Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = bio-sourced packaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 7118 KB  
Review
Biobased Polyamides: A Journey from the Biomass Towards Cutting Edge Materials
by Maria Diaz-Galbarriatu, Julia Sánchez-Bodón, Estíbaliz Hernáez-Laviña, José Luis Vilas-Vilela and Isabel Moreno-Benítez
Polymers 2025, 17(19), 2599; https://doi.org/10.3390/polym17192599 - 25 Sep 2025
Viewed by 1065
Abstract
Since the 1930s, polyamides (PAs) have become increasingly vital across industries like automotive, textiles, electronics, and packaging, owing to their exceptional properties. However, they also have notable limitations, including a tendency to absorb water, low dimensional stability, poor solubility, and the resulting processing [...] Read more.
Since the 1930s, polyamides (PAs) have become increasingly vital across industries like automotive, textiles, electronics, and packaging, owing to their exceptional properties. However, they also have notable limitations, including a tendency to absorb water, low dimensional stability, poor solubility, and the resulting processing challenges. From an environmental perspective, the reliance on fossil-based monomers for traditional PAs and the accumulation of post-consumer waste, due to their resistance to (bio)degradation, are key concerns. In recent decades, significant advancements have been made in synthesizing PAs from bio-based monomers, primarily sourced from inedible lignocellulosic materials. Some of these bio-based PAs exhibit properties comparable to their fossil-derived counterparts, with benefits like enhanced solubility, which simplifies processing. Moreover, certain bio-based variants have shown improved biodegradability, facilitating the potential recovery of monomers for the production of new virgin polymers and reducing waste accumulation. This review highlights the progress in developing PAs from commonly used bio-based sources, including lignin-derived aromatic compounds, terpenes, fatty acids, and furan derivatives, with a focus on the improvements made over their fossil-based analogs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 10986 KB  
Article
Preparation of Gallic Acid-Grafted Silkworm Pupae Chitosan Composite Film and Its Application in Blueberry Preservation
by Kexin Yi, Bixing Yang, Yunlong Wu, Shiyuan Miao and Yujie Lu
Foods 2025, 14(18), 3280; https://doi.org/10.3390/foods14183280 - 22 Sep 2025
Viewed by 657
Abstract
Chitosan films are promising for food packaging but are limited by poor solubility, weak mechanical strength, and insufficient functional properties. Most conventional chitosan is derived from crustacean shells, with limited exploration of alternative biosources. To overcome these drawbacks, this study utilized silkworm pupae [...] Read more.
Chitosan films are promising for food packaging but are limited by poor solubility, weak mechanical strength, and insufficient functional properties. Most conventional chitosan is derived from crustacean shells, with limited exploration of alternative biosources. To overcome these drawbacks, this study utilized silkworm pupae chitosan as a substrate and graft-modified it with gallic acid (GA-g-CS) to develop functional composite films for blueberry preservation. The results showed that the synthesized GA-g-CS exhibited a grafting efficiency of 83.8%. Compared to chitosan films, the GA-g-CS composite films showed enhanced physical properties, mechanical properties, UV-blocking capacity, antioxidant activity, and antimicrobial activity. Water solubility increased by 21%, and water vapor permeability was reduced by approximately 91%. In blueberry preservation trials, GA-g-CS composite films reduced weight loss by 12%, decreased decay incidence by 30%, and better maintained firmness and nutritional content. This study modified silkworm pupae-derived chitosan to overcome the inherent limitations of native chitosan. The resulting GA-g-CS film represents a high-performance active packaging material with significant potential. The resulting GA-g-CS film represents a high-performance active packaging material with potential for preserving perishable foods prone to oxidation and spoilage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 2066 KB  
Article
Evaluation of the Effect of Oregano Essential Oil and Emulsifier Ratio on the Physicochemical, Mechanical, and Antioxidant Properties of Corn Starch Films Based on Gel Matrices
by Gabriela Uribe-Cruz, María Antonia Flores-Córdova, Mayra Cristina Soto-Caballero, Nora Aideé Salas-Salazar, María Janeth Rodríguez-Roque, Carlos Horacio Acosta-Muñiz, Claudia Andrea Romero-Bastida and Paul Baruk Zamudio-Flores
Gels 2025, 11(9), 760; https://doi.org/10.3390/gels11090760 - 21 Sep 2025
Viewed by 860
Abstract
In this study, the oregano essential oil (OEO) was extracted and physiochemically characterized in order to assess its effect on starch films formed from gel matrices. Ten formulations were proposed, in which the amounts of OEO and the emulsifier Tween® 80 (Tween80) [...] Read more.
In this study, the oregano essential oil (OEO) was extracted and physiochemically characterized in order to assess its effect on starch films formed from gel matrices. Ten formulations were proposed, in which the amounts of OEO and the emulsifier Tween® 80 (Tween80) were varied in order to determine the OEO and Tween80 (w/w) ratio that would allow us to obtain a stable colloidal dispersion (without the physical perception of OEO) with an adequate incorporation of OEO. The effect of the inclusion of OEO on the rheological, physicochemical (color, thickness, and density), mechanical, water vapor permeability (WVP), and antioxidant properties of the starch-based gel films were evaluated. The formulations indicated that an OEO/Tween80 ratio of 0.0046/0.0010 g g−1 was the appropriate formulation for the formation of starch films from gel matrices with physical and mechanical properties suitable for being applied to food. This ratio could be ideal for obtaining films with greater mechanical properties and lower hydrophilicity (lower WVP) for packaging for foods that do not require high WVP levels. Full article
(This article belongs to the Special Issue Nature Polymer Gels for Food Packaging)
Show Figures

Graphical abstract

17 pages, 680 KB  
Article
Exploring the Potential Roles of SLC39A8 and POC5 Missense Variants in the Association Between Body Composition, Beverage Consumption, and Chronic Lung Diseases: A Two-Sample Mendelian Randomization Study
by Oladayo E. Apalowo, Hunter K. Walt, Tolu E. Alaba, Joel J. Komakech and Mark W. Schilling
Int. J. Mol. Sci. 2025, 26(16), 7799; https://doi.org/10.3390/ijms26167799 - 12 Aug 2025
Viewed by 1050
Abstract
The study examined the association between body composition and beverage consumption and the risk of asthma and chronic obstructive pulmonary disease (COPD) and explored the single nucleotide polymorphisms (SNPs) involved in these associations by leveraging summary statistics from genome-wide association studies (GWAS) in [...] Read more.
The study examined the association between body composition and beverage consumption and the risk of asthma and chronic obstructive pulmonary disease (COPD) and explored the single nucleotide polymorphisms (SNPs) involved in these associations by leveraging summary statistics from genome-wide association studies (GWAS) in nonoverlapping populations. The IEU OpenGWAS project was sourced for exposure datasets: body mass index, body fat percentage, fat-free mass, total body water mass, alcohol intake frequency, and coffee intake, and selected health outcome datasets: asthma and chronic obstructive pulmonary disease. Datasets were assessed and filtered using R, followed by a two-sample Mendelian randomization analysis. The MR Egger, weighted median, inverse variance weighted, simple mode, and weighted mode methods were used to examine the association between exposures and outcomes. Heterogeneity and pleiotropy analyses were used to evaluate the reliability of results. Additionally, SNPnexus was used to ascertain SNPs linked to established phenotypes, while SNP annotation was obtained from the Ensembl BioMart database via the biomaRt package. Genes belonging to overlapping groups were visualized using ComplexHeatmap. Higher body fat percentage (OR = 1.72, 95% CI: 1.23–2.41, p = 0.002), increased BMI (OR = 1.56, CI: 1.23–1.20, p = 2.53 × 10−4), and more frequent alcohol intake (OR = 1.34, CI: 1.08–1.68, p = 0.009) were associated with elevated COPD risk. Asthma risk was similarly increased with higher body fat percentage (OR = 1.60, CI: 1.23–2.21, p = 0.001), BMI (OR = 1.54, CI: 1.29–1.84, p = 2.23 × 10−6), fat-free mass (OR = 1.21, CI: 1.02–1.44, p = 0.032), and alcohol intake frequency (OR = 1.19, CI: 1.01–1.40, p = 0.039). Total body water mass and coffee intake were not associated with asthma and COPD. SNP annotation revealed that some genetic variants that influenced the association of the exposure variables with asthma and COPD were missense variants in several genes, including the evolutionarily highly conserved gene, SLC39A8 (rs13107325; C/A/T allele), and POC5 (rs2307111; T/A/C allele), as well as intronic variants in FTO (rs56094641; A/G/T allele) and NRXN3 (rs10146997; A/G allele). The discovery of the missense variants rs13107325 and rs2307111 in SLC39A8 and POC5, respectively, in addition to other intronic and synonymous SNPs suggests that these SNPs may have some roles in the development or progression of asthma and COPD. This may contribute to the identification of molecular signatures or biomarkers that forecast the risk, development, or therapeutic response of chronic lung diseases in persons with metabolic dysregulation, including obesity. Full article
(This article belongs to the Special Issue Molecular Pathophysiology of Lung Diseases)
Show Figures

Figure 1

28 pages, 2611 KB  
Article
Bioactive Properties of Chitosan/Nanocellulose Films Loaded with Sage Essential Oil: From In Vitro Study to In Situ Application in Shelf-Life Extension of Fresh Poultry Meat
by João R. A. Pires, Raquel Pereira, Sara Paz, Leandro A. Gomes, Victor G. L. Souza, Maria H. Godinho, Maria P. Duarte and Ana L. Fernando
J. Compos. Sci. 2025, 9(8), 428; https://doi.org/10.3390/jcs9080428 - 8 Aug 2025
Viewed by 1219
Abstract
The overuse of nonrenewable resources has motivated intensive research and the development of new types of green bio-based and degradable feedstocks derived from natural sources, such as cellulose derivates, also in nanoforms. The inclusion of such nanoparticles in bio-based polymers with the aim [...] Read more.
The overuse of nonrenewable resources has motivated intensive research and the development of new types of green bio-based and degradable feedstocks derived from natural sources, such as cellulose derivates, also in nanoforms. The inclusion of such nanoparticles in bio-based polymers with the aim of providing reinforcement is a trend, which, when associated with the incorporation active compounds, creates active packaging suitable for the packaging of highly perishable food, thus contributing to the product’s shelf-life extension. Chitosan (Ch)/sage essential oil (SEO) bionanocomposite reinforced with nanocrystalline cellulose (CNC) was cast as active packaging for the preservation of fresh poultry meat. Meat samples were wrapped in different bioplastics (pristine chitosan, chitosan with commercial CNC, chitosan with CNC obtained from three different lignocellulosic crops, giant reed (G), kenaf (K), and miscanthus (M), chitosan with SEO, and chitosan with SEO and CNC), while unwrapped samples were tested as the control. Periodically, samples were evaluated in terms of their physicochemical properties and microbial growth. Additionally, bionanocomposites were also evaluated in terms of their in situ antimicrobial properties, as well as migration toward food simulants. Meat samples protected with bionanocomposites showed lower levels of microbiological growth (2–3 logs lower than control) and lipid oxidation (20–30% lower than in control), over time. This was attributed to the intrinsic antimicrobial capacity of chitosan and the high oxygen barrier properties of the films resulting from the CNC inclusion. The SEO incorporation did not significantly improve the material’s antimicrobial and antioxidant activity yet interfered directly with the meat’s color as it migrated to its surface. In the in vitro assays, all bionanocomposites demonstrated good antimicrobial activity against B. cereus (reduction of ~8.2 log) and Salmonella Choleraesuis (reduction of ~5–6 log). Through the in vitro migration assay, it was verified that the SEO release rate of phenolic compounds to ethanol 50% (dairy products simulate) was higher than to ethanol 95% (fatty food simulate). Furthermore, these migration tests proved that nanocellulose was capable of delaying SEO migration, thus reducing the negative effect on the meat’s color and the pro-oxidant activity recorded in TBARS. It was concluded that the tested chitosan/nanocellulose bionanocomposites increased the shelf life of fresh poultry meat. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Graphical abstract

58 pages, 1897 KB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Cited by 1 | Viewed by 1621
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

31 pages, 1834 KB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Cited by 5 | Viewed by 5520
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

48 pages, 7715 KB  
Review
Next-Generation Bioplastics for Food Packaging: Sustainable Materials and Applications
by Xiaokun Shi, Lijuan Cui, Chao Xu and Shuping Wu
Materials 2025, 18(12), 2919; https://doi.org/10.3390/ma18122919 - 19 Jun 2025
Cited by 7 | Viewed by 6016
Abstract
As the global plastic pollution problem intensifies and the environmental hazards of traditional petroleum-based plastics become increasingly significant, the development of sustainable alternative materials has become an urgent need. This paper systematically reviews the research progress, application status and future trends of new [...] Read more.
As the global plastic pollution problem intensifies and the environmental hazards of traditional petroleum-based plastics become increasingly significant, the development of sustainable alternative materials has become an urgent need. This paper systematically reviews the research progress, application status and future trends of new generation bioplastics in the field of food packaging. Bioplastics are categorized into three main groups according to their sources and degradability: biobased biodegradable materials (e.g., polylactic acid PLA, polyhydroxy fatty acid ester PHA, chitosan, and cellulose-based materials); biobased non-biodegradable materials (e.g., Bio-PE, Bio-PET); and non-biobased biodegradable materials (e.g., PBAT, PCL, PBS). Different processing technologies, such as thermoforming, injection molding, extrusion molding and coating technologies, can optimize the mechanical properties, barrier properties and freshness retention of bioplastics and promote their application in scenarios such as food containers, films and smart packaging. Although bioplastics still face challenges in terms of cost, degradation conditions and industrial support, promising future directions are found in the development of the large-scale utilization of non-food raw materials (e.g., agricultural waste, algae), nano-composite technology to enhance the performance, and the development of intelligent packaging functions. Through technological innovation and industry chain integration, bioplastics are expected to transform from an environmentally friendly alternative to a mainstream packaging material, helping to realize the goal of global carbon neutrality. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

34 pages, 2173 KB  
Review
Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials
by Poova Kattil Drishya, M. Venkateswar Reddy, Gunda Mohanakrishna, Omprakash Sarkar, Isha, M. V. Rohit, Aesha Patel and Young-Cheol Chang
Macromol 2025, 5(2), 21; https://doi.org/10.3390/macromol5020021 - 6 May 2025
Cited by 11 | Viewed by 5760
Abstract
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials [...] Read more.
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials as alternatives to crude oil-based products. Recently, biopolymers derived from plants, such as lignin and cellulose, alongside those produced by bacteria, like polyhydroxyalkanoates (PHAs), have captured the spotlight, drawing significant interest for their industrial and eco-friendly applications. The growing interest in biopolymers stems from their potential as sustainable, renewable materials across diverse applications. This review provides an in-depth analysis of the current advancements in plant-based and bacterial biopolymers, covering aspects of bioproduction, downstream processing, and their integration into high-performance next-generation materials. Additionally, we delve into the technical challenges of cost-effectiveness, processing, and scalability, which are critical barriers to widespread adoption. By highlighting these issues, this review aims to equip researchers in the bio-based domain with a comprehensive understanding of how plant-based and bacterial biopolymers can serve as viable alternatives to petroleum-derived materials. Ultimately, we envision a transformative shift from a linear, fossil fuel-based economy to a circular, bio-based economy, fostering more sustainable and environmentally conscious material solutions using novel biopolymers aligning with the framework of the United Nations Sustainable Development Goals (SDGs), including clean water and sanitation (SDG 6), industry, innovation, and infrastructure (SDG 9), affordable and clean energy (SDG 7), sustainable cities and communities (SDG 11), responsible production and consumption (SDG 12), and climate action (SDG 13). Full article
Show Figures

Figure 1

18 pages, 2491 KB  
Review
Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites
by Carlo Santulli, Serena Gabrielli and Graziella Roselli
Organics 2025, 6(2), 19; https://doi.org/10.3390/org6020019 - 1 May 2025
Cited by 3 | Viewed by 2684
Abstract
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications [...] Read more.
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications beyond packaging films and generically easily biodegradable materials. Plant-extracted tannins, which, as such, might also be building blocks for bioplastics, do nonetheless represent a useful complement in their production when added to polysaccharide-based plastics and biocomposites, since they offer other functions, such as bioadhesion, coloration, and biocidal effect. The variety of species used for tannin extraction and condensation is becoming very wide and is also connected with the local availability of amounts of bio-waste from other productions, such as from the food system. This work tries to summarize the evolution and recent developments in tannin extraction and their increasing centrality in the production of polysaccharide-based plastics, adhesives, and natural fiber composites. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Figure 1

7 pages, 2607 KB  
Proceeding Paper
Perspective on the Biomimetic Approaches for the Design of Hydrophobic and Antimicrobial Paper Coatings with Hierarchical Surface Structures
by Pieter Samyn
Mater. Proc. 2025, 20(1), 8; https://doi.org/10.3390/materproc2025020008 - 17 Apr 2025
Viewed by 1161
Abstract
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should [...] Read more.
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should be incorporated through a combination of selected bio-based materials and the creation of appropriate surface textures enhancing coating performance. The bio-inspired approaches through the replication of hierarchical surface structures with multi-scale dimensional features in combination with selection of appropriate bio-based functional groups offer new concepts for coating design. In this short perspective paper, concepts in the field are illustrated with a focus on the combination of hydrophobic and anti-microbial properties. Based on long-term work with the available toolbox of bio-based building blocks and nanoscale architectures, they can be processed into applicable aqueous suspensions for sprayable paper coatings. The macroscopic roughness profile of paper substrates can be complemented through the decoration of nanoscale bio-based polymer particles of polyhydroxybutyrate or vegetable oil capsules with dimensions in the range of 20–50 nm or 100–500 nm depending on the synthesis conditions. The anti-microbial properties can be provided by the surface modification of nanocellulose with biologically active molecules sourced from nature. Besides the more fundamental issues in design and synthesis, the industrial application of the bio-inspired coatings through spray-coating becomes relevant. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

26 pages, 1223 KB  
Review
Cellulose Nanomaterials: Characterization Methods, Isolation Techniques, and Strategies
by Bogdan-Marian Tofanica, Aleksandra Mikhailidi, Maria E. Fortună, Răzvan Rotaru, Ovidiu C. Ungureanu and Elena Ungureanu
Crystals 2025, 15(4), 352; https://doi.org/10.3390/cryst15040352 - 9 Apr 2025
Cited by 6 | Viewed by 4543
Abstract
Nanocellulose, including cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and bacterial nanocellulose (BNC), represents a promising class of bio-based nanomaterials derived from natural sources. These materials, derived from plant-based cellulose, are characterized by exceptional mechanical strength, high surface area, biodegradability, and the ability to [...] Read more.
Nanocellulose, including cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and bacterial nanocellulose (BNC), represents a promising class of bio-based nanomaterials derived from natural sources. These materials, derived from plant-based cellulose, are characterized by exceptional mechanical strength, high surface area, biodegradability, and the ability to form stable nanoparticle networks, making them suitable for use in composites, biomedicine, electronics, and many other fields. In this review, we present the latest advancements in the production of nanocellulose, including preparation technologies and methods for chemical and physical modifications to enhance the performance of these materials. We also discuss various applications, such as its use in nanocomposites, sustainable packaging materials, flexible electronic devices, and as a support for biological media. Additionally, the challenges and opportunities related to the scalability of production and their integration into industries with growing economic and ecological demands are explored. The review provides a comprehensive overview of the potential of nanocellulose, highlighting its importance in the context of emerging technologies and sustainability. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

20 pages, 3579 KB  
Review
Rigid Polyurethane Foam Derived from Renewable Sources: Research Progress, Property Enhancement, and Future Prospects
by Yao Yuan, Qinhe Guo, Lulu Xu and Wei Wang
Molecules 2025, 30(3), 678; https://doi.org/10.3390/molecules30030678 - 4 Feb 2025
Cited by 9 | Viewed by 3611
Abstract
Rigid polyurethane foam (RPUF) is a widely utilized thermosetting polymer across various industrial applications, valued for its exceptional properties. However, the demand for sustainable alternatives to petroleum-based polymers has grown increasingly urgent due to rising environmental concerns. Despite its widespread use, RPUF faces [...] Read more.
Rigid polyurethane foam (RPUF) is a widely utilized thermosetting polymer across various industrial applications, valued for its exceptional properties. However, the demand for sustainable alternatives to petroleum-based polymers has grown increasingly urgent due to rising environmental concerns. Despite its widespread use, RPUF faces challenges such as inadequate mechanical strength, limited thermal stability, and high flammability, all of which are crucial considerations in commercial and household applications. Globally, ongoing efforts are focused on developing innovative technologies that convert renewable sources into new monomers and polymers, some of which could serve as alternatives to traditional RPUFs. Several approaches have been explored to improve the thermal stability, mechanical strength, and flame retardancy of RPUFs, including the modification of bio-based polyols and the incorporation of performance-enhancing fillers. This review emphasizes recent advances in RPUFs derived from natural resources, focusing on their preparation, characterization, and properties, and strategies to enhance the mechanical strength and flame safety of bio-based RPUFs. Additionally, it explores the applications of RPUF materials across various fields, addressing the challenges and potential developments in packaging, household items, construction, and automotive applications. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass)
Show Figures

Figure 1

26 pages, 4179 KB  
Review
Actinomycete-Derived Pigments: A Path Toward Sustainable Industrial Colorants
by Blanca Hey Díez, Cristiana A. V. Torres and Susana P. Gaudêncio
Mar. Drugs 2025, 23(1), 39; https://doi.org/10.3390/md23010039 - 13 Jan 2025
Cited by 9 | Viewed by 4677
Abstract
Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, [...] Read more.
Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, pigments remain essential across numerous industries, including the cosmetic, textile, food, automotive, paints and coatings, plastics, and packaging industries. In response to growing consumer demand for sustainable options, there is increasing interest in eco-friendly alternatives, particularly bio-based pigments derived from algae, fungi, and actinomycetes. This shift is largely driven by consumer demand for sustainable options. For bio-pigments, actinomycetes, particularly from the Streptomyces genus, have emerged as a promising green source, aligning with global sustainability goals due to their renewability and biodegradability. Scale-up of production and yield optimization challenges have been circumvented with the aid of biotechnology advancements, including genetic engineering and innovative fermentation and extraction methods, which have enhanced these bio-pigments’ viability and cost-competitiveness. Actinomycete-derived pigments have successfully transitioned from laboratory research to commercialization, showcasing their potential as sustainable and eco-friendly alternatives to synthetic dyes. With the global pigment market valued at approximately USD 24.28 billion in 2023, which is projected to reach USD 36.58 billion by 2030, the economic potential for actinomycete pigments is extensive. This review explores the environmental advantages of actinomycete pigments, their role in modern industry, and the regulatory and commercialization challenges they face, highlighting the importance of these pigments as promising solutions to reduce our reliance on conventional toxic pigments. The successful commercialization of actinomycete pigments can drive an industry-wide transition to environmentally responsible alternatives, offering substantial benefits for human health, safety, and environmental sustainability. Full article
Show Figures

Graphical abstract

12 pages, 2211 KB  
Article
Microbial Transglutaminase-Mediated Modification of Heat-Denatured Whey Proteins for the Preparation of Bio-Based Materials
by Manar Abdalrazeq, Diaa Aref, Loredana Mariniello and Concetta Valeria Lucia Giosafatto
Coatings 2025, 15(1), 66; https://doi.org/10.3390/coatings15010066 - 9 Jan 2025
Cited by 2 | Viewed by 1604
Abstract
This study sheds light on the potential of microbial transglutaminase (mTG)-mediated modification to enhance the properties of heat-denatured whey protein-based films. In this study, we investigated the biochemical modification of heat-denatured whey proteins (WPs) using mTG, an enzyme known for the ability of [...] Read more.
This study sheds light on the potential of microbial transglutaminase (mTG)-mediated modification to enhance the properties of heat-denatured whey protein-based films. In this study, we investigated the biochemical modification of heat-denatured whey proteins (WPs) using mTG, an enzyme known for the ability of crosslinking reactions. By introducing ε-(γ-glutamyl)-lysine crosslinks via an acyl transfer reaction, mTG enhances the properties of bio-based materials. In this research, heated WPs were demonstrated to effectively serve as mTG substrates. The preparation of crosslinked bio-based material was achieved using a casting method under alkaline conditions (pH 12) in the presence of glycerol (40% w/w), which was added as a plasticizer to the film-forming solution (FFS). A comprehensive characterization of the FFSs and the resulting materials was carried out. The FFSs were quite stable as evidenced by Zeta potential values that were always around 30/40 mV regardless of the presence of the enzyme. The enzymatic modification increased the elongation at break of the materials from 10.4 ± 4.9 MPa to 27.6 ± 8.9 MPa, while decreasing both tensile strength and Young’s modulus, thereby making the resulting material more extensible. On the other hand, the enzyme affected both the CO2 and O2 barrier properties, with permeability values for these gases being 0.90 cm3 mm m−2 day−1 kPa and 0.26 cm3 mm m−2 day−1 kPa, respectively, when the films were cast without the enzymatic treatment, but decreasing to 0.14 ± 0.02 cm3 mm m−2 day−1 kPa (CO2) and 0.02 ± 0.02 cm3 mm m−2 day−1 kPa (O2) in the presence of 24 U/g of mTG. These novel materials, prepared from renewable sources, could potentially be used in the food packaging field to replace/reduce the highly pollutant petroleum-based ones. Full article
(This article belongs to the Special Issue Advances and Trends in Bio-Based Electrospun Nanofibers)
Show Figures

Figure 1

Back to TopTop