Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,410)

Search Parameters:
Keywords = bioactive value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 735 KB  
Review
Ecological Characteristics and Nutritional Values of Australia-Native Brown Algae Species
by Chao Dong, Cundong Xie, Ziqi Lou, Zu Jia Lee, Colin J. Barrow and Hafiz A. R. Suleria
Mar. Drugs 2025, 23(10), 383; https://doi.org/10.3390/md23100383 - 26 Sep 2025
Abstract
This review focuses on five native Australian brown algae species—Cystophora torulosa, Durvillaea potatorum, Ecklonia radiata, Hormosira banksii, and Phyllospora comosa—evaluating their environmental adaptability, biochemical composition, bioactive compounds, and potential for commercial development. Species-specific differences in temperature and light tolerance influence [...] Read more.
This review focuses on five native Australian brown algae species—Cystophora torulosa, Durvillaea potatorum, Ecklonia radiata, Hormosira banksii, and Phyllospora comosa—evaluating their environmental adaptability, biochemical composition, bioactive compounds, and potential for commercial development. Species-specific differences in temperature and light tolerance influence their habitat distribution. Nutritional assessments reveal that these algae are rich in proteins, polysaccharides, polyunsaturated fatty acids, and essential trace elements. Bioactive compounds, including polyphenols and fucoidans, exhibit antioxidant, anti-inflammatory, and anti-diabetic properties. D. potatorum extracts have considerable economic value in agriculture by enhancing crop yield, improving nutritional value, and promoting root development. C. torulosa is predominantly found in cooler marine environments and is comparatively more thermally sensitive. In contrast, H. banksii has a higher heat tolerance of up to 40 °C and thrives in warmer environments. E. radiata is widely distributed, highly tolerant of environmental stresses, and exhibits notable disease-resistant activities. P. comosa, due to its high polysaccharide content, demonstrates strong potential for industrial applications. Consumer studies indicate growing acceptance of seaweed-based products in Australia, although knowledge gaps remain. This study highlights the need for continued research, optimized processing methods, and targeted education to support the sustainable development and utilization of Australia’s native brown algae resources. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
34 pages, 8013 KB  
Review
Dietary Supplements Derived from Food By-Products for the Management of Diabetes Mellitus
by Ezgi Nur Yuksek, Antia G. Pereira and Miguel A. Prieto
Antioxidants 2025, 14(10), 1176; https://doi.org/10.3390/antiox14101176 - 26 Sep 2025
Abstract
The rising global incidence of diabetes has heightened the demand for prevention strategies that are both effective and environmentally sustainable. In this context, dietary supplements obtained from food processing by-products have emerged as promising candidates, combining high nutritional value with the potential to [...] Read more.
The rising global incidence of diabetes has heightened the demand for prevention strategies that are both effective and environmentally sustainable. In this context, dietary supplements obtained from food processing by-products have emerged as promising candidates, combining high nutritional value with the potential to reduce food waste. These by-products contain abundant bioactive compounds, such as antioxidants, dietary fiber, vitamins, and minerals, that have been associated with improved glycemic regulation. Their beneficial effects are mediated through several interconnected biological mechanisms, including enhanced insulin sensitivity, attenuation of oxidative stress, and modulation of inflammatory pathways. The efficacy of these supplements is supported by findings from preclinical models, clinical trials, and meta-analyses, which also allow comparison with standard antidiabetic interventions. Alongside these findings, considerations related to safety, toxicity, and the regulatory framework are critical for their integration into preventive health strategies. Furthermore, market trends, technological challenges in supplement formulation, and ethical issues surrounding the valorization of food waste are key factors influencing their development and acceptance. Together, these insights underscore the dual therapeutic and ecological potential of food by-product-derived supplements in diabetes prevention, while identifying essential avenues for future research and innovation. Full article
Show Figures

Figure 1

18 pages, 1396 KB  
Article
High-Pressure Homogenized Seaweed Cellulose Nanofibrils-Based Emulsion Gel: An Innovative Platform for Fucoxanthin Encapsulation and Stability Improvement
by Mingrui Wang, Ying Tuo, Yixiao Li, Qianhui Xiao, Yue Liu, Long Wu, Hui Zhou, Yidi Cai, Yuqing Zhang and Xiang Li
Foods 2025, 14(19), 3338; https://doi.org/10.3390/foods14193338 - 26 Sep 2025
Abstract
Poor solubility and bioavailability have limited the application of fucoxanthin and functional food processing. In order to encapsulate fucoxanthin in delivery systems, cellulose nanofibril-stabilized emulsion gels (CNFs) derived from industrial brown seaweed residue were developed to enhance fucoxanthin delivery. Cellulose nanofibrils (CNFs) were [...] Read more.
Poor solubility and bioavailability have limited the application of fucoxanthin and functional food processing. In order to encapsulate fucoxanthin in delivery systems, cellulose nanofibril-stabilized emulsion gels (CNFs) derived from industrial brown seaweed residue were developed to enhance fucoxanthin delivery. Cellulose nanofibrils (CNFs) were isolated using high-pressure homogenization at 105 MPa through 5, 10, and 15 cycles (denoted as C5, C10, and C15) and yielding reduced crystallinity down to 52.91 ± 2.13% (C15). The minimum particle size of the present CNFs is approximately 37 nm (C15). Moreover, single-factor and orthogonal experiments optimized the stability of the present emulsion. A 17.5 mg/mL CNFs 50% oil phase with coconut oil, 0.5 mg/mL fucoxanthin, and homogenization for 60 s were identified to be the optimal conditions for such emulsion gel. The present emulsions demonstrated a high storage stability at 4 °C versus 25 °C, which maintained minimal phase separation over 8 days. The release kinetics showed significant dependencies with fucoxanthin release increasing to 9.22 ± 0.62% at pH 8.0, 9.52 ± 0.58% under 1000 mM NaCl, and 8.25 ± 0.62% at 100 °C. In addition, the CNFs effectively preserved the antioxidant activity of the fucoxanthin under different pH values, salinities, and temperatures. The results establish seaweed-derived CNFs as effective stabilizers for fucoxanthin encapsulation, enhancing stability while preserving functionality against food-processing stresses. To our knowledge, no prior research has been reported on a fucoxanthin delivery system utilizing an emulsion gel stabilized by cellulose nanofibrils (CNFs). Such emulsions might provide a sustainable strategy for valorizing seaweed waste and advance functional food applications of marine bioactives. Full article
Show Figures

Graphical abstract

18 pages, 4993 KB  
Article
Stable Non-Competitive DPP-IV Inhibitory Hexapeptide from Parkia timoriana Seeds: A Candidate for Functional Food Development in Type 2 Diabetes
by Sakinah Hilya Abida, Christoper Caesar Yudho Sutopo, Wei-Ting Hung, Nhung Thi Phuong Nong, Tunjung Mahatmanto and Jue-Liang Hsu
Processes 2025, 13(10), 3079; https://doi.org/10.3390/pr13103079 - 26 Sep 2025
Abstract
The tree bean (Parkia timoriana), an underutilized legume valued for its nutritional profile, represents a potential source of bioactive peptides for diabetes management. To our knowledge, this is the first study to identify and characterize DPP-IV inhibitory peptides derived from tree [...] Read more.
The tree bean (Parkia timoriana), an underutilized legume valued for its nutritional profile, represents a potential source of bioactive peptides for diabetes management. To our knowledge, this is the first study to identify and characterize DPP-IV inhibitory peptides derived from tree bean seed protein hydrolysates. The tree bean proteins were digested with trypsin, thermolysin, chymotrypsin, pepsin, and simulated gastrointestinal (SGI) enzymes, among which SGI hydrolysis yielded the highest degree of hydrolysis (14%) and strongest DPP-IV inhibitory activity (IC50 = 1289 ± 58 µg/mL). Guided by DPP-IV inhibitory assays, sequential fractionation using strong cation exchange and RP-HPLC yielded the most potent fraction, H5, with an IC50 of 949 ± 50 µg/mL. After peptide identification and synthesis, APLGPF (AF6) emerged as the most potent inhibitor, with an IC50 of 396 ± 18 µM. Enzyme kinetics revealed a non-competitive inhibition mechanism, corroborated by molecular docking, which indicated binding at an allosteric site of DPP-IV. Furthermore, AF6 remained stable under simulated gastrointestinal digestion and enzymatic exposure, highlighting its resistance to proteolysis. Taken together, these findings highlight P. timoriana as an underexplored source of peptides with DPP-IV inhibitory activity and identify AF6 as a promising lead for developing functional foods or nutraceuticals aimed at type 2 diabetes management. Full article
(This article belongs to the Special Issue Peptides: Advances and Innovations from Discovery to Application)
Show Figures

Graphical abstract

23 pages, 11596 KB  
Article
Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus
by Suning She, Zhiyun Xiao and Yulong Zhou
Agriculture 2025, 15(19), 2009; https://doi.org/10.3390/agriculture15192009 - 25 Sep 2025
Abstract
The pharmacological quality of Astragalus membranaceus var. mongholicus (AMM) is determined by its bioactive compounds, and developing a rapid prediction method is essential for quality assessment. This study proposes a predictive model for AMM bioactive compounds using hyperspectral imaging (HSI) and wavelet domain [...] Read more.
The pharmacological quality of Astragalus membranaceus var. mongholicus (AMM) is determined by its bioactive compounds, and developing a rapid prediction method is essential for quality assessment. This study proposes a predictive model for AMM bioactive compounds using hyperspectral imaging (HSI) and wavelet domain multivariate features. The model employs techniques such as the first-order derivative (FD) algorithm and the continuum removal (CR) algorithm for initial feature extraction. Unlike existing models that primarily focus on a single-feature extraction algorithm, the proposed tree-structured feature extraction module based on discrete wavelet transform and one-dimensional convolutional neural network (1D-CNN) integrates FD and CR, enabling robust multivariate feature extraction. Subsequently, the multivariate feature cross-fusion module is introduced to implement multivariate feature interaction, facilitating mutual enhancement between high- and low-frequency features through hierarchical recombination. Additionally, a multi-objective prediction mechanism is proposed to simultaneously predict the contents of flavonoids, saponins, and polysaccharides in AMM, effectively leveraging the enhanced, recombined spectral features. During testing, the model achieved excellent predictive performance with R2 values of 0.981 for flavonoids, 0.992 for saponins, and 0.992 for polysaccharides. The corresponding RMSE values were 0.37, 0.04, and 0.86; RPD values reached 7.30, 10.97, and 11.16; while MAE values were 0.14, 0.02, and 0.38, respectively. These results demonstrate that integrating multivariate features extracted through diverse methods with 1D-CNN enables efficient prediction of AMM bioactive compounds using HSI. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 771 KB  
Article
Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province
by Potsiso L. Koma, Mashilo M. Matotoka, Ofentse Mazimba and Peter Masoko
Antibiotics 2025, 14(10), 965; https://doi.org/10.3390/antibiotics14100965 - 25 Sep 2025
Abstract
Background/Objectives: Tuberculosis (TB) remains one of the most pressing global health challenges, ranking among the leading infectious causes of mortality worldwide. Medicinal plants possess antimycobacterial potential, warranting the isolation and characterization of their bioactive compounds to address bacterial infections. The study aimed [...] Read more.
Background/Objectives: Tuberculosis (TB) remains one of the most pressing global health challenges, ranking among the leading infectious causes of mortality worldwide. Medicinal plants possess antimycobacterial potential, warranting the isolation and characterization of their bioactive compounds to address bacterial infections. The study aimed to determine five selected traditional medicinal plants’ in vitro antioxidant and antibacterial activities and the isolation of active phytoconstituents. Methods: Powdered leaf material was extracted using n-hexane, dichloromethane, acetone, methanol, and water. The quantity of phytochemicals and antioxidants was determined using colorimetric assay, The antimycobacterial activity and combination effects were determined using microbroth dilution assay. Cell viability was determined using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT reduction assay. Bioassay-guided fractionation was used to isolate bioactive compounds. Results: Polar solvents had high extraction yields, and all extracts had varying phytoconstituents. Active extracts were selected for fractionation and isolation of pure compounds using gradient elution column chromatography. Rhoicissus tridentata water extracts had the highest total phenolic (335.20 ± 8.26 mg GAE/g) and tannin (103.48 ± 7.36 mg GAE/g) content, while Rosmarinus officinalis (45.90 ± 11.04 mg QE/g) methanol extract had the highest total flavonoid. Ximenia caffra had promising antioxidant activity. R. officinalis had prominent antimycobacterial. Rhoicissus tridentata had the highest percentage cell viability. Two compounds were isolated, and they were active against Mycobacterium smegmatis with minimum inhibitory concentration values ranging from 0.125 to 0.25 mg/mL. Conclusions: The selected medicinal plants contain phytochemicals with antioxidant and antimycobacterial activities, supporting their pharmacokinetic studies and evaluation against Mycobacterium tuberculosis H37Rv. Full article
(This article belongs to the Special Issue The Search for Antimicrobial Agents from Natural Products)
Show Figures

Figure 1

17 pages, 5442 KB  
Article
Solid-State Fermentation of Riceberry Rice with Mushroom Mycelium for Enhanced Beta-Glucan Production and Health Applications
by Jutamat Nacha, Hongyu Chen, Amorn Owatworakit, Kittirat Saharat, Anupong Makeudom and Sunita Chamyuang
Molecules 2025, 30(19), 3879; https://doi.org/10.3390/molecules30193879 - 25 Sep 2025
Abstract
Beta-glucans (β-glucans), polysaccharides found in cereals and fungi, are recognized for their prebiotic and potential anti-cancer activities, particularly in the colorectal area. This study aims to optimize the production of β-glucan through the solid-state fermentation of germinated Riceberry rice with Pleurotus ostreatus and [...] Read more.
Beta-glucans (β-glucans), polysaccharides found in cereals and fungi, are recognized for their prebiotic and potential anti-cancer activities, particularly in the colorectal area. This study aims to optimize the production of β-glucan through the solid-state fermentation of germinated Riceberry rice with Pleurotus ostreatus and evaluate the bioactivities of the resulting extract. The crude β-glucan extract, obtained with a recovery rate of 54.95% and 79.98% purity, demonstrated an effective extraction process, as confirmed by thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) analysis verified the presence of β-1,3/1,6-glycosidic linkages, characteristic of the bioactive β-glucans found in yeast and mushrooms. The biological assessment demonstrated the extract’s functional properties. At a concentration of 1 mg/mL, the crude β-glucan extract significantly promoted the growth of probiotics Lacticaseibacillus rhamnosus and Bacillus coagulans, exhibiting high Prebiotic Index (PI) values of 6.36 ± 0.72 and 115.70 ± 10.19, respectively, with PI values indicating strong prebiotic potential. For comparison, the standard prebiotic inulin yielded PI values of 0.41 ± 0.09 and 90.53 ± 2.28 for the same respective bacteria, highlighting the superior performance of the fungal-fermented β-glucan. Furthermore, the extract displayed efficacy in inhibiting colon cancer cells in preliminary in vitro tests. It reduced the viability of the SW480 colorectal cancer cell line by 66.23% and induced cell death in 27.94 ± 0.93% of the cells after 48 h of treatment, performing comparably to a commercial yeast β-glucan standard. Crucially, the extract showed no significant cytotoxicity toward the normal human colon cell line, CCD-841 CoN. These findings highlight the promising method of fungal solid-state fermentation on germinated Riceberry rice in the production of high-purity, bioactive β-glucans for use in functional foods. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

21 pages, 2336 KB  
Article
Conserved and Divergent Phytochemical Profiles in Native and Micropropagated Micromeria croatica (Pers.) Schott: An LC-HRMS Study Across Solvent Extracts
by Svetlana M. Tošić, Marija Ilić, Ljubica Svilar, Jelena Nikolić, Milan Mitić, Violeta Mitić and Vesna P. Stankov Jovanović
Plants 2025, 14(19), 2971; https://doi.org/10.3390/plants14192971 - 25 Sep 2025
Abstract
Micromeria croatica (Pers.) Schott is a Balkan endemic of the Lamiaceae family, valued for its aromatic and medicinal properties, but it is threatened by its limited natural distribution. Micropropagation offers a sustainable method for securing biomass and provides material for chemical studies. In [...] Read more.
Micromeria croatica (Pers.) Schott is a Balkan endemic of the Lamiaceae family, valued for its aromatic and medicinal properties, but it is threatened by its limited natural distribution. Micropropagation offers a sustainable method for securing biomass and provides material for chemical studies. In this work, we present the first LC-HRMS profiling of extracts (in methanol, ethyl acetate, and hexane) obtained from both native and micropropagated plants. A total of 29 metabolites were identified. A diverse spectrum of secondary metabolites was identified, including phenolic acids (gallic acid monohydrate, vanillic acid, trans-cinnamic acid), flavonoids (luteolin-7-O-rutinoside, diosmetin-7-O-glucoside, kaempferol-O-rutinoside, eriocitrin), and terpenoids (ursolic acid, tanshinone I, riligustilide). The analysis revealed that all compounds detected in native plants were also present in micropropagated material, demonstrating the preservation of the characteristic phytochemical profile in vitro. Moreover, several compounds, such as apigenin, apigenin-7-O-glucuronide, isomaltopaeoniflorin, and methoxylated flavones, were found exclusively in micropropagated samples, indicating that tissue culture may enhance the chemical diversity of the species. Ethyl acetate extracts showed the highest degree of overlap between native and in vitro plants, whereas methanol and hexane extracts contained a greater number of unique metabolites in micropropagated material. This first comprehensive phytochemical report on M. croatica highlights the importance of micropropagation as a sustainable strategy for conserving rare species while ensuring a reliable source of bioactive metabolites. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 1482 KB  
Article
Bioactive Potential of Wild Plants from Gardunha Mountain: Phytochemical Characterization and Biological Activities
by Alexandra Coimbra, Eugenia Gallardo, Ângelo Luís, Pedro Dinis Gaspar, Susana Ferreira and Ana Paula Duarte
Molecules 2025, 30(19), 3876; https://doi.org/10.3390/molecules30193876 - 25 Sep 2025
Abstract
The plants used in folk medicine have been increasingly studied to identify their bioactive properties. Therefore, this study aimed to assess the bioactivity of the hydroethanolic extracts of plants collected in Gardunha Mountain, Portugal. Seven abundant and representative wild plants were studied: Cistus [...] Read more.
The plants used in folk medicine have been increasingly studied to identify their bioactive properties. Therefore, this study aimed to assess the bioactivity of the hydroethanolic extracts of plants collected in Gardunha Mountain, Portugal. Seven abundant and representative wild plants were studied: Cistus salviifolius, Clinopodium vulgare, Coincya monensis, Glandora prostrata, Helichrysum stoechas, Rubia peregrina, and Umbilicus rupestris. The phytochemical composition of the extracts was determined by UHPLC-timsTOF-MS and by spectrophotometric methods. The antioxidant, in vitro anti-inflammatory and antimicrobial activity and the biocompatibility of the extracts were tested. The extracts were predominantly composed of flavonoids and phenolic acids, such as gallic acid, neochlorogenic acid and quercetin glycosides. The C. salviifolius extracts demonstrated very strong antioxidant activity related to scavenging free radicals (AAI = 2.84 and 2.93). Regarding antimicrobial activity, the H. stoechas extract exhibited inhibitory effects, particularly against Gram-positive bacteria and yeasts (MIC = 0.008–0.5 mg/mL). The C. monensis, R. peregrina, and U. rupestris extracts showed low cytotoxicity (viability > 70%) in the highest concentration tested. These findings highlight C. salviifolius and H. stoechas as promising sources of novel bioactive compounds, particularly antimicrobials in controlling microbial growth and promoting associated health benefits, and underscore the value of traditional medicinal plants as a guide for pharmacological studies. Full article
Show Figures

Figure 1

25 pages, 1153 KB  
Review
Exosomal miRNAs: Key Regulators of the Tumor Microenvironment and Cancer Stem Cells
by Shuangmin Wang, Sikan Jin, Jidong Zhang and Xianyao Wang
Int. J. Mol. Sci. 2025, 26(19), 9323; https://doi.org/10.3390/ijms26199323 - 24 Sep 2025
Abstract
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal [...] Read more.
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal microRNAs (miRNAs) are central to epigenetic regulation and intercellular signaling, significantly influencing tumor biology. This review provides a comprehensive overview of the multifaceted roles of exosomal miRNAs in remodeling the tumor microenvironment (TME) and regulating cancer stem cells (CSCs). Specifically, exosomal miRNAs modulate various immune cells (such as macrophages, T cells, and NK cells) as well as cancer-associated fibroblasts (CAFs), thereby promoting immune evasion, angiogenesis, epithelial–mesenchymal transition (EMT), and metastatic progression. At the same time, they enhance CSC stemness, self-renewal, and therapeutic resistance, ultimately driving tumor recurrence and dissemination. Furthermore, exosome-mediated miRNA signaling acts as a critical force in malignant progression. Finally, we discuss the clinical potential of exosomal miRNAs as diagnostic and prognostic biomarkers, therapeutic targets, and vehicles for targeted drug delivery, highlighting their translational value and future directions in cancer research. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases: 2nd Edition)
Show Figures

Figure 1

14 pages, 1991 KB  
Article
The Effect of Thermal Treatment and Storage on the Stability of Ascophyllum nodosum Extract
by Xin Liu and Wenqiao Yuan
Processes 2025, 13(10), 3043; https://doi.org/10.3390/pr13103043 - 24 Sep 2025
Abstract
Macroalgae-derived polyphenols have been considered as a potential source of food supplements that can enhance the nutritional value and extend the shelf life of foods. However, thermal treatment during food processing as well as storage might induce the degradation of some bioactive compounds [...] Read more.
Macroalgae-derived polyphenols have been considered as a potential source of food supplements that can enhance the nutritional value and extend the shelf life of foods. However, thermal treatment during food processing as well as storage might induce the degradation of some bioactive compounds in the extract. In the present study, the stability of the extract from the edible brown algae Ascophyllum nodosum was evaluated under thermal treatment (40–90 °C). Significant differences in TPC, RSC, and antioxidant activity were found during all treatments. The total phenol content (TPC) and antioxidant activity (DPPH scavenging activity) decreased up to 5% and 10%, respectively, after 6 h of thermal treatment, while the reducing sugar content (RSC) increased from 8 to 35% as the temperature increased from 40 to 90 °C. The stability of the extract during storage with or without exposure to air was evaluated at room temperature (25 °C) and low temperature (4 °C) for 108 h, and the influence of the solvent used to contain the extract has been investigated by studying both concentrated and non-concentrated extracts. It was found that the extract stored at 4 °C without exposure to air had a negligible TPC change, while RSC increased in the extract exposed to air, suggesting that oxygen in the air might accelerate polysaccharide degradation during storage. Antioxidant activity of extracts remained constant at both 4 and 25 °C, regardless of exposure to air. Full article
(This article belongs to the Special Issue Evaluation and Utilization of Antioxidant Activity in Food Products)
Show Figures

Figure 1

16 pages, 602 KB  
Review
Nutritional Characteristics, Health-Related Properties, and Food Application of Teff (Eragrostis tef): An Overview
by Boyiza Samson Abebe, Iuliana Aprodu, Daniela Ionela Istrati and Camelia Vizireanu
Int. J. Mol. Sci. 2025, 26(19), 9293; https://doi.org/10.3390/ijms26199293 - 23 Sep 2025
Viewed by 18
Abstract
Teff [Eragrostis tef (Zucc.) Trotter] is a globally recognized ancient grain renowned for its attractive nutritional profile and diverse potential applications. Considering its physicochemical characteristics, nutritional value, and probable applications is essential for optimizing its benefits across various food industries. This review [...] Read more.
Teff [Eragrostis tef (Zucc.) Trotter] is a globally recognized ancient grain renowned for its attractive nutritional profile and diverse potential applications. Considering its physicochemical characteristics, nutritional value, and probable applications is essential for optimizing its benefits across various food industries. This review aims to comprehensively investigate teff, its physicochemical characteristics, diverse dietary applications, and health benefits. Teff is rich in macro- and micronutrients, making it an excellent addition to various food products. Bioactive compounds, such as flavonoids and phenolic acids, also enhance their functionality. Therefore, teff appears to be a whole grain with favorable technological characteristics and nutritional benefits for various food applications. Also, being gluten-free, teff is acceptable for individuals with celiac disease or gluten sensitivity. Also, it reduces cholesterol levels, supports heart health, stabilizes blood sugar levels, strengthens bone density and strength, and provides immune system support. In conclusion, teff shows excellent potential for developing innovative and nutritious solutions to meet the growing needs of consumers. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Human Health and Disease)
Show Figures

Figure 1

20 pages, 1554 KB  
Article
Investigating the Preservation and Utilization of the Saffron (Crocus sativus L.) Sorting By-Product (Tepals)
by Evanthia Dina, Antigoni Cheilari, Dimitra Karamani, Vasilis Mitsopoulos, Ioanna Diamanti, Nikolas Fokialakis and Nektarios Aligiannis
Plants 2025, 14(19), 2949; https://doi.org/10.3390/plants14192949 - 23 Sep 2025
Viewed by 43
Abstract
Medicinal and Aromatic Plant (MAP) by-products constitute a vast reservoir of bioactive metabolites with antioxidant and antimicrobial properties, offering potential for the development of high added value natural products. This study focuses on the by-product (tepals) remaining during the process of receiving the [...] Read more.
Medicinal and Aromatic Plant (MAP) by-products constitute a vast reservoir of bioactive metabolites with antioxidant and antimicrobial properties, offering potential for the development of high added value natural products. This study focuses on the by-product (tepals) remaining during the process of receiving the stigma of Crocus sativus L. Iridaceae (saffron), which is the commercially exploitable part of the flowers. The tepals are the main part of the flowers (>95%) and are still discarded in the fields during the collection of the stigmas in Kozani, Greece. According to numerous findings, the saffron tepals are rich in flavonoids with notable biological properties, and our aim was to investigate an alternative for their management. Within this context, dry and frozen tepals were extracted at a laboratory scale through microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), followed by adsorption resin technology (ART) for the preparation of enriched extracts. Furthermore, their HPTLC profiling, the phenolic (TPC) and flavonoid (TFC) content, and the free-radical-scavenging (DPPH) and anti-tyrosinase activity were evaluated. The frozen tepals were further extracted at a pilot scale using MAE and maceration (Mc) techniques, followed by ART treatment to remove the contained sugars. The enriched extract produced at a pilot scale using MAE and ART sequentially is characterized by a high phenolic (147.2 mg GAE/g dry extract) and flavonoid (114.8 mg QUE/g dry extract) load. These findings demonstrate that saffron tepals, traditionally considered waste, can serve as a valuable raw material for producing extracts rich in phenolic derivatives, particularly flavonoids and anthocyanins. Full article
Show Figures

Figure 1

19 pages, 3228 KB  
Article
Towards Designing Green-Inspired Nano- and Microemulsions Alongside Novel Solvatochromic Probes as an Effective Tool in Delivery Issues
by Aleksandra Szarwaryn, Wojciech Bartkowiak, Tomasz K. Olszewski and Urszula Bazylińska
Int. J. Mol. Sci. 2025, 26(18), 9259; https://doi.org/10.3390/ijms26189259 - 22 Sep 2025
Viewed by 130
Abstract
The extensive use of submicron emulsion systems, particularly those stabilized by nonionic surfactants, with their proven effectiveness and safety profile, provides a reassuring foundation for our research. Consequently, we designed and engineered new submicron emulsion formulations stabilized with a biocompatible surfactant polyoxyethylated cocoamine, [...] Read more.
The extensive use of submicron emulsion systems, particularly those stabilized by nonionic surfactants, with their proven effectiveness and safety profile, provides a reassuring foundation for our research. Consequently, we designed and engineered new submicron emulsion formulations stabilized with a biocompatible surfactant polyoxyethylated cocoamine, whose nonionic character is due to a high degree of polyoxyethylation. We chose oleic acid as the oil phase, a fatty acid known for its beneficial properties. This led to novel biocompatible nanoemulsions with high stability and cosurfactant-free microemulsions. The dynamic light scattering studies confirmed that both formulations have a nanometric size and low polydispersity index values. Moreover, transmission electron microscopy verified the nanodroplets’ morphological homogeneity and spherical shape. The resulting nanoplatforms can be applied to carry bioactive agents in the pharmaceutical and cosmetic fields. For this reason, we solubilized newly synthesized 5-dimethylamino-5′-nitro-2,2′-bithiophene as a model hydrophobic cargo for delivering poorly water-soluble compounds. This dye was chosen due to its strong solvatochromic behavior and suitability for micropolarity analysis via UV–Vis spectroscopy. We also present a simple method for rapid micropolarity screening to assess the type of nanodispersion via solvatochromic shift as an alternative procedure for evaluating of the oils used to fabricate nanoformulations for pharmaceutical and cosmetic purposes. Full article
(This article belongs to the Special Issue Surfactants: Design, Synthesis and Application)
Show Figures

Graphical abstract

25 pages, 6538 KB  
Article
Dual Blockade of PI3K and EGFR Pathways by Flavonoids from Idesia polycarpa Maxim Cake Meal: Valorization of Agro-Industrial Waste for NSCLC Therapy
by Zhenyu Yang, Kai Luo, Dan Chen, Lei Dou, Xiufang Huang and Jianquan Kan
Foods 2025, 14(18), 3278; https://doi.org/10.3390/foods14183278 - 22 Sep 2025
Viewed by 229
Abstract
Efficient utilization of food industry waste supports sustainable development. Idesia polycarpa Maxim cake meal (an oil-processing by-product) is rich in bioactive flavonoids, but the refined purification, anti-non-small cell lung cancer (NSCLC) activity, and mechanism of its total flavonoids (IPTF) remain unclear—restricting high-value use. [...] Read more.
Efficient utilization of food industry waste supports sustainable development. Idesia polycarpa Maxim cake meal (an oil-processing by-product) is rich in bioactive flavonoids, but the refined purification, anti-non-small cell lung cancer (NSCLC) activity, and mechanism of its total flavonoids (IPTF) remain unclear—restricting high-value use. This study optimized IPTF purification via polyamide resin gradient elution and characterized its chemical composition by HPLC/LC-MS. In vitro assays assessed IPTF’s effects on A549 cell proliferation, migration, invasion, colony formation, and apoptosis; network pharmacology and molecular docking predicted mechanisms, validated via Western blotting for key signaling pathways. Results showed IPTF purity was significantly improved after purification; HPLC/LC-MS identified rutin, quercetin, and six minor components as key constituents. IPTF inhibited A549 proliferation, and network pharmacology indicated it synergistically targets the PI3K/AKT and EGFR-MAPK pathways—validated by reduced phosphorylation of p-AKT, p-EGFR, and p-ERK. This work offers a novel strategy for I. polycarpa cake meal valorization and highlights IPTF’s potential as a multi-target natural candidate for NSCLC therapy. Full article
Show Figures

Figure 1

Back to TopTop