectively. The mortality of turf algae and coralline algae indicated compromised primary productivity and limited coral recruitment, respectively. However, macroalgae, as coral competitors, became the only survivors, with increasing chlorophyll content. This study suggests a continuing decline of reefs during the collapse phase of COTS outbreaks and highlights the need for improving control strategies for the COTS population. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

17 pages, 6478 KB  
Article
Benthic Respiration and Heavy Metal Benthic Fluxes in Artificial Shihwa Lake: Approaching In Situ Measurement
by Yu-Hyeon Cho, Ju-Wook Baek, Sung-Uk An, Hyun-Ju Yoo, Hyun-Min Baek, Jin Young Choi, Tae Ha Kim, Kyung-Tae Kim, Jae Seong Lee and Sung-Han Kim
J. Mar. Sci. Eng. 2023, 11(11), 2186; https://doi.org/10.3390/jmse11112186 - 17 Nov 2023
Cited by 2 | Viewed by 1675
Abstract
This study assessed the impact of intensive human activities on organic matter (OM) and heavy metal cycles in Shihwa Lake, South Korea. Sediment oxygen demand (SOD), benthic nutrient flux (BNF), and benthic heavy metal flux were estimated using in situ benthic chambers. The [...] Read more.
This study assessed the impact of intensive human activities on organic matter (OM) and heavy metal cycles in Shihwa Lake, South Korea. Sediment oxygen demand (SOD), benthic nutrient flux (BNF), and benthic heavy metal flux were estimated using in situ benthic chambers. The combined analysis of sediment trap and SOD showed that the vertical supply of OM was a major controlling factor for benthic respiration. The BNF accounted for 35–144% and 32–184% of the N and P required, respectively, for primary production (PP) in the water column. The higher SOD may have also accelerated the release of Mn, Fe, Co, and Ni from the sediment. Benthic fluxes of Cr, As, Cd, Pb, Cu, and Zn were highest near the industrial complex, with ranges of 1.3 ± 0.9, 6.4 ± 4.9, 0.2 ± 0.1, 0.5 ± 0.4, 7.7 ± 1.4, and 452 ± 133 μmol m−2 d−1, respectively. Mn, Fe, Co, As, Pb, Ni, and Cu contributed more than 10% of the sediment to the current standing stock at Shihwa Lake. Full article
(This article belongs to the Special Issue Benthic Biogeochemical Cycling of Ocean Nutrients and Carbon)
Show Figures

Graphical abstract

22 pages, 8294 KB  
Article
Distribution of Living Benthic Foraminifera in the Baffin Bay and Nares Strait in the Summer and Fall Periods: Relation with Environmental Parameters
by Calypso Racine, Jérôme Bonnin, Pierre-Antoine Dessandier and Jacques Giraudeau
J. Mar. Sci. Eng. 2023, 11(11), 2049; https://doi.org/10.3390/jmse11112049 - 26 Oct 2023
Viewed by 2158
Abstract
Arctic climate warming leads to drastic changes in sea ice dynamics, hence impacting primary productivity but also the benthic communities. Therefore, to assess the response of living benthic foraminifera to contrasting Arctic environments, surface sediments from nine stations were collected during the summer [...] Read more.
Arctic climate warming leads to drastic changes in sea ice dynamics, hence impacting primary productivity but also the benthic communities. Therefore, to assess the response of living benthic foraminifera to contrasting Arctic environments, surface sediments from nine stations were collected during the summer of 2014 and fall of 2015 in the Baffin Bay and Nares Strait. Living standing stock are systematically low in the eastern and western Baffin Bay and much higher in the North Water Polynya and the Kane Basin located at the entrance and in the center of Nares Strait, respectively. High living benthic foraminiferal densities in the NOW reflect higher TOC while the highest density in the Kane Basin coincides with lower TOC but higher C/N and higher δ13Corg. The contribution of agglutinated species is on average very high for the whole study area and dominated by the species Adercotryma glomeratum, Lagenammina arenulata, and Reophax scorpiurus. Calcareous species, dominated by Nonionellina labradorica and Melonis barleeanus, are more abundant in the North Water Polynya and the Kane Basin. The very high living standing stock observed in the Kane Basin might be related to the northern position of the ice arch that summer during 2014 and therefore a particularly scarce sea ice cover might have allowed massive phytoplankton production during that season. In this study, the distribution of living benthic foraminifera is discussed according to several environmental parameters such as water masses, phytoplankton productivity, and organic matter fluxes. Full article
Show Figures

Figure 1

12 pages, 1410 KB  
Article
Influence of Seasonal Water Level Fluctuations on Food Web Structure of a Large Floodplain Lake in China
by Huan Zhang, Yuyu Wang and Jun Xu
Sustainability 2023, 15(13), 10724; https://doi.org/10.3390/su151310724 - 7 Jul 2023
Cited by 3 | Viewed by 2019
Abstract
Seasonal shifts in hydrology are known to alter the abundance and diversity of basal production resources and habitats and hence strongly influence the structure and function of river ecosystems. However, equivalent knowledge of natural lake ecosystems in floodplain regions is lacking. Here, we [...] Read more.
Seasonal shifts in hydrology are known to alter the abundance and diversity of basal production resources and habitats and hence strongly influence the structure and function of river ecosystems. However, equivalent knowledge of natural lake ecosystems in floodplain regions is lacking. Here, we used stable isotope ratios of carbon and nitrogen to assess available primary production sources and consumer taxa during the dry and wet seasons in a large floodplain lake connected to the Yangtze River. Fish species showed distinct δ13C values between two hydrological periods but only small changes in δ15N values. Most of the fish species had higher estimated trophic levels in the dry season, likely indicating greater carnivory. Results of Bayesian mixing models revealed that benthic algae and benthic organic matter (BOM), combined with C3 vegetation, were the principal food sources supporting the biomass of most fish species during the low-water period, whereas benthic algae and seston were the most important carbon sources during the flood period. Overall, these findings demonstrate that seasonal hydrological changes, such as water-level fluctuations, can affect the trophic structure and ecosystem functioning of floodplain lake food webs in the subtropical zone. Full article
Show Figures

Figure 1

Back to TopTop