Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = brick columns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4917 KB  
Article
Innovative Seismic Strengthening of Reinforced Concrete Frames with U-Shaped Precast Concrete Wall Panels: Experimental Performance Assessment
by Sookyoung Ha
Buildings 2025, 15(18), 3273; https://doi.org/10.3390/buildings15183273 - 10 Sep 2025
Viewed by 313
Abstract
Many existing reinforced concrete (RC) frames with brick infill walls are vulnerable to earthquake damage, particularly when the walls contain window openings that reduce the lateral resistance. This study aims to examine the seismic performance of RC frames strengthened with U-shaped precast concrete [...] Read more.
Many existing reinforced concrete (RC) frames with brick infill walls are vulnerable to earthquake damage, particularly when the walls contain window openings that reduce the lateral resistance. This study aims to examine the seismic performance of RC frames strengthened with U-shaped precast concrete (PC) wall panels. In the proposed method, the window-containing brick infill walls within the RC frames are replaced with factory-fabricated U-shaped PC wall panels, thereby converting the infill into a strong and rigid structural element while preserving the openings. The panels are anchored to the RC frame using post-installed anchors inserted through predrilled holes, allowing for rapid and secure installation with minimal on-site work. To validate the method, five full-scale, one-bay, one-story RC frames were constructed and tested under reversed cyclic lateral loading. Three frames were strengthened with U-shaped PC wall panels of varying thicknesses and large openings. Displacement-controlled cycles following ACI 374.1-05 (R7.0) were applied, with three cycles at each drift ratio stage, and no axial load was applied to the columns. Compared with the reference specimen with a U-shaped brick wall, the strengthened frames exhibited up to 3.29 times higher lateral strength, 4.39 times higher initial stiffness, and 4.33 times greater energy dissipation capacity. These findings demonstrate that the proposed strengthening technique significantly enhances seismic resistance while maintaining the architectural openings, offering a practical and efficient solution for upgrading low-rise RC buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 16124 KB  
Article
Study on the Vibration Effects of Brick–Concrete Structures Induced by Blasting in Open-Pit Mines
by Peng Yan, Jie Tian, Yunpeng Zhang and Liangpeng Hao
Buildings 2025, 15(16), 2954; https://doi.org/10.3390/buildings15162954 - 20 Aug 2025
Viewed by 574
Abstract
Ensuring the dynamic safety of buildings near open-pit mines during blasting is a critical concern for the normal conduct of mining operations. This study investigates the effects of blasting vibrations on brick–concrete structures by using deep-hole blasting tests conducted at the mine site, [...] Read more.
Ensuring the dynamic safety of buildings near open-pit mines during blasting is a critical concern for the normal conduct of mining operations. This study investigates the effects of blasting vibrations on brick–concrete structures by using deep-hole blasting tests conducted at the mine site, employing blasting vibration monitoring and numerical simulation techniques. The peak particle velocity and energy distribution characteristics of blasting waves in structural columns and brick walls were analyzed. Furthermore, a three-dimensional numerical model was developed to analyze the response characteristics of buildings to blasting vibrations. Considering the impact of a building’s natural frequency on blasting vibrations, harmonic response was utilized to identify the natural frequencies of different components. The relationship between these frequencies and a building’s natural frequency is discussed. Dangerous frequencies and components were identified. The findings of this study can serve as a theoretical foundation for understanding the damage mechanisms of buildings under blasting waves and for controlling the impact of blasting vibration effects. Full article
(This article belongs to the Special Issue Dynamic Response of Structures)
Show Figures

Figure 1

29 pages, 8184 KB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 416
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

19 pages, 2955 KB  
Article
Innovative Wastewater Treatment Using 3D-Printed Clay Bricks Enhanced with Oyster Shell Powder: A Life Cycle Assessment
by Wathsala Benthota Pathiranage, Hunain Alkhateb and Matteo D’Alessio
Sustainability 2025, 17(12), 5428; https://doi.org/10.3390/su17125428 - 12 Jun 2025
Viewed by 878
Abstract
With growing global concerns over sustainable wastewater treatment, there is a pressing need for low-cost, eco-friendly filtration solutions. This study conducted a life cycle assessment (LCA) to evaluate the potential of improving slow sand filtration efficiency by integrating alternative materials like clay and [...] Read more.
With growing global concerns over sustainable wastewater treatment, there is a pressing need for low-cost, eco-friendly filtration solutions. This study conducted a life cycle assessment (LCA) to evaluate the potential of improving slow sand filtration efficiency by integrating alternative materials like clay and oyster shell powder (OSP), while minimizing the environmental footprint. Additionally, the adaptability of three-dimensional (3D) printing was explored to incorporate these materials into innovative filter designs, assessing scalability for broader wastewater applications. Ten filter configurations, including a slow sand filter (SSF) enhanced with OSP (90:10) and 3D-printed clay–OSP bricks (ratios of 90:10, 85:15, 80:20), were assessed across three sourcing distances: local (in situ), regional (161 km), and distant (1609 km). The results showed that SSFs with OSP consistently delivered lower environmental impacts, reducing freshwater ecotoxicity, eutrophication, and human toxicity by up to 4% compared to conventional SSFs, particularly when transport was minimized. Among brick-based systems, single-brick columns offered the best balance of performance and impact, while three-brick columns had the highest environmental burden, largely due to the increased electricity use. Economic analysis reinforced the environmental findings: SSFs with OSP were the most cost-effective option, followed closely by SSFs, while brick-based systems were slightly more expensive, with costs rising sharply when sourcing distances exceeded 161 km. Overall, integrating OSP into SSFs offers an optimal balance of sustainability and affordability, while single-brick columns (90:10) present a promising alternative. Future research should further optimize material blends and design configurations to align with long-term environmental and economic goals. Full article
Show Figures

Graphical abstract

26 pages, 7932 KB  
Article
Hemp Fiber-Reinforced Polymers Composite Jacketing Technique for Sustainable and Environment-Friendly Concrete
by Panumas Saingam, Qudeer Hussain, Gritsada Sua-iam, Adnan Nawaz and Ali Ejaz
Polymers 2024, 16(13), 1774; https://doi.org/10.3390/polym16131774 - 23 Jun 2024
Cited by 11 | Viewed by 2117
Abstract
This research suggested natural hemp fiber-reinforced ropes (FRR) polymer usage to reinforce recycled aggregate square concrete columns that contain fired-clay solid brick aggregates in order to reduce the high costs associated with synthetic fiber-reinforced polymers (FRPs). A total of 24 square columns of [...] Read more.
This research suggested natural hemp fiber-reinforced ropes (FRR) polymer usage to reinforce recycled aggregate square concrete columns that contain fired-clay solid brick aggregates in order to reduce the high costs associated with synthetic fiber-reinforced polymers (FRPs). A total of 24 square columns of concrete were fabricated to conduct this study. The samples were tested under a monotonic axial compression load. The variables of interest were the strength of unconfined concrete and the number of FRR layers. According to the results, the strengthened specimens demonstrated an increased compressive strength and ductility. Notably, the specimens with the smallest unconfined strength demonstrated the largest improvement in compressive strength and ductility. Particularly, the compressive strength and strain were enhanced by up to 181% and 564%, respectively. In order to predict the ultimate confined compressive stress and strain, this study investigated a number of analytical stress–strain models. A comparison of experimental and theoretical findings deduced that only a limited number of strength models resulted in close predictions, whereas an even larger scatter was observed for strain prediction. Machine learning was employed by using neural networks to predict the compressive strength. A dataset comprising 142 specimens strengthened with hemp FRP was extracted from the literature. The neural network was trained on the extracted dataset, and its performance was evaluated for the experimental results of this study, which demonstrated a close agreement. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

26 pages, 7382 KB  
Article
The Axial Compressive Properties of Long Columns of In-Service Brick Masonry Reinforced by Channel Steel
by Kui Chen, Yi Ao and Jianguo Liang
Buildings 2024, 14(6), 1794; https://doi.org/10.3390/buildings14061794 - 13 Jun 2024
Cited by 1 | Viewed by 1164
Abstract
Channel steel-reinforced brick column technology has gained significant popularity in rural China due to its convenience and cost effectiveness. However, current research on channel steel reinforcement is sparse, and engineering applications often rely solely on construction experience. This reliance leads to significant construction [...] Read more.
Channel steel-reinforced brick column technology has gained significant popularity in rural China due to its convenience and cost effectiveness. However, current research on channel steel reinforcement is sparse, and engineering applications often rely solely on construction experience. This reliance leads to significant construction errors, inconsistent reinforcement effects, and, in some cases, tragedies such as the collapse of Changsha’s “4.29” self-built houses. Therefore, in this paper, experimental and simulation studies on brick columns reinforced with external channel steel were conducted, and the results show that channel steel reinforcement can significantly enhance the axial load capacity of brick columns. However, increased initial stress levels and height-to-thickness ratios substantially reduce the reinforcement effect. Under axial pressure, the outer channel steel fails mainly through bending and buckling instability. Still, due to its good ductility, its failure occurs later than the brick column after being restrained by sufficient wall screws. Based on the experimental and simulation results, a method for calculating the axial compressive bearing capacity of the reinforced column is proposed, providing theoretical support and engineering guidance for applying this reinforcement method. Full article
Show Figures

Figure 1

18 pages, 15796 KB  
Essay
A Numerical Simulation Study on the Out-of-Plane Performance of Timber Framework–Brick Wall Systems in Traditional Residential Buildings of Northern China
by Ning Dai, Lanhao Cui, Yingpei Li, Liwei Fan and Jiakun Chen
Buildings 2024, 14(5), 1224; https://doi.org/10.3390/buildings14051224 - 25 Apr 2024
Cited by 3 | Viewed by 1094
Abstract
To improve the out-of-plane collaborative performance of timber frames and walls, a metal connector is proposed and designed. A finite element model of the wall is established, and the composite block damage criteria and surface contact behavior are validated. Additionally, one group without [...] Read more.
To improve the out-of-plane collaborative performance of timber frames and walls, a metal connector is proposed and designed. A finite element model of the wall is established, and the composite block damage criteria and surface contact behavior are validated. Additionally, one group without metal connectors and three groups with different numbers of metal connectors placed at various positions in traditional residential wall models are established. Using static loading simulation, the influence of different numbers of metal connectors on the out-of-plane damage patterns, deformation characteristics, and shear force distribution is analyzed. The study reveals that top metal connectors significantly reduce the out-of-plane displacement of the top wall by up to 84.6%. Metal connectors have a significant impact on the deformation capacity of brick walls, with a maximum enhancement of 65.3%. The metal connectors in the middle and lower parts transfer the wall loads to the columns, increasing the horizontal shear at the column head by approximately 7%. The connectors in the middle and lower parts effectively improve the collaborative performance of brick walls and wooden frames. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 4173 KB  
Article
Insight into Adsorption Kinetics of Cs+, Rb+, Co2+, and Sr2+ on a Zeolites-Based Composite: Comprehensive Diffusional Explanation and Modelling
by Abdel Boughriet, Gildas Doyemet, Nicole Poumaye, Oscar Allahdin and Michel Wartel
Appl. Sci. 2024, 14(8), 3511; https://doi.org/10.3390/app14083511 - 22 Apr 2024
Cited by 5 | Viewed by 1777
Abstract
Kaolinite-rich soils were used to prepare zeolite-based composites via alkaline activation. The porous material was characterized by conducting XRD and microporosity measurements, as well as ESEM microscopy. The Weber and Morris (W-M) model was used for studying adsorption kinetics of radioactive cations on [...] Read more.
Kaolinite-rich soils were used to prepare zeolite-based composites via alkaline activation. The porous material was characterized by conducting XRD and microporosity measurements, as well as ESEM microscopy. The Weber and Morris (W-M) model was used for studying adsorption kinetics of radioactive cations on synthesized alkali-activated material. These investigations evidenced the effects of pore structure and the importance of the intrinsic characteristics of hydrated cations (ionic potential; hydrated radius; B-viscosity parameter; molar Gibbs energy of hydration of cation) on W-M kinetic rate constants. The application of diffusion-based models permitted us to assess the key diffusion parameters controlling successive diffusion regimes, and to reveal strong contributions of surface diffusion to adsorption kinetics during the course of the second and third kinetics stages of the W-M model. The magnitude of the surface diffusion coefficient was related to the capacity of hydrated cationic species to lose water molecules when penetrating brick pores. The HSDM model were tested for predicting radionuclide adsorption in a fixed-bed column. A breakthrough curve simulation indicated the predominance of the surface diffusion regime, which was in agreement with mathematical analysis of (batch) adsorption kinetics data. Ionic diffusion was linked to the characteristics of capillary porosity and connectivity of capillary pores in the composite, suggesting the generation of hydrated nuclides and their immobilization in the form of outer-sphere complexes. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

20 pages, 11951 KB  
Article
Experimental Study on the Seismic Performance of Brick Walls Strengthened by Small-Spaced Reinforced-Concrete–Masonry Composite Columns
by Fengmin Xia, Kaozhong Zhao, Jihui Zhao and Xiangjin Cui
Buildings 2024, 14(1), 184; https://doi.org/10.3390/buildings14010184 - 11 Jan 2024
Cited by 4 | Viewed by 2864
Abstract
Through low-cycle reciprocating tests on 11 masonry wall specimens strengthened using reinforced-concrete–masonry composite columns, the effects of the position of the composite column, height-to-width ratio, column reinforcement ratio, and axial load ratio on their load-carrying capacity, stiffness, ductility, and energy dissipation capacity were [...] Read more.
Through low-cycle reciprocating tests on 11 masonry wall specimens strengthened using reinforced-concrete–masonry composite columns, the effects of the position of the composite column, height-to-width ratio, column reinforcement ratio, and axial load ratio on their load-carrying capacity, stiffness, ductility, and energy dissipation capacity were investigated. It was experimentally found that, by strengthening brick walls with RC–masonry composite columns, the concrete and masonry parts can work together effectively, the failure mode shifts from shear to flexural failure, and the strengthened walls exhibit improved bearing capacity, ductility, and energy dissipation performance compared to unstrengthened masonry walls. It is suggested the composite columns can be placed at the ends of the wall if a strengthening measure is required. For walls with height-to-width ratios greater than 1, placing composite columns in the middle of a wall has little effect on the bearing capacity and stiffness of the wall but can improve the ductility of the wall. The height-to-width ratio is a primary factor influencing the structural performance of masonry walls strengthened using composite columns. A smaller height-to-width ratio leads to higher load-carrying capacity and stiffness but may result in reduced ductility. In comparison, the impact of the column reinforcement ratio and axial load ratio is relatively weaker. The flexural capacity of the masonry wall after strengthening can be obtained using the calculation method for concrete members subjected to a combined action of flexure and compression, in which the compressive strength of the masonry is considered. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 4487 KB  
Article
Rapid Prediction of Hot-Air Temperature of Kalugin Top Combustion Hot Blast Stove by Means of Computational Fluid Dynamics Numerical Simulation
by Ming Zhao, Yuhua Pan, Fanxu Meng and Ping Ma
Metals 2023, 13(9), 1623; https://doi.org/10.3390/met13091623 - 20 Sep 2023
Cited by 4 | Viewed by 2049
Abstract
Based on the three-dimensional (3D) steady-state CFD numerical simulations conducted previously on an industrial Kalugin top combustion hot blast stove, a two-dimensional (2D) transient CFD numerical model for a single channel (hole) of a column of checker bricks in the regenerator of the [...] Read more.
Based on the three-dimensional (3D) steady-state CFD numerical simulations conducted previously on an industrial Kalugin top combustion hot blast stove, a two-dimensional (2D) transient CFD numerical model for a single channel (hole) of a column of checker bricks in the regenerator of the same hot stove was established in the present work. The average mass flowrate and temperature of the flue gas flowing into the checker brick holes during the combustion period predicted by the 3D model were used as the inlet boundary conditions of the 2D model. Inside the hole of the checker bricks, processes of fluid flow and heat transfer of the flue gas during the combustion period and those of cold air during the hot-air-supply period were simulated using the 2D model for multiple operation cycles (combustion and hot-air-supply periods) of the hot stove, enabling rapid predictions of hot-air temperature under different operating conditions. The simulation results show that when the fuel gas flowrate and air consumption coefficient during the combustion period are controlled within the range of 80,000–100,000 Nm3/h and 1.02–1.28, respectively, a hot-air temperature in the range from 1273 °C to 1295 °C can be obtained during the hot-air-supply period. Applying this optimized operating condition to the industrial hot stove investigated in this study can achieve significant effects of reducing fuel gas flowrate by 8.6% and increasing hot-air temperature by 32 °C. In addition, a regression analysis on the numerical simulation results and the data measured from the industrial hot stove yields a roughly linear relationship between the dome temperature during the combustion period and the hot-air temperature during the hot-air-supply period, that is, the hot-air temperature would be increased by about 16 °C for every increment of 10 °C in the dome temperature, for instance. Therefore, the influences of the operating parameters on heat transfer characteristics in the regenerator and on hot-air temperature obtained in the present work provide a useful reference for guiding the hot stove operation optimization to achieve significant energy saving and emission reduction through facilitating more efficient combustion to minimize fuel gas consumption in steel plants. Full article
(This article belongs to the Topic Energy-Saving and Emission Reduction in Metallurgy)
Show Figures

Figure 1

19 pages, 6502 KB  
Article
Experimental Analysis of the Mechanical Response of Masonry Columns Partially Confined with PBO FRCM (Fabric Reinforced Cementitious Mortar) Composites
by Luciano Ombres, Francesco Campolongo, Marielda Guglielmi and Salvatore Verre
Materials 2023, 16(13), 4812; https://doi.org/10.3390/ma16134812 - 4 Jul 2023
Cited by 6 | Viewed by 1481
Abstract
An experimental investigation on partially PBO (short of Polyparaphenylenebenzobisthiazole) FRCM (Fiber Reinforced Cementitious Mortar) confined clay brick masonry columns has been conducted. Ten small-scale specimens measuring 445 mm high with a square cross-section of the 250 mm side have been tested under monotonic [...] Read more.
An experimental investigation on partially PBO (short of Polyparaphenylenebenzobisthiazole) FRCM (Fiber Reinforced Cementitious Mortar) confined clay brick masonry columns has been conducted. Ten small-scale specimens measuring 445 mm high with a square cross-section of the 250 mm side have been tested under monotonic axial loading until collapse. Two columns were unconfined, while the remaining ones were confined with single-layer PBO FRCM jackets varying the geometric configuration along their height. The vertical spacing ratio sf’/sf, being sf’ and sf the center-to-center and the net spacings between two consecutive jackets, respectively, was considered as the key parameter of the confinement configuration. The failure modes, stress–strain curves and peak axial stress and strain values are reported. The experimental results have been compared to the predictions of models found in the Italian guidelines CNR DT 215/2018 and the American ACI 549-R20 standards. The main aspects analyzed involved (i) the evaluation of the effectiveness of partial confinement on the mechanical response of columns, (ii) the definition of the mechanical and geometrical parameters that influence the structural response of partially confined columns, and (iii) the development of appropriate analytical models for the prediction of the resisting capacity of masonry columns partially confined with PBO FRCM. Full article
Show Figures

Graphical abstract

17 pages, 5315 KB  
Article
Experimental Study on the Seismic Behavior of a Modified Adobe-Brick-Masonry Composite Wall with a Wooden-Construction Center Column
by Haoran Wang, Kang Yuan, Songlin Zhang and Junlin Guo
Sustainability 2023, 15(10), 8360; https://doi.org/10.3390/su15108360 - 21 May 2023
Cited by 8 | Viewed by 5434
Abstract
Damage to adobe constructions might occur due to a long wall and a lack of effective restraint in the middle of the wall, causing it to collapse under an earthquake. Aiming at these problems, a technology for improving the seismic performance of a [...] Read more.
Damage to adobe constructions might occur due to a long wall and a lack of effective restraint in the middle of the wall, causing it to collapse under an earthquake. Aiming at these problems, a technology for improving the seismic performance of a modified adobe-brick-masonry composite wall with a wooden-construction center column is proposed. It uses modified mud, a wooden center column, steel-wire mesh, and nylon ropes to reinforce the wall. On this basis, four specimens of composite wall and one specimen of modified adobe wall were subjected to proposed quasistatic, cyclic in-plane loading tests to study their failure modes and seismic performance indicators. The results show that the failure modes of all walls were shear failure. The difference is that the modified adobe wall had horizontal cracks in the middle, whereas the composite walls were largely intact. Moreover, the composite walls relied on the modified mud to improve the seismic bearing capacity of each wall. They relied on the center column and the tie materials to form a second line of defense that would increase the wall ductility and collapse residual area. As a result, the phenomenon that caused wall damage and stiffness degradation was lessened. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

13 pages, 5992 KB  
Article
Case Study on Secondary Building Materials for a Greener Economy
by Franz-Georg Simon and Ute Kalbe
Appl. Sci. 2023, 13(10), 6010; https://doi.org/10.3390/app13106010 - 13 May 2023
Cited by 3 | Viewed by 2286
Abstract
Half of global material consumption involves mineral material. The circularity is still low so that the enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste [...] Read more.
Half of global material consumption involves mineral material. The circularity is still low so that the enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste (C&D waste), soil-like material, and incineration bottom ash (IBA). Focus was placed on the environmental compatibility of the materials examined mainly by standardized leaching tests. C&D waste was investigated after a wet treatment using a jigging machine, and soil-like material and IBA were characterized with respect to their material composition. Their environmental compatibilities in particular were studied using standard leaching tests (batch tests and column tests). It was concluded that soil-like material can mostly be utilized even when the precautionary limit values set are exceeded by a factor of less than two. For C&D waste, the fine fraction below 2 mm and the content of brick material is problematic. IBA fulfills quality level “HMVA-2” following German regulations. Improved levels of utilization might be achievable with better treatment technologies. Full article
(This article belongs to the Special Issue Smart Materials for a Green(er) Economy)
Show Figures

Figure 1

18 pages, 2991 KB  
Article
Insulation Performance of Building Components and Effect on the Cooling Load of Homes in Saudi Arabia
by Abdulhamid Al-Abduljabbar, Majid Al-Mogbel, Syed Noman Danish and Abdelrahman El-Leathy
Sustainability 2023, 15(7), 5685; https://doi.org/10.3390/su15075685 - 24 Mar 2023
Cited by 6 | Viewed by 5018
Abstract
A common practice in the construction of residential and commercial buildings in Saudi Arabia is to insulate the outer walls and windows only. Other building components such as the roof, columns and slabs, and doors are usually neglected. Moreover, vital components such as [...] Read more.
A common practice in the construction of residential and commercial buildings in Saudi Arabia is to insulate the outer walls and windows only. Other building components such as the roof, columns and slabs, and doors are usually neglected. Moreover, vital components such as the roof and windows are especially neglected in commercially built residential and commercial buildings. The aim of this study is to put this common impression and practice to the test by quantifying the contribution of every building component to the overall air-conditioning load of the building. The hypothesis evaluated in this paper is that despite the common practices, there could be an optimum selection of insulators for the building components that yields the lowest energy consumption and maximum savings not only in energy costs but also installation costs. The required air-conditioning load is determined using manual calculations and the HAP software package for 1022 possible configurations. The findings of the analysis point to the importance of the roof, as it is the major contributor to the thermal load, followed closely by columns and slabs, with 44.2% of the overall cooling load. It is found that a single wall consisting of 2 cm of cement plaster, 20 cm of cement–polyurethane brick, and 2 cm of cement plaster is less expensive and has higher thermal resistance than any of the more expensive double walls. The study found one scenario of possible configurations with the optimized selection of building materials and their insulation materials that provides the most effective insulation at the lowest cost. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Renewable Energy Applications)
Show Figures

Figure 1

23 pages, 9641 KB  
Article
Fluid Flow Characteristics for Four Lattice Settings in Brick Tunnel Kiln: CFD Simulations
by Hassanein A. Refaey, Mathkar A. Alharthi, Ali A. Abdel-Aziz, Hassan F. Elattar, Bandar Awadh Almohammadi, Hany E. Abdelrahman, Mohamed A. Karali, El-Awady Attia and Mamdouh W. Al-Dosoky
Buildings 2023, 13(3), 733; https://doi.org/10.3390/buildings13030733 - 10 Mar 2023
Cited by 3 | Viewed by 2293
Abstract
The higher the process efficiency, the lower the fuel consumption, and the less impact carbon emissions have on the environment. The flow characteristics around brick settings are an important field of investigation to acquire control over the energy intake and production process. The [...] Read more.
The higher the process efficiency, the lower the fuel consumption, and the less impact carbon emissions have on the environment. The flow characteristics around brick settings are an important field of investigation to acquire control over the energy intake and production process. The current work is a numerical CFD investigation to demonstrate fluid flow characterization inside the cooling zone in a brick tunnel kiln for lattice settings (the number of bricks in each layer is identical). Four different lattice settings were examined, and three were validated with published experimental data (settings 1, 2 and 3). In the current study, the BSL κ-ω turbulent model agrees well with the published experimental results. The numerical investigation presents the flow characteristics through four different lattice brick settings (e.g., velocity vectors, velocity contours and streamlines) that could not be measured experimentally. The investigation also looks at the flow zones of the vortex formation upstream, downstream and through the brick column. It was discovered that for settings 1 and 11, the quick air flow in the wall channels is much greater than in the column channels. Setting 3 has a larger vortex formation region, whereas setting 1 has a weaker vortex than the other settings. The cooling of the lattice bricks in Setting 3 is superior to the cooling in the other settings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop