Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = carbohydrate-binding module (CBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2060 KiB  
Article
Catalytic Efficiency Improvement in Cellobiohydrolase I by Cross-Species Domain Exchange Engineering
by Jing Xue, Xianzhang Jiang, Anjing Li, Jiaxin Li, Xiaoyun Su, Jianzhong Huang and Lina Qin
Int. J. Mol. Sci. 2025, 26(9), 4024; https://doi.org/10.3390/ijms26094024 - 24 Apr 2025
Viewed by 256
Abstract
Understanding the molecular mechanisms of cellobiohydrolase I (CBHI), a key enzyme in cellulase complexes, is crucial for developing efficient enzymes for the degradation of lignocellulosic biomasses (LCB). Building on our previous discovery that Chaetomium thermophilum CBHI (C-CBH) exhibits significantly higher specific activity than [...] Read more.
Understanding the molecular mechanisms of cellobiohydrolase I (CBHI), a key enzyme in cellulase complexes, is crucial for developing efficient enzymes for the degradation of lignocellulosic biomasses (LCB). Building on our previous discovery that Chaetomium thermophilum CBHI (C-CBH) exhibits significantly higher specific activity than Trichoderma reesei CBHI (T-CBH), systematic domain-swapping experiments were conducted to elucidate the structural determinants of catalytic efficiency in CBHI. Herein, the carbohydrate-binding modules (CBM) of the CBHIs from Trichoderma reesei (T-CBH) and Chaetomium thermophilum (C-CBH) were interchanged and to obtain two chimeric mutants TC-CBH and CT-CBH. These four CBHs were expressed in T. reesei, and the enzyme properties were analyzed. Comparative characterization revealed that while module exchange preserved native temperature/pH adaptability, it significantly altered substrate specificity and catalytic performance. The CT-CBH variant was identified as the most efficient biocatalyst, exhibiting four key advantages over T-CBH: (1) protein expression levels that far exceed those of T-CBH, (2) specific activity enhanced by 2.6-fold (734.5 U/μM vs. 282.5 U/μM on MU-cellobiose), (3) superior degradation capacities for filter paper (1.6-fold) and xylan, and (4) improved binding affinity for crystalline cellulose. These findings establish cross-species domain engineering as a viable strategy for creating high-performance cellulases, providing both mechanistic insights and practical solutions for lignocellulose degradation. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

26 pages, 5145 KiB  
Article
Analysis of the Changes in Physicochemical Properties and Microbial Communities During Fermentation of Sweet Fermented Rice
by Jiaqiong Wan, Ping Tian, Xiaozhen Liu and Hanyao Zhang
Foods 2025, 14(7), 1121; https://doi.org/10.3390/foods14071121 - 24 Mar 2025
Viewed by 572
Abstract
As a traditional rice wine, sweet fermented rice (SFR) is widely loved because of its unique flavor and high nutritional value. However, the physicochemical properties, microbial community composition, and metabolic pathway changes during the fermentation process of sweet wine have not been evaluated, [...] Read more.
As a traditional rice wine, sweet fermented rice (SFR) is widely loved because of its unique flavor and high nutritional value. However, the physicochemical properties, microbial community composition, and metabolic pathway changes during the fermentation process of sweet wine have not been evaluated, and these changes can lead to unstable SFR quality. In this study, we used high-throughput sequencing technology to analyze and elucidate the dynamic changes in the microbial community, metabolic pathways, and carbohydrate enzyme functions in traditional SFR fermentation broth. The results revealed that Rhizopus abundance = 160,943.659 and Wickerhamomyces abundance = 241,660.954 were the predominant fungal genera in the fermentation process from the beginning (A0) to the end (A43) of SFR fermentation. The results of the diversity analysis revealed that the structure and composition of the microbial communities first increased but then decreased. Metabolic pathway analysis showed that energy production and conversion, carbohydrate transport, and amino acid transport were the most active metabolic pathways in fermentation. Moreover, the three primary functions of glycosyltransferases (GTs), glycoside hydrolases (GHs), and carbohydrate-binding modules (CBMs) in carbohydrate enzyme analysis were involved in the whole fermentation process. This study only provides some insight into the dynamic changes in the microbial population of SFR single samples prepared under fixed conditions. It provides a reference for optimizing the physicochemical properties of SFR fermentation broth, controlling the microbial community structure, optimizing fermentation conditions, and improving product quality. Full article
Show Figures

Figure 1

11 pages, 1201 KiB  
Article
Assembly of Cellulases from Separate Catalytic Domains and a Cellulose-Binding Module for Understanding Cooperative Crystalline Cellulose Degradation
by Katharina K. I. Schmitt and Hidehiko Hirakawa
Appl. Sci. 2025, 15(4), 2214; https://doi.org/10.3390/app15042214 - 19 Feb 2025
Viewed by 472
Abstract
The biochemical degradation of abundant cellulosic biomass for industrial use and energy production has been extensively researched in recent years. Some elaborate cellulose digestion approaches have been developed based on specialized bacteria, which possess sophisticated mechanisms to efficiently degrade recalcitrant natural carbohydrates. In [...] Read more.
The biochemical degradation of abundant cellulosic biomass for industrial use and energy production has been extensively researched in recent years. Some elaborate cellulose digestion approaches have been developed based on specialized bacteria, which possess sophisticated mechanisms to efficiently degrade recalcitrant natural carbohydrates. In this study, we assembled catalytic domains from multiple cellulolytic enzymes onto a scaffold along with a cellulose-binding module (CBM), specifically targeting crystalline cellulose. The catalytic domains of endoglucanase and cellobiohydrolase from Acetivibrio thermocellus were linked to a heterotrimeric protein scaffold that assembles in a specific order. The bicatalytic complex failed to show the anticipated synergistic effect in cooperative cellulolysis, presumably because the catalytic domains only serve as weak anchors for each other in binding to the substrate. On the other hand, cellulose digestion was remarkably promoted by incorporating a CBM into a stable complex with a catalytic domain. Interestingly, the reversible association of catalytic domains and excess CBM proved more advantageous than fixed association. This suggests that the dynamic incorporation of CBM units enhances the accessibility of cellulose-degrading catalytic modules to the polysaccharide strand by preventing overly strong binding. This finding could have interdisciplinary applications for enzymes converting polymeric substrates other than cellulose. Full article
(This article belongs to the Special Issue Bioprocessing and Fermentation Technology for Biomass Conversion)
Show Figures

Figure 1

15 pages, 7312 KiB  
Article
Genome-Wide Identification and Analysis of Carbohydrate-Binding Modules in Colletotrichum graminicola
by Ya-Fei Wang, Qiu-Li Huang, Xin-Yu Chen, Hong-Lian Li, Jia-Xin Chang, Yu Zhang, Yi-Wen Wang and Yan Shi
Int. J. Mol. Sci. 2025, 26(3), 919; https://doi.org/10.3390/ijms26030919 - 22 Jan 2025
Cited by 1 | Viewed by 834
Abstract
Colletotrichum graminicola is the causative agent of both maize stem rot and leaf blight, which are among the most damaging diseases affecting maize. Carbohydrate-binding modules (CBMs) are protein domains that lack catalytic activity and are commonly found alongside carbohydrate-hydrolyzing enzymes in fungi. A [...] Read more.
Colletotrichum graminicola is the causative agent of both maize stem rot and leaf blight, which are among the most damaging diseases affecting maize. Carbohydrate-binding modules (CBMs) are protein domains that lack catalytic activity and are commonly found alongside carbohydrate-hydrolyzing enzymes in fungi. A comprehensive examination of the C. graminicola TZ-3 genome resulted in the identification of 83 C. graminicola CBM (CgCBM) genes, which are characterized by distinct gene structures and protein motifs. Subcellular localization analysis revealed that the majority of CgCBM proteins were localized in the extracellular space. Investigation of the promoter regions of CgCBM genes uncovered a variety of responsive elements associated with plant hormones, including abscisic acid and methyl jasmonate response elements, as well as various stress-related response elements for drought, cold, defense, and other stress factors. Gene ontology analysis identified the primary functions of CgCBM genes as being linked to polysaccharide metabolism processes. Furthermore, the 83 CgCBM genes exhibited varying responses at different time points during C. graminicola infection, indicating their contribution to the fungus–maize interaction and their potential roles in the fungal pathogenic process. This study provides essential insights into CgCBMs, establishing a crucial foundation for further exploration of their functions in the mechanisms of fungal pathogenicity. Full article
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Characterization of the CBM50 Gene Family in Tilletia horrida and Identification of the Putative Effector Gene ThCBM50_1
by Ting Xiang, Deze Xu, Linxiu Pan, Dongyu Zhai, Yu Zhang, Aiping Zheng, Desuo Yin and Aijun Wang
J. Fungi 2024, 10(12), 856; https://doi.org/10.3390/jof10120856 - 11 Dec 2024
Viewed by 786
Abstract
Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant–pathogen interactions. However, the function of CBM50 in Tilletia horrida [...] Read more.
Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant–pathogen interactions. However, the function of CBM50 in Tilletia horrida has yet to be fully studied. In this study, we identified seven CBM50 genes from the T. horrida genome through complete sequence analysis and functional annotation. Their phylogenetic relationships, conserved motifs, promoter elements, and expression profile were further analyzed. The phylogenetic analysis indicated that these seven ThCBM50 genes were divided into three groups, and close associations were observed among proteins with similar protein motifs. The promoter cis-acting elements analysis revealed that these ThCBM50 proteins may be involved in the regulation of the phytohormones, stress response, and meristem expression of the host plant during T. horrida infection. The transcriptome data indicated that four ThCBM50 genes were upregulated during T. horrida infection. We further found that ThCBM50_1 caused cell death in the leaves of Nicotiana benthamiana, and its signal peptide (SP) had a secreting function. These results offer important clues that highlight the features of T. horrida CBM50 family proteins and set the stage for further investigation into their roles in the interactions between T. horrida and rice. Full article
(This article belongs to the Special Issue Pathogenic Fungal–Plant Interactions)
Show Figures

Figure 1

21 pages, 3685 KiB  
Article
The Effect of CBM1 and Linker on the Oxidase, Peroxidase and Monooxygenase Activities of AA9 LPMOs: Insight into Their Correlation with the Nature of Reductants and Crystallinity of Celluloses
by Xu Zhao, Fei Xie, Kaixiang Chen, Liangkun Long and Shaojun Ding
Int. J. Mol. Sci. 2024, 25(23), 12616; https://doi.org/10.3390/ijms252312616 - 24 Nov 2024
Viewed by 1245
Abstract
This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 [...] Read more.
This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 LPMOs exhibited higher oxidase and peroxidase activities compared to those of the C4-oxidizing AA9 LPMOs. While the presence of CBM1 promoted cellulose-binding affinity, it reduced the oxidase activity of modular AA9 LPMOs. The effect of CBM1 on peroxidase activity was variable and enzyme-specific. Its influence on monooxygenase activity was linked to the type of reductants and the crystallinity of celluloses. Overall, CBM1 improved the monooxygenase activity on high-, medium-, and low-crystallinity celluloses when ascorbic acid (AscA) was used as the electron donor. CBM1 also facilitated monooxygenase activity on high-crystallinity cellulose, but significantly inhibited monooxygenase activity on low-crystallinity cellulose when cellobiose dehydrogenase (CDH) was the electron donor. Linker truncation of NcLOMO9C enhanced the cellulose-binding affinity but decreased both the oxidase and peroxidase activities. Linker truncation also impacted the monooxygenase activity in both the AscA-AA9 LPMO and AfCDH-AA9 LPMO systems, though its effect was less pronounced compared to that of CBM1. This work provides new insights into the role of the reductant type and cellulose crystallinity in the functionality of CBM1 and the linker in AA9 LPMOs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 3118 KiB  
Article
Genome-Wide Identification and Analysis of Gene Family of Carbohydrate-Binding Modules in Ustilago crameri
by Dongyu Zhai, Deze Xu, Ting Xiang, Yu Zhang, Nianchen Wu, Fuqing Nie, Desuo Yin and Aijun Wang
Int. J. Mol. Sci. 2024, 25(21), 11790; https://doi.org/10.3390/ijms252111790 - 2 Nov 2024
Cited by 1 | Viewed by 1042
Abstract
Ustilago crameri is a pathogenic basidiomycete fungus that causes foxtail millet kernel smut (FMKS), a devastating grain disease in most foxtail millet growing regions of the world. Carbohydrate-Binding Modules (CBMs) are one of the important families of carbohydrate-active enzymes (CAZymes) in fungi and [...] Read more.
Ustilago crameri is a pathogenic basidiomycete fungus that causes foxtail millet kernel smut (FMKS), a devastating grain disease in most foxtail millet growing regions of the world. Carbohydrate-Binding Modules (CBMs) are one of the important families of carbohydrate-active enzymes (CAZymes) in fungi and play a crucial role in fungal growth and development, as well as in pathogen infection. However, there is little information about the CBM family in U. crameri. Here, 11 CBM members were identified based on complete sequence analysis and functional annotation of the genome of U. crameri. According to phylogenetic analysis, they were divided into six groups. Gene structure and sequence composition analysis showed that these 11 UcCBM genes exhibit differences in gene structure and protein motifs. Furthermore, several cis-regulatory elements involved in plant hormones were detected in the promoter regions of these UcCBM genes. Gene ontology (GO) enrichment and protein–protein interaction (PPI) analysis showed that UcCBM proteins were involved in carbohydrate metabolism, and multiple partner protein interactions with UcCBM were also detected. The expression of UcCBM genes during U. crameri infection is further clarified, and the results indicate that several UcCBM genes were induced by U. crameri infection. These results provide valuable information for elucidating the features of U. crameri CBMs’ family proteins and lay a crucial foundation for further research into their roles in interactions between U. crameri and foxtail millet. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions)
Show Figures

Figure 1

17 pages, 570 KiB  
Article
Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation
by Alex Graça Contato, Tiago Cabral Borelli, Ana Karine Furtado de Carvalho, Heitor Buzetti Simões Bento, Marcos Silveira Buckeridge, Janet Rogers, Steven Hartson, Rolf Alexander Prade and Maria de Lourdes Teixeira de Moraes Polizeli
Clean Technol. 2024, 6(3), 994-1010; https://doi.org/10.3390/cleantechnol6030050 - 8 Aug 2024
Cited by 2 | Viewed by 1327
Abstract
The examination of fungal secretomes has garnered attention for its potential to unveil the repertoire of secreted proteins, notably CAZymes (Carbohydrate-Active enzymes), across various microorganisms. This study presents findings on categorizing the secretome profile of CAZymes by their function and family, derived from [...] Read more.
The examination of fungal secretomes has garnered attention for its potential to unveil the repertoire of secreted proteins, notably CAZymes (Carbohydrate-Active enzymes), across various microorganisms. This study presents findings on categorizing the secretome profile of CAZymes by their function and family, derived from the filamentous fungus Trichoderma longibrachiatum LMBC 172. The cultivation was performed through submerged fermentation with three distinct carbon sources: sugarcane bagasse, tamarind seeds, and a control simulating hemicellulose containing 0.5% beechwood xylan plus 0.5% oat spelt xylan. The secretome analysis revealed 206 distinct CAZymes. Each carbon source showed particularities and differences. Of these, 89 proteins were produced simultaneously with all the carbon sources; specifically, 41 proteins using only the hemicellulose simulation, 29 proteins when sugarcane bagasse was used as a carbon source, and only 3 when tamarind seeds were used. However, in this last condition, there was a high intensity of xyloglucanase GH74 production, thus reaffirming the richness of xyloglucan in the constitution of these seeds. When evaluating the proteins found in two conditions, 18 proteins were shown between the simulation of hemicellulose and sugarcane bagasse, 11 proteins between the simulation of hemicellulose and tamarind seeds, and 15 proteins between sugarcane bagasse and tamarind seeds. Among the proteins found, there are representatives of different families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs). These results demonstrate the importance of analyzing CAZymes secreted by microorganisms under different culture conditions. Full article
Show Figures

Figure 1

26 pages, 17083 KiB  
Article
Microbial Metagenomes and Host Transcriptomes Reveal the Dynamic Changes of Rumen Gene Expression, Microbial Colonization and Co-Regulation of Mineral Element Metabolism in Yaks from Birth to Adulthood
by Yili Liu, Liangliang Ma, Daojie Riqing, Jiu Qu, Jiyong Chen, Danzeng Zhandu, Biao Li and Mingfeng Jiang
Animals 2024, 14(9), 1365; https://doi.org/10.3390/ani14091365 - 30 Apr 2024
Cited by 2 | Viewed by 2149
Abstract
Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen’s survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of [...] Read more.
Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen’s survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 3411 KiB  
Article
An Engineered Laccase from Fomitiporia mediterranea Accelerates Lignocellulose Degradation
by Le Thanh Mai Pham, Kai Deng, Hemant Choudhary, Trent R. Northen, Steven W. Singer, Paul D. Adams, Blake A. Simmons and Kenneth L. Sale
Biomolecules 2024, 14(3), 324; https://doi.org/10.3390/biom14030324 - 8 Mar 2024
Cited by 4 | Viewed by 2259
Abstract
Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were [...] Read more.
Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of β-O-4′ ether and C–C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze β-O-4′ ether and C–C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Figure 1

14 pages, 552 KiB  
Article
Secretome Analysis of Thermothelomyces thermophilus LMBC 162 Cultivated with Tamarindus indica Seeds Reveals CAZymes for Degradation of Lignocellulosic Biomass
by Alex Graça Contato, Tiago Cabral Borelli, Marcos Silveira Buckeridge, Janet Rogers, Steven Hartson, Rolf Alexander Prade and Maria de Lourdes Teixeira de Moraes Polizeli
J. Fungi 2024, 10(2), 121; https://doi.org/10.3390/jof10020121 - 1 Feb 2024
Cited by 4 | Viewed by 2151
Abstract
The analysis of the secretome allows us to identify the proteins, especially carbohydrate-active enzymes (CAZymes), secreted by different microorganisms cultivated under different conditions. The CAZymes are divided into five classes containing different protein families. Thermothelomyces thermophilus is a thermophilic ascomycete, a source of [...] Read more.
The analysis of the secretome allows us to identify the proteins, especially carbohydrate-active enzymes (CAZymes), secreted by different microorganisms cultivated under different conditions. The CAZymes are divided into five classes containing different protein families. Thermothelomyces thermophilus is a thermophilic ascomycete, a source of many glycoside hydrolases and oxidative enzymes that aid in the breakdown of lignocellulosic materials. The secretome analysis of T. thermophilus LMBC 162 cultivated with submerged fermentation using tamarind seeds as a carbon source revealed 79 proteins distributed between the five diverse classes of CAZymes: 5.55% auxiliary activity (AAs); 2.58% carbohydrate esterases (CEs); 20.58% polysaccharide lyases (PLs); and 71.29% glycoside hydrolases (GHs). In the identified GH families, 54.97% are cellulolytic, 16.27% are hemicellulolytic, and 0.05 are classified as other. Furthermore, 48.74% of CAZymes have carbohydrate-binding modules (CBMs). Observing the relative abundance, it is possible to state that only thirteen proteins comprise 92.19% of the identified proteins secreted and are probably the main proteins responsible for the efficient degradation of the bulk of the biomass: cellulose, hemicellulose, and pectin. Full article
Show Figures

Figure 1

14 pages, 4078 KiB  
Article
Biochemical Characterization of Novel GH6 Endoglucanase from Myxococcus sp. B6-1 and Its Effects on Agricultural Straws Saccharification
by Zhen Huang, Guorong Ni, Longhua Dai, Weiqi Zhang, Siting Feng and Fei Wang
Foods 2023, 12(13), 2517; https://doi.org/10.3390/foods12132517 - 28 Jun 2023
Cited by 1 | Viewed by 1863
Abstract
Cellulase has been widely used in many industrial fields, such as feed and food industry, because it can hydrolyze cellulose to oligosaccharides with a lower degree of polymerization. Endo-β-1,4-glucanase is a critical speed-limiting cellulase in the saccharification process. In this study, endo-β-1,4-glucanase gene [...] Read more.
Cellulase has been widely used in many industrial fields, such as feed and food industry, because it can hydrolyze cellulose to oligosaccharides with a lower degree of polymerization. Endo-β-1,4-glucanase is a critical speed-limiting cellulase in the saccharification process. In this study, endo-β-1,4-glucanase gene (CelA257) from Myxococcus sp. B6-1 was cloned and expressed in Escherichia coli. CelA257 contained carbohydrate-binding module (CBM) 4-9 and glycosyl hydrolase (GH) family 6 domain that shares 54.7% identity with endoglucanase from Streptomyces halstedii. The recombinant enzyme exhibited optimal activity at pH 6.5 and 50 °C and was stable over a broad pH (6–9.5) range and temperature < 50 °C. CelA257 exhibited broad substrate specificity to barley β-glucan, lichenin, CMC, chitosan, laminarin, avicel, and phosphoric acid swollen cellulose (PASC). CelA257 degraded both cellotetrose (G4) and cellppentaose (G5) to cellobiose (G2) and cellotriose (G3). Adding CelA257 increased the release of reducing sugars in crop straw powers, including wheat straw (0.18 mg/mL), rape straw (0.42 mg/mL), rice straw (0.16 mg/mL), peanut straw (0.16 mg/mL), and corn straw (0.61 mg/mL). This study provides a potential additive in biomass saccharification applications. Full article
(This article belongs to the Special Issue Metabolites from Myxobacteria and Its Application in Food Industry)
Show Figures

Figure 1

18 pages, 3879 KiB  
Article
Novel Design of an α-Amylase with an N-Terminal CBM20 in Aspergillus niger Improves Binding and Processing of a Broad Range of Starches
by Andika Sidar, Gerben P. Voshol, Erik Vijgenboom and Peter J. Punt
Molecules 2023, 28(13), 5033; https://doi.org/10.3390/molecules28135033 - 27 Jun 2023
Cited by 10 | Viewed by 2841
Abstract
In the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level [...] Read more.
In the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level of starch granule rigidity affects resistance towards enzymatic hydrolysis, resulting in inefficient starch degradation by industrially available α-amylases. In an approach to enhance starch hydrolysis, the domain architecture of a Glycoside Hydrolase (GH) family 13 α-amylase from Aspergillus niger was engineered. In all fungal GH13 α-amylases that carry a carbohydrate binding domain (CBM), these modules are of the CBM20 family and are located at the C-terminus of the α-amylase domain. To explore the role of the domain order, a new GH13 gene encoding an N-terminal CBM20 domain was designed and found to be fully functional. The starch binding capacity and enzymatic activity of N-terminal CBM20 α-amylase was found to be superior to that of native GH13 without CBM20. Based on the kinetic parameters, the engineered N-terminal CBM20 variant displayed surpassing activity rates compared to the C-terminal CBM20 version for the degradation on a wide range of starches, including the more resistant raw potato starch for which it exhibits a two-fold higher Vmax underscoring the potential of domain engineering for these carbohydrate active enzymes. Full article
(This article belongs to the Special Issue Advances in Amylases)
Show Figures

Figure 1

17 pages, 24865 KiB  
Article
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan
by Xin Ni, Tong Fu, Xueyan Wang, Jingjing Zhao, Zhimin Yu, Xianzhen Li and Fan Yang
Int. J. Mol. Sci. 2023, 24(6), 5480; https://doi.org/10.3390/ijms24065480 - 13 Mar 2023
Cited by 3 | Viewed by 1937
Abstract
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx [...] Read more.
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx and PspCBM84, respectively, derived from Microbacterium sp. XT11 and Paenibacillus sp. 62047—in catalytic properties of endotype xanthanase MiXen were investigated for the first time. Basic characterizations and kinetic parameters of different recombinants revealed that, compared with MiCBMx, PspCBM84 dramatically increased the thermostability of endotype xanthanase, and endowed the enzyme with higher substrate affinity and catalytic efficiency. Notably, the activity of endotype xanthanase was increased by 16 times after being fused with PspCBM84. In addition, the presence of both CBMs obviously enabled endotype xanthanase to produce more oligoxanthan, and xanthan digests prepared by MiXen-CBM84 showed better antioxidant activity due to the higher content of active oligosaccharides. The results of this work lay a foundation for the rational design of endotype xanthanase and the industrial production of oligoxanthan in the future. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Graphical abstract

10 pages, 2358 KiB  
Communication
Use of a Preclinical Natural Transmission Model to Study Antiviral Effects of a Carbohydrate-Binding Module Therapy against SARS-CoV-2 in Hamsters
by Daniel Knott, Rachel Fell, Jane A. Potter, Samantha Yuille, Franscisco J. Salguero, Victoria A. Graham, Roger Hewson, David Howat and Stuart D. Dowall
Viruses 2023, 15(3), 725; https://doi.org/10.3390/v15030725 - 11 Mar 2023
Cited by 2 | Viewed by 2051
Abstract
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and its expansion to a worldwide pandemic resulted in efforts to assess and develop interventions to reduce the disease burden. Despite the introduction of vaccine programmes against SARS-CoV-2, global incidence levels in early 2022 [...] Read more.
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and its expansion to a worldwide pandemic resulted in efforts to assess and develop interventions to reduce the disease burden. Despite the introduction of vaccine programmes against SARS-CoV-2, global incidence levels in early 2022 remained high, demonstrating a need for the development of physiologically relevant models, which are essential for the identification of alternative antiviral strategies. The hamster model of SARS-CoV-2 infection has been widely adopted due to similarities with humans in terms of host cell entry mechanism (via ACE2), and aspects of symptomology and virus shedding. We have previously described a natural transmission hamster model that better represents the natural course of infection. In the present study, we have conducted further testing of the model using the first-in-class antiviral Neumifil, which has previously shown promise against SARS-CoV-2 after a direct intranasal challenge. Neumifil is an intranasally delivered carbohydrate-binding module (CBM) which reduces the binding of viruses to their cellular receptor. By targeting the host cell, Neumifil has the potential to provide broad protection against multiple pathogens and variants. This study demonstrates that using a combination of a prophylactic and therapeutic delivery of Neumifil significantly reduces the severity of clinical signs in animals infected via a natural route of transmission and indicates a reduction of viral loads in the upper respiratory tract. Further refinements of the model are required in order to ensure the adequate transmission of the virus. However, our results provide additional data to the evidence base of Neumifil efficacy against respiratory virus infection and demonstrate that the transmission model is a potentially valuable tool for testing antiviral compounds against SARS-CoV-2. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

Back to TopTop