Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (653)

Search Parameters:
Keywords = charge transporting layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2241 KB  
Article
Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors
by Chinaza E. Nwanno, Ram Chandra Gotame, John Watt, Winson Kuo and Wenzhi Li
Nanomaterials 2025, 15(19), 1506; https://doi.org/10.3390/nano15191506 - 1 Oct 2025
Viewed by 299
Abstract
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate [...] Read more.
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate pre-treatments, simplifying electrode design and enhancing electrical integration. The resulting VACNTs form a dense, uniform, and porous array with strong adhesion to the Cu substrate, minimizing contact resistance and improving conductivity. Electrochemical analysis shows gravimetric specific capacitance (Cgrav) and areal specific capacitance (Careal) of 8 F g−1 and 3.5 mF cm−2 at a scan rate of 5 mV/s, with low equivalent series resistance (3.70 Ω) and charge transfer resistance (0.48 Ω), enabling efficient electron transport and rapid ion diffusion. The electrode demonstrates excellent rate capability and retains 92% of its initial specific capacitance after 3000 charge–discharge cycles, indicating strong cycling stability. These results demonstrate the potential of directly grown VACNT-based electrodes for high-performance EDLCs, particularly in applications requiring rapid charge–discharge cycles and sustained energy delivery. Full article
Show Figures

Graphical abstract

10 pages, 1560 KB  
Article
Unveiling the Role of Fluorination in Suppressing Dark Current and Enhancing Photocurrent to Enable Thick-Film Near-Infrared Organic Photodetectors
by Yongqi Bai, Seon Lee Kwak, Jong-Woon Ha and Do-Hoon Hwang
Polymers 2025, 17(19), 2663; https://doi.org/10.3390/polym17192663 - 1 Oct 2025
Viewed by 313
Abstract
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed [...] Read more.
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed and synthesized PFBDT-8ttTPD, a fluorinated polymer donor. The strategic incorporation of fluorine effectively enhanced the charge carrier mobility, enabling more efficient charge transport, even in thicker films. OPDs combining PFBDT−8ttTPD with IT−4F or Y6 non-fullerene acceptors showed a substantially lower dark current density (Jd) for active layer thicknesses of 250−450 nm. Notably, Jd in the IT-4F-based devices declined from 8.74 × 10−9 to 4.08 × 10−10 A cm−2 under a reverse bias of −2 V, resulting in a maximum specific detectivity of 3.78 × 1013 Jones. Meanwhile, Y6 integration provided near-infrared sensitivity, with the devices achieving responsivity above 0.48 A W−1 at 850 nm and detectivity over 1013 Jones up to 900 nm, supporting broadband imaging. Importantly, high-quality thick films (≥400 nm) free of pinholes or defects were fabricated, enabling scalable production without performance loss. This advancement ensures robust photodetection in thick uniform layers and marks a significant step toward the development of industrially viable OPDs. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 1714 KB  
Article
Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films
by Ayman A. A. Ismail, Henryk Bednarski and Andrzej Marcinkowski
Materials 2025, 18(19), 4569; https://doi.org/10.3390/ma18194569 - 1 Oct 2025
Viewed by 269
Abstract
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping [...] Read more.
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping or modifying the physical conditions of the layer deposition. Despite many years of intensive research on the relationship between the microstructure and properties of these layers, there are still gaps in our knowledge, especially with respect to the detailed understanding of the charge carrier transport mechanism in organic semiconductor thin films. In this work, we investigate the effect of acid doping of PEDOT:PSS thin films on the intra-chain and inter-chain conductivity by developing a model that treats PEDOT:PSS as a nanocomposite material. This model is based on the effective medium theory and uses the percolation theory equation for the electrical conductivity of a mixture of two materials. Here its implementation assumes that the role of the highly conductive material is attributed to the intra-chain conductivity of PEDOT and its quantitative contribution is determined based on the optical Drude–Lorentz model. While the weaker inter-chain conductivity is assumed to originate from the weakly conductive material and is determined based on electrical measurements using the van der Pauw method and coherent nanostructure-dependent analysis. Our studies show that doping with methanesulfonic acid significantly affects both types of conductivity. The intra-chain conductivity of PEDOT increases from 260 to almost 400 Scm−1. Meanwhile, the inter-chain conductivity increases by almost three orders of magnitude, reaching a critical state, i.e., exceeding the percolation threshold. The observed changes in electrical conductivity due to acid doping are attributed to the flattening of the PEDOT/PSS gel nanoparticles. In the model developed here, this flattening is accounted for by the inclusion shape factor. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Graphical abstract

21 pages, 5821 KB  
Article
Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells
by Sofia Rubtsov, Akshay Puravankara, Edi L. Laufer, Alexander Sobolev, Alexey Kosenko, Vasily Shishkov, Mykola Shatalov, Victor Danchuk, Michael Zinigrad, Albina Musin and Lena Yadgarov
Nanomaterials 2025, 15(19), 1501; https://doi.org/10.3390/nano15191501 - 1 Oct 2025
Viewed by 257
Abstract
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading [...] Read more.
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading collectively influence device performance. Pre-annealing the BL increases its hydrophobicity, yielding smaller and denser AuNP microdots with an enhanced localized surface plasmon resonance (LSPR). Positioning the AuNP MDA at the BL/perovskite interface (above the BL) maximizes near-field plasmonic coupling to the absorber, resulting in higher photocurrent and power conversion devices; these trends are corroborated by finite-difference time-domain (FDTD) simulations. Moreover, these devices demonstrate better stability over time compared to those with AuNPs at the transparent electrode (under BL). Although higher AuNP concentrations improve dispersion stability, preserve MAPI crystallinity, and yield more uniform nanoparticle sizes, device measurements showed no performance gains. After annealing, the samples with the Au content of 23 wt% relative to TiO2 achieved optimal PSC efficiency by balancing plasmonic enhancement and charge transport without the increased resistance and recombination losses seen at higher loadings. Importantly, X-ray diffraction (XRD) confirms that introducing the TiO2-AuNP MDA at the interface does not disrupt the perovskite’s crystal structure, underscoring the structural compatibility of this plasmonic enhancement. Overall, our findings highlight a scalable strategy to boost PSC efficiency via engineered light-matter interactions at the nanoscale without compromising the perovskite’s structural integrity. Full article
(This article belongs to the Special Issue Photochemical Frontiers of Noble Metal Nanomaterials)
Show Figures

Figure 1

43 pages, 2854 KB  
Review
Strategies for Enhancing BiVO4 Photoanodes for PEC Water Splitting: A State-of-the-Art Review
by Binh Duc Nguyen, In-Hee Choi and Jae-Yup Kim
Nanomaterials 2025, 15(19), 1494; https://doi.org/10.3390/nano15191494 - 30 Sep 2025
Viewed by 140
Abstract
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic [...] Read more.
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic limitations, including poor charge carrier mobility, short diffusion length, and sluggish oxygen evolution reaction (OER) kinetics. This review critically summarizes recent advancements aimed at enhancing BiVO4 PEC performance, encompassing synthesis strategies, defect engineering, heterojunction formation, cocatalyst integration, light-harvesting optimization, and stability improvements. Key fabrication methods—such as solution-based, vapor-phase, and electrochemical approaches—along with targeted modifications, including metal/nonmetal doping, surface passivation, and incorporation of electron transport layers, are discussed. Emphasis is placed on strategies to improve light absorption, charge separation efficiency (ηsep), and charge transfer efficiency (ηtrans) through bandgap engineering, optical structure design, and catalytic interface optimization. Approaches to enhance stability via protective overlayers and electrolyte tuning are also reviewed, alongside emerging applications of BiVO4 in tandem PEC systems and selective solar-driven production of value-added chemicals, such as H2O2. Finally, critical challenges, including the scale-up of electrode fabrication and the elucidation of fundamental reaction mechanisms, are highlighted, providing perspectives for bridging the gap between laboratory performance and practical implementation. Full article
23 pages, 3362 KB  
Review
Polymer Functional Layers for Perovskite Solar Cells
by Jinho Lee, Jaehyeok Kang, Jong-Hoon Lee and Soonil Hong
Polymers 2025, 17(19), 2607; https://doi.org/10.3390/polym17192607 - 26 Sep 2025
Viewed by 572
Abstract
Perovskite solar cells (PSCs) are next-generation solar cells; they are replacing silicon-based solar cells due to their higher efficiency, greater cost-effectiveness, and enhanced potential for various applications. Exceeding the efficiency of crystalline silicon-based solar cells, the commercialization of PSCs has driven not only [...] Read more.
Perovskite solar cells (PSCs) are next-generation solar cells; they are replacing silicon-based solar cells due to their higher efficiency, greater cost-effectiveness, and enhanced potential for various applications. Exceeding the efficiency of crystalline silicon-based solar cells, the commercialization of PSCs has driven not only the development of perovskite photoactive materials but also charge transport layer advancements, interfacial engineering, and processing technologies. PSCs were developed later than dye-sensitized solar cells and organic solar cells; the adoption of techniques previously employed in these technologies is significant to enhancing their performance. Among them, polymers are widely employed in perovskite solar cells to facilitate efficient charge transport, provide interfacial passivation, enhance mechanical flexibility, enable solution-based processing, and improve environmental stability. In this review, we highlight the roles of polymer materials as charge transport layers, interfacial layers, and other functional layers for highly efficient and stable PSCs. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Viewed by 652
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

12 pages, 1417 KB  
Article
Controlling the Concentration of Copper Sulfide Doped with Silver Metal Nanoparticles as a Mechanism to Improve Photon Harvesting in Polymer Solar Cells
by Jude N. Ike, Xhamla Nqoro, Genene Tessema Mola and Raymond Tichaona Taziwa
Processes 2025, 13(9), 2922; https://doi.org/10.3390/pr13092922 - 13 Sep 2025
Viewed by 417
Abstract
The development of thin-film organic solar cells (TFOSCs) is pivotal for advancing sustainable energy technologies because of their potential for low-cost, lightweight, and flexible photovoltaic applications. In this study, silver-doped copper sulfide (CuS/Ag) metal nanoparticles (MNPs) were successfully synthesized via a wet chemical [...] Read more.
The development of thin-film organic solar cells (TFOSCs) is pivotal for advancing sustainable energy technologies because of their potential for low-cost, lightweight, and flexible photovoltaic applications. In this study, silver-doped copper sulfide (CuS/Ag) metal nanoparticles (MNPs) were successfully synthesized via a wet chemical method. These CuS/Ag MNPs were incorporated at varying concentrations into a poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) blend, serving as the active layer to enhance the photovoltaic performance of the TFOSCs. The fabricated TFOSC devices were systematically evaluated based on the optical, electrical, and morphological characteristics of the active layer. By varying the concentration of CuS/Ag MNPs, the influence of nanoparticle doping on photocurrent generation was investigated. The device incorporating 1% CuS/Ag MNPs exhibited the highest power conversion efficiency (PCE) of 5.28%, significantly outperforming the pristine reference device, which achieved a PCE of 2.53%. This enhancement is attributed to the localized surface plasmon resonance (LSPR), which augments charge transport and increases optical absorption. The CuS/Ag MNPs were characterized using ultraviolet–visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive dispersion (EDX) analysis. These findings underscore the potential of CuS/Ag MNPs in revolutionizing TFOSCs, paving the way for more efficient and sustainable solar energy solutions. Full article
Show Figures

Figure 1

20 pages, 898 KB  
Article
Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions
by Jianing Chen, Zhantao Li, Jie Song and Mingji Zhang
Mathematics 2025, 13(17), 2847; https://doi.org/10.3390/math13172847 - 3 Sep 2025
Viewed by 441
Abstract
Modeling ion transport through membrane channels is crucial for understanding cellular processes, and Poisson–Nernst–Planck (PNP) equations provide a fundamental continuum framework for such ionic fluxes. We investigate a quasi-one-dimensional steady-state PNP system for two oppositely charged ion species, focusing on how large permanent [...] Read more.
Modeling ion transport through membrane channels is crucial for understanding cellular processes, and Poisson–Nernst–Planck (PNP) equations provide a fundamental continuum framework for such ionic fluxes. We investigate a quasi-one-dimensional steady-state PNP system for two oppositely charged ion species, focusing on how large permanent charges within the channel and realistic boundary conditions impact ion transport. In contrast to classical models that impose ideal electroneutrality at the channel ends (a simplification that eliminates boundary layers near the membrane interfaces), we adopt relaxed neutral boundary conditions that allow small charge imbalances at the boundaries. Using asymptotic analysis treating the large permanent charge as a singular perturbation, we derive explicit first-order expansions for each ionic flux, incorporating boundary layer parameters (σ,ρ) to quantify slight deviations from electroneutrality. This analysis enables a qualitative characterization of individual cation and anion flux behaviors. Notably, we identify two critical transmembrane potentials, V1c and V2c, at which the cation and anion fluxes, respectively, vanish, signifying flux-reversal thresholds that delineate distinct monotonic regimes in the flux-voltage response; these critical values depend on the permanent charge magnitude and the boundary layer parameters. We further show that both ionic fluxes exhibit saturation: as the applied voltage becomes extreme, each flux approaches a finite limiting value, with the saturation level modulated by the degree of boundary charge imbalance. Moreover, allowing even small boundary charge deviations reveals non-intuitive discrepancies in flux behavior relative to the ideal electroneutral case. For example, in certain parameter regimes, a large permanent charge that enhances an ionic current under strict electroneutral conditions will instead suppress that current under relaxed-neutral conditions (and vice versa). This new analytical framework exposes subtle yet essential nonlinear dynamics that classical electroneutral assumptions would otherwise obscure. It provides deeper insight into the interplay between large fixed charges and boundary-layer effects, emphasizing the importance of incorporating such realistic boundary conditions to ensure accurate modeling of ion transport through membrane channels. Numerical simulations are performed to provide more intuitive illustrations of our analytical results. Full article
Show Figures

Figure 1

17 pages, 4214 KB  
Article
Resistive Switching Behavior of Sol–Gel-Processed ZnMgO/ZnO Bilayer in Optoelectronic Devices
by Hee Sung Shin, Dong Hyun Kim, Donggu Lee and Jaehoon Kim
Nanomaterials 2025, 15(17), 1353; https://doi.org/10.3390/nano15171353 - 3 Sep 2025
Viewed by 766
Abstract
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for [...] Read more.
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for its dual functionality: defect passivation by ZnMgO and efficient charge transport by ZnO. However, while the effects of resistive switching (RS) in individual ZnO and ZnMgO layers on the aging behavior of QLEDs have been studied, the RS characteristics of sol–gel-processed ZnMgO/ZnO bilayers remain largely unexplored. In this study, we systematically analyzed RS properties of an indium tin oxide (ITO)/ZnMgO/ZnO/aluminum (Al) device, demonstrating superior performance compared to devices with single layers of either ZnMgO or ZnO. We also investigated the shelf-aging characteristics of RS devices with single and bilayer structures, finding that the bilayer structure exhibited the least variation over time, thereby confirming its enhanced uniformity and reliability. Furthermore, based on basic current–voltage measurements, we estimated accuracy variations in MNIST pattern recognition using a two-layer perceptron model. These results not only identify a promising RS device architecture based on the sol–gel process but also offer valuable insights into the aging behavior of QLEDs incorporating ZnMgO/ZnO bilayers, ITO, and Al electrodes. Full article
Show Figures

Figure 1

21 pages, 4688 KB  
Article
Numerical Analysis and Design of Hole and Electron Transport Layers in Lead-Free MASnIBr2 Perovskite Solar Cells
by Ahmed N. M. Alahmadi
Eng 2025, 6(9), 222; https://doi.org/10.3390/eng6090222 - 2 Sep 2025
Viewed by 454
Abstract
Lead-free perovskite solar cells (PSCs) provide a viable alternative to lead-based versions, thereby reducing significant environmental issues related to toxicity. MASnIBr2 has emerged as a very attractive lead-free perovskite material due to its environmentally friendly characteristics and advantageous optoelectronic capabilities. However, more [...] Read more.
Lead-free perovskite solar cells (PSCs) provide a viable alternative to lead-based versions, thereby reducing significant environmental issues related to toxicity. MASnIBr2 has emerged as a very attractive lead-free perovskite material due to its environmentally friendly characteristics and advantageous optoelectronic capabilities. However, more tuning is required to achieve superior conversion efficiencies (PCEs). This study uses SCAPS-1D simulations to systematically develop and optimize the electron and hole transport layers (ETLs/HTLs) in MASnIBr2-based perovskite solar cells (PSCs). Iterative simulations are used to carefully examine and optimize critical parameters, including electron affinity, energy bandgap, layer thickness, and doping density. Additionally, the thickness of the MASnIBr2 absorber layer is optimized to enhance charge extraction and light absorption. Our findings showed a maximum power conversion efficiency of 20.42%, an open-circuit voltage of 1.38 V, a short-circuit current density of 17.91 mA/cm2, and a fill factor of 82.75%. This study establishes a basis for future progress in sustainable photovoltaics and offers essential insights into the design of efficient lead-free perovskite solar cells. Full article
Show Figures

Figure 1

15 pages, 7305 KB  
Article
Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency
by Jolly Mathew, Shyju Thankaraj Salammal, Anandhi Sivaramalingam and Paulraj Manidurai
J. Compos. Sci. 2025, 9(9), 462; https://doi.org/10.3390/jcs9090462 - 1 Sep 2025
Viewed by 483
Abstract
We developed dye-sensitized solar cells based on anatase–titanium dioxide (A-TiO2) nanotubes (TiNTs) and nanocubes (TiNcs) with {001} crystal facets generated using simple and facile electrochemical anodization. We also demonstrated a simple way of developing one-dimensional, two-dimensional, and three-dimensional self-assembled TiO2 [...] Read more.
We developed dye-sensitized solar cells based on anatase–titanium dioxide (A-TiO2) nanotubes (TiNTs) and nanocubes (TiNcs) with {001} crystal facets generated using simple and facile electrochemical anodization. We also demonstrated a simple way of developing one-dimensional, two-dimensional, and three-dimensional self-assembled TiO2 nanostructures via electrochemical anodization, using them as an electron-transporting layer in DSSCs. TiNTs maintain tubular arrays for a limited time before becoming nanocrystals with {001} facets. Using FESEM and TEM, we observed that the TiO2 nanobundles were transformed into nanocubes with {001} facets and lower fluorine concentrations. Optimizing the reaction approach resulted in better-ordered, crystalline anatase TiNTs/Ncs being formed on the Ti metal foil. The anatase phase of as-grown TiO2 was confirmed by XRD, with (101) being the predominant intensity and preferred orientation. The nanostructured TiO2 had lattice values of a = 3.77–3.82 and c = 9.42–9.58. The structure and morphology of these as-grown materials were studied to understand the growth process. The photoconversion efficiency and impedance spectra were explored to analyze the performance of the designed DSSCs, employing N719 dye as a sensitizer and the I/I3− redox pair as electrolytes, sandwiched with a Pt counter-electrode. As a result, we found that self-assembled TiNTs/Ncs presented a more effective photoanode in DSSCs than standard TiO2 (P25). TiNcs (0.5 and 0.25 NH4F) and P25 achieved the highest power conversion efficiencies of 3.47, 3.41, and 3.25%, respectively. TiNcs photoanodes have lower charge recombination capability and longer electron lifetimes, leading to higher voltage, photocurrent, and photovoltaic performance. These findings show that electrochemical anodization is an effective method for preparing TiNTs/Ncs and developing low-cost, highly efficient DSSCs by fine-tuning photoanode structures and components. Full article
Show Figures

Figure 1

13 pages, 3355 KB  
Article
Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
by Fangtao Yu, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei and Chunfu Zhang
Molecules 2025, 30(17), 3535; https://doi.org/10.3390/molecules30173535 - 29 Aug 2025
Viewed by 609
Abstract
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole [...] Read more.
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole transport layers (HTLs). Herein, we propose a strategy to simultaneously enhance the crystallinity of CsPbI2.85Br0.15 and facilitate hole extraction at the HTL/CsPbI2.85Br0.15 interface by incorporating semiconducting single-walled carbon nanotubes (SWCNTs) onto [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) HTL. The unique electrical properties of SWCNTs enable the MeO-2PACz/SWCNT HTL to achieve high conductivity, optimal energy level alignment, and an adaptable surface. Consequently, the defect density is reduced, hole extraction is accelerated, and interfacial charge recombination is effectively suppressed. As a result, these synergistic benefits boost the power conversion efficiency (PCE) from 15.74% to 18.78%. Moreover, unencapsulated devices retained 92.35% of their initial PCE after 150 h of storage in ambient air and 89.03% after accelerated aging at 85 °C for 10 h. These findings highlight the strong potential of SWCNTs as an effective interlayer for inverted CsPbI2.85Br0.15 PSCs and provide a promising strategy for designing high-performance HTLs by integrating SWCNTs with self-assembled monolayers (SAMs). Full article
Show Figures

Figure 1

16 pages, 7431 KB  
Article
Effect of Synthesis Conditions on Graphene Directly Grown on SiO2: Structural Features and Charge Carrier Mobility
by Šarūnas Meškinis, Šarūnas Jankauskas, Lukas Kamarauskas, Andrius Vasiliauskas, Asta Guobienė, Algirdas Lazauskas and Rimantas Gudaitis
Nanomaterials 2025, 15(17), 1315; https://doi.org/10.3390/nano15171315 - 27 Aug 2025
Viewed by 737
Abstract
Graphene was directly grown on SiO2/Si substrates using microwave plasma-enhanced chemical vapor deposition (PECVD) to investigate how synthesis-driven variations in structure and doping influence carrier transport. The effects of synthesis temperature, plasma power, deposition time, gas flow, and pressure on graphene’s [...] Read more.
Graphene was directly grown on SiO2/Si substrates using microwave plasma-enhanced chemical vapor deposition (PECVD) to investigate how synthesis-driven variations in structure and doping influence carrier transport. The effects of synthesis temperature, plasma power, deposition time, gas flow, and pressure on graphene’s structure and electronic properties were systematically studied. Raman spectroscopy revealed non-monotonic changes in layer number, defect density, and doping levels, reflecting the complex interplay between growth, etching, and self-doping mechanisms. The surface morphology and conductivity were assessed by atomic force microscopy (AFM). Charge carrier mobility, extracted from graphene-based field-effect transistors, showed strong correlations with Raman features, including the intensity ratios and positions of the Two-dimension (2D) and G peaks. Importantly, mobility did not correlate with defect density but was linked to reduced self-doping and a weaker graphene–substrate interaction rather than intrinsic structural disorder. These findings suggest that charge transport in PECVD-grown graphene is predominantly limited by interfacial and doping effects. This study offers valuable insights into the synthesis–structure–property relationship, which is crucial for optimizing graphene for electronic and sensing applications. Full article
Show Figures

Graphical abstract

37 pages, 36379 KB  
Article
Surface Morphology and Electrochemical Behavior of Microstructured Cu Electrodes in All-Solid-State Sodium Batteries
by Tomás Prior, Joana Figueira, Ângela Freitas, David Carvalho, Beatriz Moura Gomes, Manuela C. Baptista, Hugo Lebre, Rodrigo Martins, Luís Pereira, Joana Vaz Pinto and M. Helena Braga
Molecules 2025, 30(17), 3493; https://doi.org/10.3390/molecules30173493 - 25 Aug 2025
Viewed by 789
Abstract
The integration of microstructured current collectors offers a potential pathway to enhance interface properties in solid-state battery architectures. In this work, we investigate the influence of surface morphology on the electrochemical performance of Zn/Na2.99Ba0.005OCl/Cu electrodeless pouch cells by fabricating [...] Read more.
The integration of microstructured current collectors offers a potential pathway to enhance interface properties in solid-state battery architectures. In this work, we investigate the influence of surface morphology on the electrochemical performance of Zn/Na2.99Ba0.005OCl/Cu electrodeless pouch cells by fabricating copper thin films on microstructured parylene-C substrates using a combination of colloidal lithography and reactive ion etching. O2 plasma etching times ranging from 0 to 15 min were used to tune the surface topography, resulting in a systematic increase in root-mean-square roughness and a surface area enhancement of up to ~30% for the longest etching duration, measured via AFM. Kelvin probe force microscopy-analyzed surface potential showed maximum differences of 270 mV between non-etched and 12-minute-etched Cu collectors. The results revealed that the chemical potential is the property that relates the surface of the Cu current collector/electrode with the cell’s ionic transport performance, including the bulk ionic conductivity, while four-point sheet resistance measurements confirmed that the copper layers’ resistivity maintained values close to those of bulk copper (1.96–4.5 µΩ.cm), which are in agreement with electronic mobilities (−6 and −18 cm2V−1s−1). Conversely, the charge carrier concentrations (−1.6 to −2.6 × 1023 cm−3) are indirectly correlated with the performance of the cell, with the samples with lower CCCbulk (fewer free electrons) performing better and showing higher maximum discharge currents, interfacial capacitance, and first-cycle discharge plateau voltage and capacity. The data were further consolidated with Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analyses. These results highlight that the correlation between the surface morphology and the cell is not straightforward, with the microstructured current collectors’ surface chemical potential and the charge carriers’ concentration being determinant in the performance of all-solid-state electrodeless sodium battery systems. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Figure 1

Back to TopTop