Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = beta-cell identity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 16365 KB  
Article
The Role of Hydrogen Sulfide in iNOS and APP Localization and Expression in Neurons and Glial Cells Under Traumatic Effects: An Experimental Study with Bioinformatics Analysis and Biomodeling
by Stanislav Rodkin, Chizaram Nwosu and Evgeniya Kirichenko
Int. J. Mol. Sci. 2024, 25(22), 11892; https://doi.org/10.3390/ijms252211892 - 5 Nov 2024
Cited by 3 | Viewed by 1542
Abstract
Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of [...] Read more.
Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of inducible NO synthase (iNOS) and amyloid-beta precursor protein (APP) in damaged neural tissue at 24 h and 7 days following traumatic brain injury (TBI). The application of aminooxyacetic acid (AOAA), an inhibitor of cystathionine β-synthase (CBS), produced the opposite effect. Seven days after TBI, iNOS expression was observed not only in the cytoplasm but also in some neuronal nuclei, while APP was exclusively localized in the cytoplasm and axons of damaged neurons. It was also shown that iNOS and APP were present in the cytoplasm of mechanoreceptor neurons (MRNs) in the crayfish, in axons, as well as in certain glial cells 8 h after axotomy. Na2S and AOAA had opposing effects on axotomized MRNs and ganglia in the ventral nerve cord (VNC). Multiple sequence alignments revealed a high degree of identity among iNOS and APP amino acid residues in various vertebrate and invertebrate species. In the final stage of this study, biomodeling identified unique binding sites for H2S, hydrosulfide anion (HS), and thiosulfate (S2O32−) with iNOS and APP. Full article
Show Figures

Figure 1

30 pages, 1893 KB  
Article
Biology of Healthy Aging: Biological Hallmarks of Stress Resistance Related and Unrelated to Longevity in Humans
by Komalpreet Badial, Patricia Lacayo and Shin Murakami
Int. J. Mol. Sci. 2024, 25(19), 10493; https://doi.org/10.3390/ijms251910493 - 29 Sep 2024
Cited by 2 | Viewed by 3246
Abstract
Stress resistance is highly associated with longer and healthier lifespans in various model organisms, including nematodes, fruit flies, and mice. However, we lack a complete understanding of stress resistance in humans; therefore, we investigated how stress resistance and longevity are interlinked in humans. [...] Read more.
Stress resistance is highly associated with longer and healthier lifespans in various model organisms, including nematodes, fruit flies, and mice. However, we lack a complete understanding of stress resistance in humans; therefore, we investigated how stress resistance and longevity are interlinked in humans. Using more than 180 databases, we identified 541 human genes associated with stress resistance. The curated gene set is highly enriched with genes involved in the cellular response to stress. The Reactome analysis identified 398 biological pathways, narrowed down to 172 pathways using a medium threshold (p-value < 1 × 10−4). We further summarized these pathways into 14 pathway categories, e.g., cellular response to stimuli/stress, DNA repair, gene expression, and immune system. There were overlapping categories between stress resistance and longevity, including gene expression, signal transduction, immune system, and cellular responses to stimuli/stress. The categories include the PIP3-AKT-FOXO and mTOR pathways, known to specify lifespans in the model systems. They also include the accelerated aging syndrome genes (WRN and HGPS/LMNA), while the genes were also involved in non-overlapped categories. Notably, nuclear pore proteins are enriched among the stress-resistance pathways and overlap with diverse metabolic pathways. This study fills the knowledge gap in humans, suggesting that stress resistance is closely linked to longevity pathways but not entirely identical. While most longevity categories intersect with stress-resistance categories, some do not, particularly those related to cell proliferation and beta-cell development. We also note inconsistencies in pathway terminologies with aging hallmarks reported previously, and propose them to be more unified and integral. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 4677 KB  
Article
Radiation Effects of Normal B-Lymphoblastoid Cells after Exposing Them to Low-Dose-Rate Irradiation from Tritium β-rays
by Bing Deng, Yi Quan, Zhilin Chen and Heyi Wang
Biology 2024, 13(6), 418; https://doi.org/10.3390/biology13060418 - 5 Jun 2024
Viewed by 1029
Abstract
The effects of tritium at low doses and low dose rates have received increasing attention due to recent developments in fusion energy and the associated risks of tritium releases into the environment. Mitochondria have been identified as a potential candidate for studying the [...] Read more.
The effects of tritium at low doses and low dose rates have received increasing attention due to recent developments in fusion energy and the associated risks of tritium releases into the environment. Mitochondria have been identified as a potential candidate for studying the effects of low-dose/low-dose-rate radiation, with extensive experimental results obtained using X-ray irradiation. In this study, irradiation experiments were conducted on normal B-lymphoblastoid cells using HTO at varying doses. When compared to X-ray irradiation, no significant differences in cell viability induced by different doses were observed. However, the results of ATP levels showed a significant difference between the irradiated sample at a dose of 500 mGy by tritium beta-rays and the sham-irradiated sample, while the levels obtained with X-ray irradiation were almost identical to the sham-irradiated sample. In contrast, ATP levels for both tritium beta-rays and X-rays at a dose of 1.0 Gy showed minimal differences compared to the sham-irradiated sample. Furthermore, distinct effects at 500 mGy were also confirmed in both ROS levels and apoptosis results obtained through tritium beta-ray irradiation. This suggests that mitochondria might be a potential sensitive target for investigating the effects of tritium beta-ray irradiation. Full article
Show Figures

Figure 1

16 pages, 6383 KB  
Article
Change in Tissue Microbiome and Related Human Beta Defensin Levels Induced by Antibiotic Use in Bladder Carcinoma
by Ádám Monyók, Bassel Mansour, István Vadnay, Nóra Makra, Zsuzsanna A. Dunai, Éva Nemes-Nikodém, Balázs Stercz, Dóra Szabó and Eszter Ostorházi
Int. J. Mol. Sci. 2024, 25(8), 4562; https://doi.org/10.3390/ijms25084562 - 22 Apr 2024
Viewed by 1579
Abstract
It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes [...] Read more.
It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Therapeutic Target in Bladder Cancer)
Show Figures

Figure 1

25 pages, 4656 KB  
Article
Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones
by Laura R. Bramwell, Ryan Frankum and Lorna W. Harries
Cells 2024, 13(6), 517; https://doi.org/10.3390/cells13060517 - 15 Mar 2024
Cited by 3 | Viewed by 2726
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects [...] Read more.
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure–function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones—diethylstilboestrol, ethynyl estradiol and levonorgestrel—were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms. Full article
Show Figures

Figure 1

18 pages, 1425 KB  
Review
Animal Models for Understanding the Mechanisms of Beta Cell Death during Type 2 Diabetes Pathogenesis
by Brittney A. Covington and Wenbiao Chen
Biomedicines 2024, 12(3), 473; https://doi.org/10.3390/biomedicines12030473 - 20 Feb 2024
Cited by 4 | Viewed by 3456
Abstract
Type 2 diabetes (T2D) has become a worldwide epidemic, primarily driven by obesity from overnutrition and sedentariness. Recent results reveal there is heterogeneity in both pathology and treatment responses in T2D patients. Therefore, a variety of T2D animal models are necessary to obtain [...] Read more.
Type 2 diabetes (T2D) has become a worldwide epidemic, primarily driven by obesity from overnutrition and sedentariness. Recent results reveal there is heterogeneity in both pathology and treatment responses in T2D patients. Therefore, a variety of T2D animal models are necessary to obtain a mechanistic understanding of distinct disease processes. T2D results from insufficient insulin, either due to beta cell loss or inborn deficiency. Although decreases in beta cell mass can occur through loss of identity or cell death, in this review, we will highlight the T2D animal models that display beta cell death, including the Zucker Diabetic Fatty Rat, sand rat, db/db mouse, and a novel diabetic zebrafish model, the Zebrafish Muscle Insulin-Resistant (zMIR) fish. Procuring a mechanistic understanding of different T2D progression trajectories under a variety of contexts is paramount for developing and testing more individualized treatments. Full article
(This article belongs to the Special Issue Major Breakthroughs in Diabetic Animal Model Research)
Show Figures

Figure 1

13 pages, 1971 KB  
Article
Longitudinal Changes of Ocular Surface Microbiome in Patients Undergoing Hemopoietic Stem Cell Transplant (HSCT)
by Suzanne Clougher, Marco Severgnini, Antonella Marangoni, Clarissa Consolandi, Tania Camboni, Sara Morselli, Mario Arpinati, Francesca Bonifazi, Michele Dicataldo, Tiziana Lazzarotto, Luigi Fontana and Piera Versura
J. Clin. Med. 2024, 13(1), 208; https://doi.org/10.3390/jcm13010208 - 29 Dec 2023
Viewed by 1817
Abstract
Purpose: To evaluate changes in the ocular surface microbiome (OSM) between pre- and post-haemopoietic stem cell transplant (HSCT) in the same patient, and to assess the potential impact of these changes in ocular graft-versus-host disease (o)GVHD development. Methods: Lower fornix conjunctival swabs of [...] Read more.
Purpose: To evaluate changes in the ocular surface microbiome (OSM) between pre- and post-haemopoietic stem cell transplant (HSCT) in the same patient, and to assess the potential impact of these changes in ocular graft-versus-host disease (o)GVHD development. Methods: Lower fornix conjunctival swabs of 24 patients were obtained before and after HSCT and subjected to DNA extraction for amplification and sequencing of the V3-V4 regions of the bacterial 16S rRNA gene. The obtained reads were reconstructed, filtered, and clustered into zero-radius operational taxonomic units (zOTUs) at 97% identity level before taxonomic assignment, and biodiversity indexes were calculated. Transplant characteristics were recorded, and dry eye was diagnosed and staged 1–4 according to the Dry Eye WorkShop (DEWS) score. Results: No significant difference in OSM alpha diversity between pre- and post-transplant was found. A significant difference in beta diversity was observed between patients with a DEWS score of 1 versus 3 (p = 0.035). Increased corneal damage between pre- and post-HSCT was significantly associated with a decrease in alpha diversity. The changes in OSM were not associated with oGVHD, nor with any transplant parameter. Conclusions: This preliminary study is the first study to analyse changes in the OSM before and after HSCT longitudinally. No trend in OSM biodiversity, microbial profile, or overall composition changes before and after HSCT was significant or associated with oGVHD onset. The great variability in the observed OSM profiles seems to suggest the absence of a patient-specific OSM “signature”. Full article
(This article belongs to the Collection Ocular Manifestations of Systemic Diseases)
Show Figures

Figure 1

21 pages, 3924 KB  
Review
The Research Progress in Transforming Growth Factor-β2
by Meng-Yan Wang, Wen-Juan Liu, Le-Yi Wu, Gang Wang, Cheng-Lin Zhang and Jie Liu
Cells 2023, 12(23), 2739; https://doi.org/10.3390/cells12232739 - 30 Nov 2023
Cited by 14 | Viewed by 4737
Abstract
Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an [...] Read more.
Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an increasing number of recent studies uncovered the distinctive features of TGF-β2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-β2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-β2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-β2 to support further research on TGF-β2. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

11 pages, 3081 KB  
Brief Report
In Silico Physicochemical Characterization of Fusion Proteins from Emerging Amazonian Arboviruses
by Crislaine S. Leal and Carlos Alberto M. Carvalho
Life 2023, 13(8), 1687; https://doi.org/10.3390/life13081687 - 4 Aug 2023
Cited by 1 | Viewed by 1659
Abstract
Mayaro (MAYV), Saint Louis encephalitis (SLEV), and Oropouche (OROV) viruses are neglected members of the three main families of arboviruses with medical relevance that circulate in the Amazon region as etiological agents of outbreaks of febrile illnesses in humans. As enveloped viruses, MAYV, [...] Read more.
Mayaro (MAYV), Saint Louis encephalitis (SLEV), and Oropouche (OROV) viruses are neglected members of the three main families of arboviruses with medical relevance that circulate in the Amazon region as etiological agents of outbreaks of febrile illnesses in humans. As enveloped viruses, MAYV, SLEV, and OROV largely depend on their class II fusion proteins (E1, E, and Gc, respectively) for entry into the host cell. Since many aspects of the structural biology of such proteins remain unclear, the present study aimed at physicochemically characterizing them by an in silico approach. The complete amino acid sequences of MAYV E1, SLEV E, and OROV Gc proteins derived by conceptual translation from annotated coding regions in the reference sequence genome of the respective viruses were obtained from the NCBI Protein database in the FASTA format and then submitted to the ClustalO, Protcalc, Pepstats, Predator, Proscan, PCprof, Phyre2, and 3Drefine web servers for the determination of sequence identities, the estimation of residual properties, the prediction of secondary structures, the identification of potential post-translational modifications, the recognition of antigenic propensities, and the modeling/refinement of three-dimensional structures. Sequence identities were 20.44%, 18.82%, and 13.70% between MAYV/SLEV, SLEV/OROV, and MAYV/OROV fusion proteins, respectively. As for the residual properties, MAYV E1 and SLEV E proteins showed a predominance of the non-polar profile (56% and 55% of the residues, respectively), whereas the OROV Gc protein showed a predominance of the polar profile (52% of the residues). Regarding predicted secondary structures, MAYV E1 and SLEV E proteins showed fewer alpha-helices (16.51% and 15.17%, respectively) than beta-sheets (21.79% and 25.15%, respectively), while the opposite was observed in the OROV Gc protein (20.39% alpha-helices and 12.14% beta-sheets). Regarding post-translational modifications, MAYV E1, SLEV E, and OROV Gc proteins showed greater relative potential for protein kinase C phosphorylation, N-myristoylation, and casein kinase II phosphorylation, respectively. Finally, antigenic propensities were higher in the N-terminus half than in the C-terminus half of these three proteins, whose three-dimensional structures revealed three distinctive domains. In conclusion, MAYV E1 and SLEV E proteins were found to share more physicochemical characteristics with each other than the OROV Gc protein, although they are all grouped under the same class of viral fusion proteins. Full article
(This article belongs to the Special Issue Genetic and Antigenic Diversity of Pathogenic Viruses)
Show Figures

Figure 1

21 pages, 4327 KB  
Article
Lost and Found: The Family of NF-κB Inhibitors Is Larger than Assumed in Salmonid Fish
by Doret R. van Muilekom, Bertrand Collet, Henrike Rebl, Kristina Zlatina, Fabio Sarais, Tom Goldammer and Alexander Rebl
Int. J. Mol. Sci. 2023, 24(12), 10229; https://doi.org/10.3390/ijms241210229 - 16 Jun 2023
Cited by 9 | Viewed by 2433
Abstract
NF-κB signalling is largely controlled by the family of ‘inhibitors of NF-κB’ (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ ( [...] Read more.
NF-κB signalling is largely controlled by the family of ‘inhibitors of NF-κB’ (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbβ (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBβ in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbβ probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε—versus the well-researched iκbα factor—in a non-mammalian model species. Full article
(This article belongs to the Special Issue NF-κB and Disease 3.0)
Show Figures

Figure 1

9 pages, 617 KB  
Case Report
Case Report—An Inherited Loss-of-Function NRXN3 Variant Potentially Causes a Neurodevelopmental Disorder with Autism Consistent with Previously Described 14q24.3-31.1 Deletions
by René G. Feichtinger, Martin Preisel, Karin Brugger, Saskia B. Wortmann and Johannes A. Mayr
Genes 2023, 14(6), 1217; https://doi.org/10.3390/genes14061217 - 2 Jun 2023
Cited by 4 | Viewed by 3197
Abstract
Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both “de novo” occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a [...] Read more.
Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both “de novo” occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a neuronal cell surface protein involved in cell recognition and adhesion, as well as mediating intracellular signaling. NRXN3 is expressed in two distinct isoforms (alpha and beta) generated by alternative promoters and splicing. MM/Results: Using exome sequencing, we identified a monoallelic frameshift variant c.159_160del (p.Gln54AlafsTer50) in the NRXN3 beta isoform (NM_001272020.2) in a 5-year-old girl with developmental delay, autism spectrum disorder, and behavioral issues. This variant was inherited from her mother, who did not have any medical complaints. Discussion: This is the first detailed report of a loss-of-function variant in NRXN3 causing an identical phenotype, as reported for heterozygous large-scale deletions in the same genomic region, thereby confirming NRXN3 as a novel gene for neurodevelopmental disorders with autism. Full article
(This article belongs to the Special Issue Genetics of Rare Monogenic Neurodevelopmental Syndromes)
Show Figures

Figure 1

12 pages, 2502 KB  
Article
Effective Generation of Functional Pancreatic β Cells from Human-Derived Dental Stem Cells of Apical Papilla and Bone-Marrow-Derived Stem Cells: A Comparative Study
by Duaa Abuarqoub, Sofia Adwan, Rand Zaza, Suha Wehaibi, Nazneen Aslam, Hanan Jafar, Nidal Qinnah and Abdalla Awidi
Pharmaceuticals 2023, 16(5), 649; https://doi.org/10.3390/ph16050649 - 26 Apr 2023
Cited by 7 | Viewed by 3136
Abstract
Diabetes Mellitus Type 1 is an autoimmune disease that occurs due to the destruction of insulin-producing cells (β cells), resulting in hyperglycemia. Therefore, diabetic patients depend on insulin treatment for the rest of their lives. Stem cells are considered a promising cellular therapy [...] Read more.
Diabetes Mellitus Type 1 is an autoimmune disease that occurs due to the destruction of insulin-producing cells (β cells), resulting in hyperglycemia. Therefore, diabetic patients depend on insulin treatment for the rest of their lives. Stem cells are considered a promising cellular therapy to replace the nonfunctional beta cells with functional and mature beta cells. Hence, in this study, we aimed to examine the potential of dental stem cells of apical papilla (SCAP) to differentiate into functional islet cell aggregates (ICAs), compared to the ICA generated from bone-marrow-derived stem cells (BM-MSCs). Our strategy was to induce the differentiation of SCAP and BM-MSCs into a definitive endoderm. The success of endodermal differentiation was determined by measuring the expression of definitive endodermal markers, FOXA2 and SOX-17, by flow cytometry. Next, the maturity and functionality of the differentiated cells were evaluated by measuring the amount of insulin and C-peptide secreted by the derived ICAs using ELISA. Additionally, the expression of mature beta cell markers—insulin, C-peptide, glucagon and PDX-1—was detected through confocal microscopy, while the staining of the mature islet-like clusters was detected by using diphenythiocarbazone (DTZ). Our results have shown that both SCAP and BM-MSCs were sequentially committed to a definitive pancreatic endoderm and β-cell-like cells by upregulating the expression of FOXA2 and SOX17 significantly (**** p < 0.0000 and *** p = 0.0001), respectively. Moreover, the identity of ICAs was confirmed by DTZ-positive staining, as well as by the expression of C-peptide, Pdx-1, insulin and glucagon at day 14. It was noted that at day 14, differentiated ICAs released insulin and C-peptides in a significant manner (* p < 0.01, *** p = 0.0001), respectively, exhibiting in vitro functionality. Our results demonstrated for the first time that SCAP could be differentiated into pancreatic cell lineage in a similar manner to BM-MSCs, suggesting a new unambiguous and nonconventional source of stem cells that could be used for stem cell therapy to treat diabetes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 1004 KB  
Article
Urinary Proteins of Female Domestic Dog (Canis familiaris) during Ovarian Cycle
by Martyna Woszczyło, Paweł Pasikowski, Sankarganesh Devaraj, Agata Kokocińska, Antoni Szumny, Marcin J. Skwark, Wojciech Niżański and Michał Dzięcioł
Vet. Sci. 2023, 10(4), 292; https://doi.org/10.3390/vetsci10040292 - 14 Apr 2023
Viewed by 3243
Abstract
The presence and identity of non-volatile chemical signals remain elusive in canines. In this study, we aim to evaluate the urinary proteins of female domestic dogs in the estrus and anestrus phases to evidence the presence of non-volatile chemical signals and to elucidate [...] Read more.
The presence and identity of non-volatile chemical signals remain elusive in canines. In this study, we aim to evaluate the urinary proteins of female domestic dogs in the estrus and anestrus phases to evidence the presence of non-volatile chemical signals and to elucidate their identities. We collected urine samples from eight female dogs in the estrus and anestrus phases. A total of 240 proteins were identified in the urine samples using liquid chromatography–mass spectrometry (LC–MS analysis). The comparison of the proteins revealed a significant difference between the estrus and anestrus urine. We identified proteins belonging to the lipocalin family of canines (beta-lactoglobulin-1 and beta-lactoglobulin-2, P33685 and P33686, respectively), one of whose function was the transport of pheromones and which was present only in the estrus urine samples. Moreover, proteins such as Clusterin (CLU), Liver-expressed antimicrobial peptide 2 (LEAP2), and Proenkephalin (PENK) were more abundant in the estrus urine when compared to the anestrus urine. LEAP2 was recently described as a ghrelin receptor antagonist and implicated in regulating food intake and body weight in humans and mice. Proenkephalin, a polypeptide hormone cleaved into opioid peptides, was also recognized as a candidate to determine kidney function. As of yet, none of these have played a role in chemical communication. Clusterin, an extracellular chaperone protecting from protein aggregation implicated in stress-induced cell apoptosis, is a plausible candidate in chemical communication, which is a claim that needs to be ascertained further. Data are available via ProteomeXchange with the identifier PXD040418. Full article
Show Figures

Figure 1

18 pages, 5900 KB  
Article
IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium
by Srinivasa R. Sripathi, Ming-Wen Hu, Ravi Chakra Turaga, Rebekah Mikeasky, Ganesh Satyanarayana, Jie Cheng, Yukan Duan, Julien Maruotti, Karl J. Wahlin, Cynthia A. Berlinicke, Jiang Qian, Noriko Esumi and Donald J. Zack
Cells 2023, 12(8), 1155; https://doi.org/10.3390/cells12081155 - 13 Apr 2023
Cited by 11 | Viewed by 3246
Abstract
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal [...] Read more.
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF–β) and the inflammatory cytokine tumor necrosis factor alpha (TNF–α), can induce RPE–EMT; however, small molecule inhibitors of RPE–EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKβ) that selectively targets NF-κB signaling, can modulate TGF–β/TNF–α-induced RPE–EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKβ inhibition on RPE–EMT-associated factors using a second IKKβ inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE–EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT. Full article
Show Figures

Figure 1

22 pages, 9925 KB  
Article
A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences
by K. Alice Lindsay, Nedine Abdelhamid, Shehani Kahawatte, Ruxandra I. Dima, Dan L. Sackett, Tara M. Finegan and Jennifer L. Ross
Biomolecules 2023, 13(4), 620; https://doi.org/10.3390/biom13040620 - 30 Mar 2023
Cited by 3 | Viewed by 2604
Abstract
In cells, microtubule location, length, and dynamics are regulated by a host of microtubule-associated proteins and enzymes that read where to bind and act based on the microtubule “tubulin code,” which is predominantly encoded in the tubulin carboxy-terminal tail (CTT). Katanin is a [...] Read more.
In cells, microtubule location, length, and dynamics are regulated by a host of microtubule-associated proteins and enzymes that read where to bind and act based on the microtubule “tubulin code,” which is predominantly encoded in the tubulin carboxy-terminal tail (CTT). Katanin is a highly conserved AAA ATPase enzyme that binds to the tubulin CTTs to remove dimers and sever microtubules. We have previously demonstrated that short CTT peptides are able to inhibit katanin severing. Here, we examine the effects of CTT sequences on this inhibition activity. Specifically, we examine CTT sequences found in nature, alpha1A (TUBA1A), detyrosinated alpha1A, Δ2 alpha1A, beta5 (TUBB/TUBB5), beta2a (TUBB2A), beta3 (TUBB3), and beta4b (TUBB4b). We find that these natural CTTs have distinct abilities to inhibit, most noticeably beta3 CTT cannot inhibit katanin. Two non-native CTT tail constructs are also unable to inhibit, despite having 94% sequence identity with alpha1 or beta5 sequences. Surprisingly, we demonstrate that poly-E and poly-D peptides are capable of inhibiting katanin significantly. An analysis of the hydrophobicity of the CTT constructs indicates that more hydrophobic polypeptides are less inhibitory than more polar polypeptides. These experiments not only demonstrate inhibition, but also likely interaction and targeting of katanin to these various CTTs when they are part of a polymerized microtubule filament. Full article
(This article belongs to the Special Issue Molecular Functions of Microtubules)
Show Figures

Figure 1

Back to TopTop